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Factorial cumulants from global baryon number conservation
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The proton, antiproton, and mixed proton-antiproton factorial cumulants originating from the global conser-
vation of baryon number are calculated analytically up to the sixth order. Our results can be directly tested in
experiments.
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I. INTRODUCTION

Many effective models of quantum chromodynamics
(QCD) predict the first-order phase transition and the asso-
ciated critical end point between the hadronic matter and
quark-gluon plasma [1–4]. One of the main approaches to
search for such structures in the QCD phase diagram is based
on the investigation of fluctuations of, e.g., net-baryon num-
ber, net-charge, or net-strangeness number [1,5–24] measured
in relativistic heavy ion collisions, see also a recent review in
Ref. [4].

Higher-order cumulants, κn, of the multiplicity distribution
can be used to quantify the properties of such fluctuations
since they are proportional to the higher powers of the correla-
tion length [10]. However, the cumulants mix the correlation
functions of different orders, and thus in experimental situa-
tions might be challenging to interpret. Also, in practice, the
cumulants might be dominated by the trivial term representing
the average number of particles. To avoid these difficulties,
the factorial cumulants, Ĉn,1 can be used as they represent the
integrated genuine multiparticle correlation functions [4,25–
27].

The factorial cumulants have already been successfully
applied to the STAR data on net-proton fluctuations [28–30],
which unveiled rather unexpected source of strong three-
and four-proton correlations in central Au+Au collisions at√

sNN = 7.7 GeV [27]. It was later found that these correla-
tions are consistent with a two-component (bimodal) proton
multiplicity distribution [31,32], which might indicate an in-
teresting physics or a potential issue with the experimental
data.

It is known that fluctuations and correlations related to the
first-order phase transition or the critical end point may be
misinterpreted because of the potentially significant contribu-
tions from various effects, which in this case play a role of
the background. For instance, small fluctuations of the impact
parameter and thus the number of wounded nucleons [33]
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were studied, e.g., in Refs. [34–36]. This effect may lead to
significant corrections, as recently shown in Ref. [37], where
the measurement of cumulants and factorial cumulants by the
HADES Collaboration was reported. Another important effect
is the global (or local) baryon number conservation, see, e.g.,
[35,38–43]. In Ref. [41] the ALICE Collaboration emphasized
the importance of the global baryon conservation at the CERN
Large Hadron Collider (LHC) energies.

In this paper we calculate the proton, antiproton, and the
mixed proton-antiproton factorial cumulants up to the sixth or-
der, assuming that the only source of correlations is the global
conservation of baryon number. The factorial cumulants of the
joint proton and antiproton multiplicity distribution P(np, n̄p)
contain more information than the cumulants of the net-proton
distribution P(np − n̄p) [27]. Our results extend the so far
published results and will allow for more sophisticated tests
of the global baryon conservation effects in experiments.

In the next section, we discuss our derivation of the proton,
antiproton, and mixed proton-antiproton factorial cumulants.
In Sec. III we present the exact results up to the sixth order
and discuss some relations among them. We also provide very
simple approximate expressions applicable at high energies.
This is followed by the numerical results in Sec. IV. We finish
the paper with comments and a summary. In Appendices A–D
some additional formulas and derivations are given.

II. CALCULATION

In this section we derive analytically the factorial cu-
mulants of proton and antiproton multiplicity distribution,
originating from the global conservation of baryon number.
We assume that the only source of correlations is given by
the global conservation law. By B we denote the conserved
baryon number, Nb and N̄b are the event-by-event total num-
bers of baryons and antibaryons, respectively, and np and n̄p

are the numbers of observed protons and antiprotons in a given
rapidity and/or transverse momentum interval.2

2Experimentally, one is usually restricted to the measurement of
protons, however, the connection with baryons can be made [44,45].
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The probability distribution of np and n̄p is given by3

P(np, n̄p) = A
∞∑

Nb=np

∞∑
N̄b=n̄p

δNb−N̄b,B

[ 〈Nb〉Nb

Nb!
e−〈Nb〉

]

×
[ 〈N̄b〉N̄b

N̄b!
e−〈N̄b〉

][
Nb!

np!(Nb−np)!
pnp (1−p)Nb−np

]

×
[

N̄b!

n̄p!(N̄b − n̄p)!
p̄n̄p (1 − p̄)N̄b−n̄p

]
, (1)

where p = 〈np〉/〈Nb〉 is the probability that the initial baryon
is observed as a proton and p̄ = 〈n̄p〉/〈N̄b〉 is the probability
that the initial antibaryon is observed as an antiproton in a
given acceptance region. 〈x〉 denotes an event average value
of x. The normalization constant is

A =
( 〈N̄b〉

〈Nb〉
) B

2 e
〈Nb〉+〈N̄b〉

IB
(
2
√

〈Nb〉〈N̄b〉
) , (2)

where Iν (x) is a modified Bessel function of the order ν. As
already emphasized, our goal is to calculate the factorial cu-
mulants assuming that the only source of correlation is given
by the conservation of baryon number. Consequently, we start
with Nb and N̄b following Poisson distributions and the multi-
plicities of observed protons and antiprotons are governed by
binomial distributions, which do not introduce any new corre-
lations (see also footnote 3). The global baryon conservation
is obviously enforced by δNb−N̄b,B. Without this term, P(np, n̄p)
would be given by a product of two Poisson distributions, and
the factorial cumulants would vanish. Note that Eq. (1) can
be derived from a more general expression including protons,
antiprotons, neutrons, and antineutrons. This is demonstrated
in Appendix A.

The finite acceptance is indeed usually modeled by the
binomial distribution, see, e.g., [35,38,43], however, possible
nonbinomial effects are also studied [40,42,43]. For example,
in a recent Ref. [43] the authors investigate the impact of
global baryon and charge conservation (using binomial dis-
tribution) for cumulants and their ratios, i.e., scaled variance,
skewness, and kurtosis, and possible limitations of the bino-
mial distribution are studied with the ultrarelativistic quantum
molecular dynamics model [46,47].

Using Eqs. (1) and (2), it is straightforward to calculate
the factorial moment generating function (also known as the
probability generating function)

H (x, x̄) =
∞∑

np=0

∞∑
n̄p=0

xnp x̄n̄pP(np, n̄p), (3)

and the factorial cumulant generating function

G(x, x̄) = ln[H (x, x̄)]. (4)

3This derivation is slightly different than the one from Ref. [38],
where the total volume was divided into observed and unobserved
systems and the joint multiplicity distribution was written as a prod-
uct of distributions from the two subvolumes (Eq. (5) in [38]), see
also [42]. Both procedures lead to identical results if the underlying
distributions are Poissons.

The result is

G(x, x̄) = ln

[(
px + 1 − p

p̄x̄ + 1 − p̄

) B
2

× IB
(
2
√

〈Nb〉〈N̄b〉(px + 1 − p)( p̄x̄ + 1 − p̄)
)

IB
(
2
√

〈Nb〉〈N̄b〉
)

]
.

(5)

The factorial cumulants Ĉ(n,m) which are the integrated
(over a given acceptance region) correlation functions for (in
our context) n protons and m antiprotons are given by

Ĉ(n,m) = ∂n

∂xn

∂m

∂ x̄m
G(x, x̄)

∣∣∣∣
x=x̄=1

. (6)

By definition, the factorial cumulants Ĉ(n,m) = 0 for all n � 1,
m � 1, if there are no correlations in the system [4], i.e.,
if P(np, n̄p) factorizes and both np and n̄p are distributed
according to Poisson distributions. The global baryon num-
ber conservation, being a long-range correlation, results in
nonzero Ĉ(n,m). We note that the cumulants, which are usually
measured in experiments, see, e.g., [28–30,37,41,48,49], can
be expressed by Ĉ(n,m). We will discuss this issue later on.
Here, we only emphasize that the cumulants mix the factorial
cumulants of different orders and in general, the factorial
cumulants contain more information than the cumulants.

Before we present our results let us introduce additional
notation:

z =
√

〈Nb〉〈N̄b〉, (7)

〈Nb〉c = z
IB−1(2z)

IB(2z)
, 〈N̄b〉c = z

IB+1(2z)

IB(2z)
, (8)

zc =
√

〈Nb〉c〈N̄b〉c, (9)

where 〈Nb〉 is the mean number of baryons [present in Eq. (1)]
before the baryon number conservation is enforced, and 〈Nb〉c

is the mean number of baryons with the conservation of
baryon number (and analogously for antibaryons). The baryon
number conserved averages obviously satisfy 〈Nb〉c − 〈N̄b〉c =
B [see Eq. (8) and footnote 4].

III. RESULTS

A. Exact formulas

In this section we present analytic expressions for Ĉ(n,m) up
to the sixth order. It is natural to define

〈N〉c = 〈Nb〉c + 〈N̄b〉c, (10)

which is the total average number of baryons. To present the
formulas in a more compact way we identified commonly
appearing terms and denoted them as

� = z2
c − z2, (11)

γ = z2
c + �〈N〉c, (12)

β = γ (〈N〉c + 2) + 2�2, (13)
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where 〈N〉c, �, γ , and β depend on B and z only, see Eqs. (8)
and (9). The factorial cumulants read4

Ĉ(1,0) = p〈Nb〉c, (14)

Ĉ(2,0) = −p2(〈Nb〉c + �), (15)

Ĉ(1,1) = −pp̄�, (16)

Ĉ(3,0) = p3
[
2!

(〈Nb〉c + � + 1
2γ

)]
, (17)

Ĉ(2,1) = p2 p̄γ , (18)

Ĉ(4,0) = −p4
[
3!

(〈Nb〉c + � + 1
2γ

) + β
]
, (19)

Ĉ(3,1) = −p3 p̄β, (20)

Ĉ(2,2) = −p2 p̄2(β − γ ), (21)

Ĉ(5,0) = p5
[
4!

(〈Nb〉c + � + 1
2γ

) + (〈N〉c + 7)β + 6γ�
]
,

(22)

Ĉ(4,1) = p4 p̄[(〈N〉c + 3)β + 6γ�], (23)

Ĉ(3,2) = p3 p̄2[(〈N〉c + 1)β + 6γ�], (24)

Ĉ(6,0) = −p6[5!
(〈Nb〉c + � + 1

2γ
) + {

(〈N〉c + 5)(〈N〉c

+ 7) + 12
}
β + 6γ 2 + 16�3 + 2γ�(7〈N〉c + 35)

]
,

(25)

Ĉ(5,1) = −p5 p̄[(〈N〉c + 3)(〈N〉c + 4)β + 6γ 2 + 16�3

+ 2γ�(7〈N〉c + 20)], (26)

Ĉ(4,2) = −p4 p̄2[(〈N〉c + 1)(〈N〉c + 3)β + 6γ 2 + 16�3

+ 2γ�(7〈N〉c + 11)], (27)

Ĉ(3,3) = −p3 p̄3[(〈N〉c + 1)(〈N〉c + 2)β + 6γ 2 + 16�3

+ 2γ�(7〈N〉c + 8)]. (28)

Having Ĉ(n,m), one can easily obtain Ĉ(m,n),

Ĉ(m,n) = Ĉ(n,m)(p → p̄, p̄ → p) for n m �= 0, (29)

Ĉ(0,n) = Ĉ(n,0)(p → p̄, 〈Nb〉c → 〈N̄b〉c), (30)

that is, to obtain Ĉ(m,n) from Ĉ(n,m) with both n and m larger
than zero, it is enough to exchange p with p̄. To obtain Ĉ(0,n)

from Ĉ(n,0) it is also necessary to replace 〈Nb〉c by 〈N̄b〉c. For
example, Ĉ(0,1) = p̄〈N̄b〉c and Ĉ(1,2) = pp̄2γ .

B. Relations

As seen from Eqs. (14)–(28), Ĉ(n,m) is proportional to
pn p̄m.5 Therefore it is natural to study the following ratios:

R̂(n,m) = Ĉ(n,m)

pn p̄m
, (31)

which are independent of the size of the chosen acceptance
bin.

4In this calculation we extensively use Iν−1(x) − Iν+1(x) = 2ν

x Iν (x).
5This is not unexpected. As argued in, e.g., Refs. [27,36] the

long-range correlation, such as global baryon conservation, natu-
rally results in Ĉ (n,m) being proportional to 〈np〉n〈n̄p〉m, where 〈np〉 =
p〈Nb〉 and 〈n̄p〉 = p̄〈N̄b〉.

Using Eqs. (14)–(28) we find several simple relations be-
tween various R̂(n,m):

R̂(2,0) = R̂(1,1) − R̂(1,0), (32)

R̂(3,0) = R̂(2,1) − 2R̂(2,0), (33)

R̂(4,0) = R̂(3,1) − 3R̂(3,0), (34)

R̂(5,0) = R̂(4,1) − 4R̂(4,0), (35)

R̂(6,0) = R̂(5,1) − 5R̂(5,0), (36)

R̂(3,1) = R̂(2,2) − R̂(2,1), (37)

R̂(4,1) = R̂(3,2) − 2R̂(3,1), (38)

R̂(5,1) = R̂(4,2) − 3R̂(4,1), (39)

R̂(4,2) = R̂(3,3) − R̂(3,2), (40)

or in general (n > 0 or m > 0)

R̂(n+1,m) = R̂(n,m+1) − (n − m)R̂(n,m), (41)

which we verified by direct calculations up to n + m < 9.

C. Approximate formulas for B = 0

Here, we analyze in detail the special case of B = 0, mean-
ing the same total number of baryons and antibaryons, which
characterizes large energy conditions, such as at the LHC.
In this case 〈Nb〉c = 〈N̄b〉c, zc = 〈Nb〉c and 〈N〉c = 2〈Nb〉c. All
components appearing in Eqs. (14)–(28), that is, 〈N〉c, 〈Nb〉c,
�, γ , and β depend on z only. Next, we apply to Eq. (8) the
asymptotic (large argument) expansion of the modified Bessel
function [50]:

Iν (x) ∼ ex

√
2πx

(
1 +

∞∑
n=1

(−1)n
∏n

i=1(4ν2 − (2i − 1)2)

n!(8x)n

)
.

(42)

After eliminating the Bessel functions [the higher the or-
der of the factorial cumulant, the more terms are needed in
Eq. (42)] we expand R̂(n,m)(z) into a power series6 for large z
and obtain the dependency of the form

R̂(n,m)(z) ∼ a1z + a0 + a−1z−1 + a−2z−2 + . . . , (43)

where the coefficients ai depend on n and m. It is worth noting
that R̂(n,m)(z) grows linearly with z for large z. The details and
explicit expressions for R̂(n,m)(z) are presented in Appendix B.

It can be proved (see Appendix B) that R̂(n,m)(zc) is also of
the same form, that is, the highest-order term is proportional
to zc and the coefficients of the series can be easily calculated.
The obtained asymptotic expressions for R̂(n,m)(zc) at large zc

are given below (zc = 〈Nb〉c = 〈N̄b〉c):

R̂(2,0)(zc) ∼ − 1
2 zc + 1

8 + 1
32 z−1

c + · · · , (44)

R̂(1,1)(zc) ∼ 1
2 zc + 1

8 + 1
32 z−1

c + · · · , (45)

R̂(3,0)(zc) ∼ 3
4 zc − 5

16 − 3
32 z−1

c + · · · , (46)

6Here, we introduce z = 1/y and expand about y = 0 and then
substitute back y = 1/z.
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R̂(2,1)(zc) ∼ − 1
4 zc − 1

16 − 1
32 z−1

c + · · · , (47)

R̂(4,0)(zc) ∼ − 15
8 zc + 33

32 + 45
128 z−1

c + · · · , (48)

R̂(3,1)(zc) ∼ 3
8 zc + 3

32 + 9
128 z−1

c + · · · , (49)

R̂(2,2)(zc) ∼ 1
8 zc + 1

32 + 5
128 z−1

c + · · · , (50)

R̂(5,0)(zc) ∼ 105
16 zc − 279

64 − 105
64 z−1

c + · · · , (51)

R̂(4,1)(zc) ∼ − 15
16 zc − 15

64 − 15
64 z−1

c + · · · , (52)

R̂(3,2)(zc) ∼ − 3
16 zc − 3

64 − 3
32 z−1

c + · · · , (53)

R̂(6,0)(zc) ∼ − 945
32 zc + 2895

128 + 4725
512 z−1

c + · · · , (54)

R̂(5,1)(zc) ∼ 105
32 zc + 105

128 + 525
512 z−1

c + · · · , (55)

R̂(4,2)(zc) ∼ 15
32 zc + 15

128 + 165
512 z−1

c + · · · , (56)

R̂(3,3)(zc) ∼ 9
32 zc + 9

128 + 117
512 z−1

c + · · · . (57)

We checked, see Sec. IV, that the obtained approximate
formulas work with very good accuracy already from zc =
〈Nb〉c > 2.

IV. NUMERICAL RESULTS

In this section we present numerical results for R̂(n,m)(zc) =
Ĉ(n,m)/(pn p̄m) for two special cases: B = 0 corresponding to
large energies and B = 300 corresponding to central collisions
at low energies in heavy-ion collisions.

A. B = 0

For B = 0, zc = 〈Nb〉c = 〈N̄b〉c = 〈N〉c/2 and therefore
R̂(n,m)(zc) equals R̂(n,m)(〈Nb〉c). From Eqs. (44)–(57) it is clear
that the dominant contribution is linear with zc = 〈Nb〉c and
there are certain deviations for small 〈Nb〉c. Therefore, for
B = 0, it is natural to divide R̂(n,m) by 〈Nb〉c so that the leading
term is simply constant. In Fig. 1 we present R̂(n,m)(〈Nb〉c)
divided by 〈Nb〉c for all the discussed factorial cumulants.
Markers represent exact formulas for the factorial cumulants
Ĉ(n,m) given by Eqs. (14)–(28), whereas lines represent our

0 20 40 60 80 100
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FIG. 1. R̂(n,m)/〈Nb〉c as a function of 〈Nb〉c for B = 0, where R̂(n,m) = Ĉ (n,m)/(pn p̄m ). Markers represent exact formulas for the factorial
cumulants Ĉ (n,m) given by Eqs. (14)–(28), whereas lines represent our asymptotic formulas (large 〈Nb〉c) given by Eqs. (44)–(57). Markers are
plotted for 〈Nb〉c = 1, 2, 5, 10, 15,.... For 〈Nb〉c > 2 the approximated formulas work very well, achieving precision better than 1% starting
from 〈Nb〉c between 2 and 7 depending on the order of the factorial cumulant. Some of the functions were scaled by a factor of 0.1 to improve
readability.
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100 101 102 103 104
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FIG. 2. R̂(n,m)/zc as a function of 〈N̄b〉c for B = 300 based on Eqs. (14)–(28). R̂(n,m) = Ĉ (n,m)/(pn p̄m ). For m = 0 we present (R̂(n,0) −
(−1)n−1(n − 1)!〈Nb〉c )/zc because it gives the same values for both R̂(n,0) and R̂(0,n). Some of the functions were scaled by a factor of 10, 0.1,
or 0.01 to improve readability. Note the logarithmic scale on the horizontal axis.

asymptotic expressions (large 〈Nb〉c) given by Eqs. (44)–(57).7

These functions are essentially constant, in agreement with
our asymptotic results, except for small values of 〈Nb〉c. The
approximated formulas work very well starting from 〈Nb〉c ≈
2. The precision better than 1% is obtained starting from
〈Nb〉c ≈ 7 in the worst case of the sixth order factorial cumu-
lants.

B. B = 300

Here, we investigate the case of B �= 0 and, as an example,
we choose B = 300. In this case, obviously 〈Nb〉c = 〈N̄b〉c + B
and now zc = [〈Nb〉c(〈Nb〉c − B)]1/2. In general R̂(n,m) is more
complicated than for B = 0 and only for very large zc or
〈Nb〉c it asymptotically approaches a linear function. This is
demonstrated in Fig. 2, where we plot R̂(n,m) divided by zc

as a function of 〈N̄b〉c. We were unable to obtain a simple
approximated formula and thus in Fig. 2 we present only
exact R̂(n,m)/zc based on Eqs. (14)–(28). In the case of B �= 0,

7For the exact results we first take 〈Nb〉c and solve Eq. (8) for z,
which we substitute to Eqs. (14)–(28).

R̂(n,0) �= R̂(0,n) and we decided to plot (R̂(n,0) − (−1)n−1(n −
1)!〈Nb〉c)/zc because this is symmetric when baryons and an-
tibaryons are exchanged, see Eqs. (14)–(28). We note that for
some R̂(n,m)/zc with n, m close to each other (e.g., R̂(2,2), R̂(3,2))
we observe a maximum or minimum at 〈N̄b〉c about 100.
Experimentally available cases at heavy-ion colliders cover
the values of 〈N̄b〉c of the order of 100 and in Fig. 3 we show
the results (except R̂(n,0)) in the range of 0 < 〈N̄b〉c < 50.

V. COMMENTS AND SUMMARY

In this paper we calculated the proton, antiproton, and
mixed proton-antiproton factorial cumulants, Ĉ(n,m), up to
the sixth order, n + m = 6, assuming that the only source
of correlations is the global conservation of baryon number.
The exact formulas are given in Eqs. (14)–(28) and for the
case of B = 0 the asymptotic expressions are provided in
Eqs. (44)–(57). The latter ones represent very good approx-
imation already from 〈Nb〉c ≈ 2.

Several comments are in order.
Recently the ALICE Collaboration measured [41] the

second-order cumulant, κ2, of the net-proton number and
the result is consistent with the global baryon conservation.

064908-5



MICHAŁ BAREJ AND ADAM BZDAK PHYSICAL REVIEW C 102, 064908 (2020)

10 20 30 40 50
〈N̄b〉c

−0.10

−0.05

0.00

0.05

0.10
R̂(2,1)/zc

10 20 30 40 50
〈N̄b〉c

−0.10

−0.05

0.00

0.05

0.10
R̂(3,1)/zc

R̂(2,2)/zc

10 20 30 40 50
〈N̄b〉c

−0.10

−0.05

0.00

0.05

0.10

R̂(4,1)/zc

R̂(3,2)/zc

10 20 30 40 50
〈N̄b〉c

−0.10

−0.05

0.00

0.05

0.10
R̂(5,1)/zc

R̂(4,2)/zc

10 R̂(3,3)/zc

FIG. 3. Same as Fig. 2 but for nm �= 0 and for small 〈N̄b〉c. Note the linear scale on the horizontal axis. R̂(3,3)/zc was scaled by 10 to make
the maximum at 〈N̄b〉c ≈ 15 visible.

We note that, e.g., κ2 contains less information than the
second-order factorial cumulants Ĉ(2,0), Ĉ(1,1), and Ĉ(0,2). It
would be instructive to see whether the second-order facto-
rial cumulants are consistent with the ALICE data. Also, the
measurement of the higher-order factorial cumulants would
be warranted.

Having all the factorial cumulants we can immediately
calculate the net-proton cumulants κn. For example [27],

κ2 = Ĉ(1,0) + Ĉ(0,1) + Ĉ(2,0) + Ĉ(0,2) − 2Ĉ(1,1), (58)

and the expressions for the higher order κn are shown in
Appendix C. Here, Ĉ(1,0) and Ĉ(0,1) are the mean numbers of
observed, e.g., protons and antiprotons, respectively.

Finally, one possible way to measure factorial cumu-
lants Ĉ(n,m) is to first measure factorial moments Fi,k ≡
〈 n!

(n−i)!
n̄!

(n̄−k)! 〉, which allow to directly obtain Ĉ(n,m). Explicit

relations between Ĉ(n,m) and Fi,k are given in Appendix D.
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APPENDIX A: COMMENT ON EQ. (1)

Let in each heavy-ion collision event B = Np + Nn − N̄p −
N̄n be the net-baryon number. Here, Np and N̄p are the total
numbers of protons and antiprotons, respectively, Nn and N̄n

are the total numbers of neutrons and antineutrons. Moreover,
by np and n̄p we denote the numbers of observed protons
and antiprotons in a given acceptance bin. p1 = 〈np〉/〈Np〉
is the probability to observe a proton in a given acceptance
region and p2 = 〈n̄p〉/〈N̄p〉 is the probability to observe an
antiproton. The probability distribution of np and n̄p is given
by

P(np, n̄p) = A
∞∑

Np=np

∞∑
N̄p=n̄p

∞∑
Nn=0

∞∑
N̄n=0

δNp+Nn−N̄p−N̄n,B

[ 〈Np〉Np

Np!
e−〈Np〉

][ 〈N̄p〉N̄p

N̄p!
e−〈N̄p〉

][ 〈Nn〉Nn

Nn!
e−〈Nn〉

][ 〈N̄n〉N̄n

N̄n!
e−〈N̄n〉

]

×
[

Np!

np!(Np − np)!
p

np

1 (1 − p1)Np−np

][
N̄p!

n̄p!(N̄p − n̄p)!
p

n̄p

2 (1 − p2)N̄p−n̄p

]
, (A1)
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where A is a normalization factor. In this expression we
assume that the only source of correlation is given by
the global conservation of baryon number implemented by
δNp+Nn−N̄p−N̄n,B.

Next, Nb = Np + Nn is the total number of baryons, and
N̄b = N̄p + N̄n is the total number of antibaryons. Using rela-
tions

Np = Nb − Nn, N̄p = N̄b − N̄n, (A2)

and summing over Nn and N̄n leads to our starting Eq. (1).

APPENDIX B: ASYMPTOTIC EXPANSION FOR B = 0

Here, we present more details leading to the asymptotic
Eqs. (44)–(57). As already mentioned in Sec. III C, in all
Eqs. (14)–(28) we eliminate the Bessel functions [the higher
the order of the factorial cumulant, the more terms are needed
in Eq. (42) and it is enough to take the first seven terms for the
sixth order Ĉ(n,m)] and expand R̂(n,m)(z) into a power series for
large z. We obtain

R̂(2,0)(z) ∼ − 1
2 z + 1

4 + 3
64 z−1 + · · · , (B1)

R̂(1,1)(z) ∼ 1
2 z + 1

64 z−1 + · · · , (B2)

R̂(3,0)(z) ∼ 3
4 z − 1

2 − 15
128 z−1 + · · · , (B3)

R̂(2,1)(z) ∼ − 1
4 z − 3

128 z−1 + · · · , (B4)

R̂(4,0)(z) ∼ − 15
8 z + 3

2 + 105
256 z−1 + · · · , (B5)

R̂(3,1)(z) ∼ 3
8 z + 15

256 z−1 + · · · , (B6)

R̂(2,2)(z) ∼ 1
8 z + 9

256 z−1 + · · · , (B7)

R̂(5,0)(z) ∼ 105
16 z − 6 − 945

512 z−1 + · · · , (B8)

R̂(4,1)(z) ∼ − 15
16 z − 105

512 z−1 + · · · , (B9)

R̂(3,2)(z) ∼ − 3
16 z − 45

512 z−1 + · · · , (B10)

R̂(6,0)(z) ∼ − 945
32 z + 30 + 10395

1024 z−1 + · · · , (B11)

R̂(5,1)(z) ∼ 105
32 z + 945

1024 z−1 + · · · , (B12)

R̂(4,2)(z) ∼ 15
32 z + 315

1024 z−1 + · · · , (B13)

R̂(3,3)(z) ∼ 9
32 z + 225

1024 z−1 + · · · . (B14)

Note that all the R̂(n,m)(z) can be written as

R̂(n,m)(z) ∼ a1z + a0 + a−1z−1 + a−2z−2 + · · · , (B15)

where the coefficients ai depend on n and m and a0 �= 0 for
m = 0 only.

It is easy to see that R̂(n,m)(zc) is also of the same form, that
is, the highest term is proportional to zc and the coefficients of
the series can be easily calculated. First, let us expand zc in a
series of z:

zc(z) ∼ z − 1
4 − 1

32 z−1 − 1
64 z−2 · · · . (B16)

It is clear that R̂(n,m)(zc) cannot have a z2
c term (or higher order)

because it would generate a z2 term in R̂(n,m)(z) and we know
that this term is not present, see Eq. (B15). Thus R̂(n,m)(zc) can
be written as

R̂(n,m)(zc) ∼ b1zc + b0 + b−1z−1
c + b−2z−2

c + · · · , (B17)

where the coefficients bi are to be determined. Substituting
Eq. (B16) into Eq. (B17) and comparing with Eq. (B15) we
obtain

b1 = a1 , (B18)

b0 = a0 + 1
4 a1 , (B19)

b−1 = a−1 + 1
32 a1 , (B20)

b−2 = a−2 − 1
4 a−1 + 1

128 a1 . (B21)

Clearly, this procedure may be easily extended to ob-
tain more terms if needed. These relations combined with
Eqs. (B1)–(B14) lead to our Eqs. (44)–(57).

APPENDIX C: NET-PROTON CUMULANTS

The cumulant generating function for two species of particles reads

K (t, t̄ ) = G
(
et , et̄

)
, (C1)

where G(x, x̄) is given by Eq. (4). In particular, the net-particle (e.g., net-proton) cumulants are given by (t̄ = −t),

κi = di

dt i
K (t,−t )

∣∣∣∣
t=0

. (C2)

Combining Eqs. (C1) and (C2), we have

κi = di

dt i
G(x(t ), x̄(t ))

∣∣∣∣
t=0

, (C3)
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where x(t ) = et and x̄(t ) = e−t and hence derivatives x(n)(t=0) = 1, x̄(n)(t=0) = (−1)n. Using this and Eq. (6), we obtain the
formulas for the net-proton cumulants in terms of the factorial cumulants:

κ1 = Ĉ(1,0) − Ĉ(0,1), (C4)

κ2 = Ĉ(1,0) + Ĉ(0,1) + Ĉ(2,0) + Ĉ(0,2) − 2Ĉ(1,1), (C5)

κ3 = Ĉ(1,0) − Ĉ(0,1) + 3(Ĉ(2,0) − Ĉ(0,2)) + Ĉ(3,0) − Ĉ(0,3) − 3(Ĉ(2,1) − Ĉ(1,2)), (C6)

κ4 = Ĉ(1,0) + Ĉ(0,1) + 7(Ĉ(2,0) + Ĉ(0,2)) − 2Ĉ(1,1) + 6(Ĉ(3,0) + Ĉ(0,3)) − 6(Ĉ(2,1) + Ĉ(1,2)) + Ĉ(4,0) + Ĉ(0,4) − 4(Ĉ(3,1) + Ĉ(1,3))

+ 6Ĉ(2,2), (C7)

κ5 = Ĉ(1,0) − Ĉ(0,1) + 15(Ĉ(2,0) − Ĉ(0,2)) + 25(Ĉ(3,0) − Ĉ(0,3)) − 15(Ĉ(2,1) − Ĉ(1,2)) + 10(Ĉ(4,0) − Ĉ(0,4)) − 20(Ĉ(3,1) − Ĉ(1,3))

+ Ĉ(5,0) − Ĉ(0,5) − 5(Ĉ(4,1) − Ĉ(1,4)) + 10(Ĉ(3,2) − Ĉ(2,3)), (C8)

κ6 = Ĉ(1,0) + Ĉ(0,1) + 31(Ĉ(2,0) + Ĉ(0,2)) − 2Ĉ(1,1) + 90(Ĉ(3,0) + Ĉ(0,3)) − 30(Ĉ(2,1) + Ĉ(1,2)) + 65(Ĉ(4,0) + Ĉ(0,4))

− 80(Ĉ(3,1) + Ĉ(1,3)) + 30Ĉ(2,2) + 15(Ĉ(5,0) + Ĉ(0,5)) − 45(Ĉ(4,1) + Ĉ(1,4)) + 30(Ĉ(3,2) + Ĉ(2,3)) + Ĉ(6,0) + Ĉ(0,6)

− 6(Ĉ(5,1) + Ĉ(1,5)) + 15(Ĉ(4,2) + Ĉ(2,4)) − 20Ĉ(3,3), (C9)

where Ĉ(1,0) and Ĉ(0,1) are the mean numbers of, e.g., protons and antiprotons, respectively. These results extend the formulas
provided in Appendix A of Ref. [27].

APPENDIX D: Ĉ(n,m) VS Fi,k

The factorial moments for two variables (two species of particles) are defined via the factorial moment generating function
H (x, x̄) [see Eq. (3)]:

Fi,k ≡
〈

n1!

(n1 − i)!

n2!

(n2 − k)!

〉
= di

dxi

dk

dx̄k
H (x, x̄)

∣∣∣∣
x=x̄=1

. (D1)

Using Eqs. (4) and (6), and the normalization condition H (1, 1) = 1, we can express the factorial cumulants through the factorial
moments

Ĉ(1,0) = F1,0, (D2)

Ĉ(0,1) = F0,1, (D3)

Ĉ(2,0) = −F 2
1,0 + F2,0, (D4)

Ĉ(1,1) = −F0,1F1,0 + F1,1, (D5)

Ĉ(3,0) = 2F 3
1,0 − 3F1,0F2,0 + F3,0, (D6)

Ĉ(2,1) = 2F0,1F 2
1,0 − 2F1,0F1,1 − F0,1F2,0 + F2,1, (D7)

Ĉ(4,0) = −6F 4
1,0 + 12F 2

1,0F2,0 − 3F 2
2,0 − 4F1,0F3,0 + F4,0, (D8)

Ĉ(3,1) = −6F0,1F 3
1,0 + 6F 2

1,0F1,1 + 6F0,1F1,0F2,0 − 3F1,1F2,0 − 3F1,0F2,1 − F0,1F3,0 + F3,1, (D9)

Ĉ(2,2) = (− 6F 2
0,1 + 2F0,2

)
F 2

1,0 + 8F0,1F1,0F1,1 − 2F 2
1,1 − 2F1,0F1,2 + (

2F 2
0,1 − F0,2

)
F2,0 − 2F0,1F2,1 + F2,2, (D10)

Ĉ(5,0) = 24F 5
1,0 − 60F 3

1,0F2,0 + 30F1,0F 2
2,0 + 20F 2

1,0F3,0 − 10F2,0F3,0 − 5F1,0F4,0 + F5,0, (D11)

Ĉ(4,1) = 24F0,1F 4
1,0 − 24F 3

1,0F1,1 − 36F0,1F 2
1,0F2,0 + 24F1,0F1,1F2,0 + 6F0,1F 2

2,0 + 12F 2
1,0F2,1 − 6F2,0F2,1 + 8F0,1F1,0F3,0

− 4F1,1F3,0 − 4F1,0F3,1 − F0,1F4,0 + F4,1, (D12)

Ĉ(3,2) = 2
(
12F 2

0,1 − 3F0,2
)
F 3

1,0 − 36F0,1F 2
1,0F1,1 + 12F1,0F 2

1,1 + 6F 2
1,0F1,2 − 3

(
6F 2

0,1 − 2F0,2
)
F1,0F2,0

+ 12
(
F1,1F2,0 + F1,0F2,1

)
F0,1 − 3F1,2F2,0 − 6F1,1F2,1 − 3F1,0F2,2 + (

2F 2
0,1 − F0,2

)
F3,0 − 2F0,1F3,1 + F3,2, (D13)

Ĉ(6,0) = −120F 6
1,0 + 360F2,0F 4

1,0 − 120F3,0F 3
1,0 − 270F 2

2,0F 2
1,0 + 30F4,0F 2

1,0 + 120F2,0F3,0F1,0 − 6F5,0F1,0 + 30F 3
2,0 − 10F 2

3,0

− 15F2,0F4,0 + F6,0, (D14)

Ĉ(5,1) = −120F0,1F 5
1,0 + 120F1,1F 4

1,0 + 240F0,1F2,0F 3
1,0 − 60F2,1F 3

1,0 − 180F1,1F2,0F 2
1,0 − 60F0,1F3,0F 2

1,0 + 20F3,1F 2
1,0

− 90F0,1F 2
2,0F1,0 + 60F2,0F2,1F1,0 + 40F1,1F3,0F1,0 + 10F0,1F4,0F1,0 − 5F4,1F1,0 + 30F1,1F 2

2,0 + 20F0,1F2,0F3,0

− 10F2,1F3,0 − 10F2,0F3,1 − 5F1,1F4,0 − F0,1F5,0 + F5,1, (D15)
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Ĉ(4,2) = −6
(
20F 2

0,1 − 4F0,2
)
F 4

1,0 + 192F0,1F1,1F 3
1,0 + 12

(
12F 2

0,1 − 3F0,2
)
F2,0F 2

1,0 − 4
(
6F 2

0,1 − 2F0,2
)
F3,0F1,0

− 3
(
6F 2

0,1 − 2F0,2
)
F 2

2,0 − 6
(
4F1,2F 3

1,0 + 12F 2
1,1F 2

1,0

) + 24F0,1F2,0F2,1 − 72F0,1
(
F2,1F 2

1,0 + 2F1,1F2,0F1,0
)

+ 12
(
F2,2F 2

1,0 + 4F1,1F2,1F1,0 + (
2F 2

1,1 + 2F1,0F1,2
)
F2,0

) − 3
(
2F 2

2,1 + 2F2,0F2,2
) + 16F0,1(F1,1F3,0 + F1,0F3,1)

− 4(F1,2F3,0 + 2F1,1F3,1 + F1,0F3,2) + (
2F 2

0,1 − F0,2
)
F4,0 − 2F0,1F4,1 + F4,2, (D16)

Ĉ(3,3) = 2
( − 60F 3

0,1 + 36F0,2F0,1 − 3F0,3
)
F 3

1,0 + 18
(
12F 2

0,1 − 3F0,2
)
F1,1F 2

1,0 − 3
( − 24F 3

0,1 + 18F0,2F0,1 − 2F0,3
)
F2,0F1,0

− 18F0,1
(
3F1,2F 2

1,0 + 6F 2
1,1F1,0

) + 2
(
6F 3

1,1 + 18F1,0F1,2F1,1 + 3F 2
1,0F1,3) − 9

(
6F 2

0,1 − 2F0,2
)(

F1,1F2,0 + F1,0F2,1
)

+ 18F0,1(F1,2F2,0 + 2F1,1F2,1 + F1,0F2,2) − 3(F1,3F2,0 + 3F1,2F2,1 + 3F1,1F2,2 + F1,0F2,3)

+ ( − 6F 3
0,1 + 6F0,2F0,1 − F0,3

)
F3,0 + 3

(
2F 2

0,1 − F0,2
)
F3,1 − 3F0,1F3,2 + F3,3. (D17)

These results extend the formulas provided in Appendix A of Ref. [27].
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