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The information of the event-by-event fluctuations are extracted from flow harmonic distributions and cumu-
lants, which can be done experimentally. In this work, I employ the standard method of Gram-Charlier series with
normal kernel to find such distribution, which is the generalization of recently introduced flow distributions for
the studies of the event-by-event fluctuations. In this path, I find the shifted cumulants jn{2k} which are consist
of the collision geometry information. The experimental data imply that not only all of the information about the
event-by-event fluctuations of collision zone properties and different stages of heavy-ion process are not encoded
in the radial flow distribution p(vn), but also the observables describing harmonic flows can generally be given
by the joint distribution P (v1, v2, . . . ). In such way, I first introduce a set of joint cumulants Knm, and then I find
the flow joint distribution using these joint cumulants. Finally, I show that the symmetric cumulants SC(2, 3)
and SC(2, 4) obtained from ALICE data are explained by the combinations K22 + 1

2K04 − K31 and K22 + 4K2
11.
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I. INTRODUCTION

The collective behavior of the initial fireball, which is
created in heavy-ion collisions, can be experimentally mea-
sured by anisotropic flow. Anisotropic flow is traditionally
quantified with harmonics vn, the coefficients of the momen-
tum distribution Fourier expansion in the azimuthal direction,
which have been measured by the several experimental groups
at Relativistic Heavy Ion Collider and Large Hadron Collider
[1–8]. Due to the randomness of reaction plane angle and
low statistic at each event, anisotropic flow finding is exper-
imentally challenging. There are several techniques to solve
these problems [9–13]. One of them is 2k-particle correla-
tion functions cn{2k} (radial cumulants) [12,13]. On the other
hand, the experimental results show that the flow harmonics
fluctuate event by event even if a specific centrality class is
considered [14,15]. The flow fluctuations contain the informa-
tion of the collision geometry, quantum fluctuations at initial
state, and effects of different evolution stages in heavy-ion
process [16,17]. The distribution of flow harmonic not only
can solve the problems of the reaction plane angle effect and
low statistic in a given event but also can help us extract the
information of observed event-by-event fluctuations. So these
issues motivate us to study the radial flow distributions p(vn).

Experimentally flow distributions for second, third, and
fourth harmonics have been obtained using the unfolding
method [18,19]. Also it has been found that the Bessel-
Gaussian distribution describe the observed flow distributions
in some centrality collisions [19–21].

It should be noted that the information of flow fluctua-
tions not only are encoded in the flow harmonic distribution
p(vn), but also this information can be extracted from ra-
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dial cumulants cn{2k} [22,23]. Consequently, finding a right
set of cumulants and connecting them to flow harmonic
distribution p(vn) can help us get closer to an exact interpre-
tation of the event-by-event fluctuations. Thereby, different
distributions and their cumulants have recently been intro-
duced and investigated to explain the contributions of all
evolution stages on the fluctuations. In Ref. [22], odd flow
harmonic distributions have been obtained by employing two-
dimensional (2D) standardized cumulants. In addition, using
Gram-Charlier, a series with orthogonal polynomials, podd(vn)
has been found in Ref. [23]. The experimental data of the
even flow harmonics cannot be explained by the Bessel-
Gaussian distribution in peripheral collisions. So finding the
corrections to the Bessel-Gaussian distribution is crucial. Ref-
erence [23] considered an ansatz series as the corrections to
the Bessel-Gaussian distribution. They employed moments to
find the corresponding coefficients of this series. Their sug-
gested flow distribution could decently explain both even and
odd harmonics.

Experiments show that the event-plane correlations and
event-by-event correlations of flow magnitudes are nonvanish-
ing [25–27]. Thus, all of the information about the fluctuations
can be extracted from a joint flow distribution P (v1, v2, . . . ),
which can explain the correlations between flow harmonics,
event-by-event initial fluctuations, and correlations between
different stages in heavy-ion collision processes. Now a ques-
tion arises: Is there an unambiguous technique to find such
radial flow distributions p(vn)? Furthermore, can one find a
joint flow distribution to interpret the most general form of the
event-by-event fluctuations? The purpose of this paper is the
answer to this question by introducing a systematic analysis of
flow fluctuations so that one can find the cumulant coefficients
and the consequently flow harmonic distributions.

In this work, I employ the standard method of Gram-
Charlier series with normal kernel to introduce this analysis
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in Sec. II. I also show that, using this technique, one can
find the radial cumulants cn{2k} to flow moments 〈v2k

n 〉. In
Sec. III, expanding the relation between moment and cumu-
lant characteristic functions to two dimensions, I first rederive
the relations between 〈v2k

n 〉 and cn{2k}, and then I find the
distribution of odd flow harmonics which has been found
in Refs. [22] and [23]. After that, I find a general form of
flow distribution which is true for both even and odd har-
monics. On the way to finding this distribution, I first find
the shifted cumulants jn{2k} which consist of the collision
geometry information, and then, using the standard method
of finding Gram-Charlier series, I obtain the flow distribution.
It is worth mentioning that in order to show how much the
flow distribution is a good approximation, I need to have a
sample for p(vn). To this end, I generate heavy-ion collision
events by employing a hydrodynamic based event gener-
ator which is called iEBE-VISHNU. The iEBE-VISHNU
builds up a general theoretical framework for model-data
comparisons through large scale Monte-Carlo simulations.
The iEBE-VISHNU code package performs event-by-event
simulations for relativistic heavy-ion collisions using viscous
hydrodynamics + hadronic cascade model [24]. In the final
step, I introduce a joint distribution of flow harmonics and
its cumulants Knm in Sec. IV. I conclude Sec. IV by showing
ALICE data can be described the combinations of joint cu-
mulants. Moreover, the simulation data can be explained by
the obtained joint distribution of flow harmonics. I present the
conclusion in Sec. V.

II. SYSTEMATIC TECHNIQUE

Azimuthal asymmetry of the final-state single-particle dis-
tribution,

dN

dφ
= 1

2π

∞∑
n=−∞

Vne−inφ, (1)

is quantified by the complex anisotropic flow coefficients
(or flow vector) Vn ≡ vneinψn = {einφ}, where φ is the az-
imuthal direction of an emitted particle, vn is the amplitude
of anisotropic flow in the nth harmonic, and ψn is the cor-
responding symmetry plane. Anisotropic flow, which is the
hydrodynamic response to the anisotropic initial density pro-
file, is one of the most important observables in characterizing
the properties of QGP evolution. Flow fluctuates event by
event, because it is stochastic and fluctuations are unavoid-
able. It is worth mentioning that the flow event-by-event
fluctuations are a reflection of the initial-state fluctuations
such that it is sensitive to details of initial geometry and
its fluctuations. All of these lead us to search for the
underlying probability density function (p.d.f.) of flow fluc-
tuations. Hence, presenting a general method to find the
flow distribution and its cumulants to explain the event-by-
event flow fluctuations becomes important. In this section,
I introduce such a method using the relation between the
moment- and cumulant-generating functions. For simplicity
I consider one-dimensional generating functions. In statis-
tics, the generating function of moments in one dimension is
G(t ) = ∫

dx eitx p(x) ≡ 〈eitx〉. Also, the cumulant-generating

function is defined as the logarithm of the characteristic func-
tion, K (t ) ≡ ln〈eitx〉 = ∑∞

n=1
(it )n

n! κn, which implies G(t ) =
exp[

∑∞
n=1

(it )n

n! κn] [28–30]. Note that κn is the nth cumulants.
Furthermore, the relation between cumulants and moments by
using definitions of G(t ) and K (t ) is

1 +
∞∑

n=1

μn(it )n

n!
= exp

[ ∞∑
n=1

κn(it )n

n!

]
, (2)

where μn = 〈xn〉. The relation between nth moment and cu-
mulants can be obtained by differentiating both sides of
Eq. (2) n times and evaluating the result at t = 0,

K (n)(t )|t=0 = (log G(t ))(n)|t=0. (3)

Let us expand G(t ) in Eq. (2) to second order and set κ1 =
μ1 ≡ μ and κ2 = σ 2. The structure of the generating function
thus becomes the following:

G(t ) = exp

[ ∞∑
n=3

κn
(it )n

n!
+ κ1(it ) + κ2

(it )2

2!

]

= exp

[ ∞∑
n=3

κn
(it )n

n!

]
eitμ− t2σ2

2 ,

≡ exp

[ ∞∑
n=3

κn
(it )n

n!

]
GN (t ), (4)

with GN (t ) ≡ exp [itμ − t2σ 2

2 ]. Note that integrating by parts
gives (it )nGN (t ) as the characteristic function of (−D)nGN (x),
where D is the differential operator [31]. On the other hand,
one can find the probability density function p(x) by using the
last line of the defined moment-generating function in Eq. (4):

p(x) = 1

2π

∫
dt e−itxG(t )

≈ e− (x−μ)2

2σ2

√
2πσ

[
1 +

∞∑
n=3

κn

n!σ n
Hen

(
x − μ

σ

)]
, (5)

where Hen is the probabilists’ Hermite polynomials,

Hen(x) = (−1)ne
x2

2
dn

dxn
e− x2

2 . (6)

This technique is the standard method of finding Gram-
Charlier series with the normal kernel [32]. In this method,
one can find the p.d.f. without any considered ansatz for the
p.d.f.

To see how this method can help us to find the distribution
of flow harmonics and cumulants, I first define the form of
characteristic function using Eq. (2) as follows:

G(λ) = 〈eiv·λ〉 = 〈eivnλ cos(�n−�λ )〉, (7)

where I have used the notation �n = nψn. Since a one-
dimensional characteristic function is needed to find the
relations between cumulants and moments in the case of flow
harmonics, one can integrate over �n to have G(λ) [23],

G(λ) = 〈J0(λvn)〉. (8)

So the relation between the generating functions of 2k-particle
cumulants cn{2k} [12,13] and flow magnitude moments 〈v2k

n 〉
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are

〈J0(λvn)〉 = 1 +
[ ∞∑

k=1

(−1)kλ2k〈v2k
n 〉

4k (k!)2

]

= exp

[ ∞∑
k=1

i2kcn{2k}λ2k

4k (k!)2

]
, (9)

where Jν is the Bessel functions of the first kind,

Jν (x) =
∞∑

k=0

(−1)k

k!
(k + ν + 1)

(
x

2

)2k+ν

. (10)

In the results, 2k-particle cumulants cn{2k} can be given to
the measured vn at each event by differentiating both sides of
Eq. (9) at λ = 0:

cn{2} = 〈
v2

n

〉
,

cn{4} = 〈
v4

n

〉 − 2
〈
v2

n

〉2
,

cn{6} = 12
〈
v2

n

〉
3 − 9

〈
v4

n

〉〈
v2

n

〉 + 〈
v6

n

〉
,

cn{8} = −144
〈
v2

n

〉
4 + 144

〈
v4

n

〉〈
v2

n

〉
2

− 16
〈
v6

n

〉〈
v2

n

〉 − 18
〈
v4

n

〉
2 + 〈

v8
n

〉
,

... (11)

As can be seen in Eq. (11), the odd moment of radial flow
distribution are absent in the definitions of cn{2k}. So one can
conclude that the radial flow distribution has more informa-
tion than 2k-particle correlation functions. Finding the flow
distribution is left to the next section.

So far I have presented a well-known technique in statistic
theory to find the probability distribution and its cumulants.
As can be seen, using this technique one could find the 2k-
particle cumulants. In the following I first obtain the flow
distribution of odd harmonics [22]. Then I try to find a general
probability distribution to explain the event-by-event fluctua-
tion which is true for both odd and even flow harmonics.

III. TWO-DIMENSIONAL CUMULANT
AND MOMENT RELATIONS

As mentioned, introducing a method to find flow harmonic
distribution that extract the maximum amount of information
is necessary. Here I present a technique commonly used in
statistics to achieve this goal. To find the relations between
moments and cumulants of flow harmonics, I use the joint
generating functions [33],

log〈eλz+λ∗z∗ 〉 =
∑
k,l

λ∗kλl

k!l!
κ{k, l}, (12)

where κ{k, l} are joint cumulants. It is worth emphasizing that
Eq. (12) is a general formula. Moreover, to find the desired
flow distributions one needs to modify Eq. (12) by choosing
different definitions of z and λ.

In Ref. [22], an expansion of flow distribution for odd
harmonics has been found (also see Eq. (24) in Ref. [23]).
To reproduce this expansion, I have to set z ≡ Vn and λ ≡

(λx − iλy)/2 in Eq. (12). By replacing these considerations
in Eq. (12), I arrive at

〈evn,xλx+vn,yλy〉 = exp

[∑
kl

(λx + iλy)k (λx − iλy)l

2(k+l )k!l!
cn{k, l}

]
.

(13)
Here I use the common notation of cn for 2k-particle cumu-
lants. Note that in Eq. (13) only terms with k = l are nonzero.
Also, setting k = l the relations in Eq. (11) are reproduced
[34]. The cumulant cn{k, k} ≡ cn{2k} can be obtained by dif-
ferentiating both sides of Eq. (12),

∂2k

∂λk
x∂λk

y

{
〈evn,xλx+vn,yλy〉

= exp

[∑
kl

(λx + iλy)k (λx − iλy)k

4(k)(k!)2
cn{2k}

]}
, (14)

and evaluating the results at λx = 0 and λy = 0. To find the
odd flow distributions [35], I use the first line of Eq. (5) [36]
and the Fourier transformation of characteristic function, λ2

x +
λ2

y → ∂2
x + ∂2

y . The probability distribution for odd harmonics
thus becomes (see Appendix A)

podd(vn,x, vn,y )

= exp

[∑
k=2

cn{2k}(∂2
x + ∂2

y )k

22k (k!)2

][
1

πcn{2}e
−v2

n,x−v2
n,y

cn{2}

]
. (15)

Rewriting this distribution in polar coordinates, v2
n = v2

n,x +
v2

n,y, one can obtain the radial odd flow distribution,∫
dvn,xdvn,y podd(vn,x, vn,y)

=
∫

vndvnd�n

πcn{2} exp

[∑
k=2

cn{2k}Dk
vn,�n

4k (k!)2

]
e

−v2
n

cn{2}

=
∫

dvn podd(vn), (16)

where Dv,� represent Dv + (1/v2)∂2
� and Dv is ∂2

v + (1/v)∂v .
Therefore, the radial distribution of odd flow harmonics
podd(vn) is

podd(vn) = 2vn

cn{2} exp

[∑
k=2

cn{2k}Dk
vn,�n

4k (k!)2

]
e

−v2
n

cn{2} . (17)

If the first exponential in Eq. (17) is expanded and truncated
to the first order, the following relation is obtained:

p′
odd(vn) = 2vn

cn{2}
[

1 +
∑
k=2

cn{2k}
4k (k!)2

Dk
vn

]
e− v2

n
cn{2} . (18)

The form of p′
odd(vn) can be found in terms of cumulants by

evaluating the kth derivative of exp(− v2
n

cn{2} ) (see Appendix B)

and letting 2σ 2 = cn{2} for odd harmonics [22,23],

p′
odd(vn)=

(
vn

σ 2

)
e− v2

n
2σ2

{
1 +

∑
k=2

(−1)k
odd
2k−2

k!
Lk[v2

n/(2σ 2)]

}
,

(19)
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where 
odd
2k−2 = cn{2k}/cn{2}k and Lk is the Laguerre polyno-

mials,

Lk (x) =
k∑

n=0

(k n)
(−x)n

n!
. (20)

The expansion (19) is exactly the flow distribution found in
Ref. [22] which can explain any event-by-event flow fluctua-
tions of odd harmonics.

Because podd(vn,x, vn,y) is rotationally symmetric (v̄2n+1 ≡
〈v2n+1,x〉 = 0) and consequently the main features of 2D and
radial odd flow distribution are the same, obtaining distribu-
tion (19) is simple. But this case is not true for even flow har-
monics, since v̄2n �= 0. This is because even flow distributions
are not rotationally symmetric, and reshuffling (vn,x, vn,y )
leads to a partial loss of information of peven(vn,x, vn,y).
Hence, the main challenge is to find a radial flow distribution
which can give a good approximation of flow fluctuations for
even n so that the least amount of information is lost.

In the following, I begin to find the flow harmonic distribu-
tion and its cumulants by assuming nonzero v̄n. Modifying the
relation (12) for even flow harmonics, the relation of moment-
and cumulant-generating functions in 2D with k = l can be
rewritten as

〈e(vn,x−v̄n )λx+vn,yλy〉 = exp

[∑
k

(
λ2

x + λ2
y

)k

22k (k!)2
jn{2k}

]
. (21)

where I consider z ≡ Vn − v̄n and λ ≡ λx−iλy

2 . I simply use
the notation Wn ≡ Vn − v̄n as a shifted flow vector so that
〈Wn〉 = 0 [37]. The reason for choosing k = l is to avoid
obtaining complex jn cumulants. By differentiating both sides
of Eq. (21) at λx = 0 and λy = 0, one can find the relations
between jn{2k} and moments,

jn{2} = 〈
w2

n

〉
,

jn{4} = 〈
w4

n

〉 − 2
〈
w2

n

〉2
,

jn{6} = 〈
w6

n

〉 + 12
〈
w2

n

〉3 − 9
〈
w2

n

〉〈
w4

n

〉
,

jn{8} = 〈
w8

n

〉 − 144
〈
w2

n

〉4 + 144
〈
w4

n

〉〈
w2

n

〉2
− 16

〈
w6

n

〉〈
w2

n

〉 − 18
〈
w4

n

〉2
,

... (22)

where w2
n = |Wn|2 = (vn,x − v̄n)2 + v2

n,y. It is well known that
the cumulants are invariant under shifting a random vari-
able. For instance, the cumulant of a two-particle azimuthal
correlation can be written as 〈ein(φ1−φ2 )〉 − 〈einφ1〉〈e−inφ2〉 for
the case of a nonperfect detector [13]. If one shifts φ1

and φ2 by the same quantity φi → φi − θ , then the cumu-
lant would stay invariant. In Eq. (22), jn{2k} are consist
of some moments which are not invariant under shifting
φi → φi − θ . Of course, one can find the cumulants jn{2k}
are shift invariant by removing such moments. However, I
renamed jn{2k} as “shifted cumulants” to avoid confusion.
Also, it should be noticed that by choosing v̄n = 0, 2k-
particle correlation functions cn{2k} can be recovered and
jn{2k} = cn{2k}.

FIG. 1. Comparing the cumulants j2{2k} for k = 2, 3, and 4
obtained from the iEBE-VISHNU event generator. I separated results
in two panels to compare the results in peripheral and most central
collisions (0–5% and 5–10% centrality classes).

Figure 1 presents the cumulants jn{2k} for n = 2, obtained
from the iEBE-VISHNU output and the comparisons between
them. It should be mentioned that in the present work, I study
the Pb-Pb collision with center-of-mass energy per nucleon
pair

√
sNN = 2.76 TeV. In this work, I use a Monte Carlo

Glauber model for the initial state such that the wounded
nucleon/binary collision mixing ratio was set to 0.118. The
hydrodynamic starting time τ0 was set to 0.6 fm/c, and η/s =
0.08 and zero balk viscosity are used for the hydrodynamic
evolution. Note that the events generate in 16 centrality classes
between 0 and 80% and I generated 14 000 events for each
centrality. It should be emphasized that I have taken into
account the charged hadrons π±, K±, p, and p̄ in the final
particle distribution which are in the transverse momentum
range 0.28 < pT < 4 GeV. In Fig. 1, I scaled shifted cumu-
lants as jn{2k}/10−2k to show jn{4}, jn{4}, jn{6}, and jn{8}
in a plot. Also, I drew the shifted cumulants in the 0–5% and
5–10% centrality classes to compare the results of peripheral
and most central collisions. As demonstrated in this figure,
the differences between jn{4}, jn{6}, and jn{8} are sensible
in peripheral central collisions such that the relation between
jn{2k} is

jn{2} � jn{4} � jn{6} � jn{8} � · · · . (23)
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Because the experimental results [7] show that peven(vn) have
a deviation from Bessel-Gaussian, this relation is expected.
This deviation is more pronounced in peripheral collisions
where the Bessel-Gaussian distribution cannot explain exper-
imental data. Furthermore, one expects that the cumulants
jn{2k} can quantify the main features of a distribution near
Bessel-Gaussian. In Ref. [23], a new set of cumulants
qn{2k} has been defined to study the distributions near Bessel-
Gaussian. These cumulants also have been obtained from
2k-particle correlation functions cn{2k}. Replacing the defi-
nitions of qn{2k} (see Eq. (36) in Ref. [23]) in Eq. (22), one
can find

jn{2} = qn{2},
jn{4} = 2

7

(
4qn{4} + qn{2}2 + 40qn{2}v̄2 + 16v̄4

− 4v̄(4
〈
v3

n,x

〉+5v̄
〈
v2

n,y

〉 + 2
〈
vn,xv

2
n,y

〉
)−4

〈
v2

n,xv
2
n,y

〉)
,

... (24)

such that jn{2k} = qn{2k} + . . . , for k � 2. A comparison
between jn{2k} and qn{2k} obtained from iEBE-VISHNU are
presented in Fig. 2. As can be seen, the difference between
these sets of cumulants for k � 2 is significant, especially for
midcentralities and peripheral collisions. This means that the
amount of encoded information in these two sets are different.
It should be noted the cumulant set qn{2k} has been defined by
using the moments of the radial flow distribution pq(vn; v̄n) in
Ref. [23], but here I only used the relation between the joint
cumulant- and moment-generating functions to find jn{2k}.
This means that my technique does not require any knowledge
about the flow distributions.

The main challenge is finding the form of flow harmonic
distributions by considering v̄n �= 0. If one obtains the Fourier
transformation of joint characteristic function of moments in
Eq. (21), λx → −i∂x and λy → −i∂y, then the 2D distribution
p(vn,x, vn,y ) [38] is obtained as

p(vn,x, vn,y) = exp

[∑
k=2

jn{2k}Dk

4k (k!)2

]
F (vn,x, vn,y ), (25)

where D is the differential operator with respect to λx and
λy. Also, the distribution

√
2πσF (vn,x, vn,y) is a 2D Gaussian

distribution with mean v̄n and standard deviation
√

jn{2}/2.
After some calculations in Cartesian coordinates, one gets

DkF (vn,x, vn,y) = (−1)k4kk!

jn{2}k
F (vn,x, vn,y)Lk

(
w2

n

jn{2}
)

. (26)

Since I follow the radial flow distribution, Eq. (26) can be
written in polar coordinates as follows:

Dk
vn,�n

F (vn; v̄n, �n) = (−1)k4kk!

jn{2}k
F (vn; v̄n, �n)

×
[

Lk

(
v2

n + v̄2
n

jn{2}
)

+ Ak + Bk

]
, (27)

where the terms of Ak and Bk are

Ak = αk, Bk =
k∑

l=1

βkl cos l�n. (28)

FIG. 2. Comparing the amount of information of cumulants
j2{2k} and q2{2k} introduced in Ref. [23] as function of centrality.

The derivation of the nth derivative of F (vn,x, vn,y) in
Eq. (27) and definitions of the coefficients α and β are in the
Appendix C. If I integrate “F (vn; v̄n, �n) cos l�n” over �n,
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then I arrive at∫ ∞

0
vndvn

∫ 2π

0
d� F (vn; v̄n, �n) cos l�n

=
∫ ∞

0
dvn

(
2vn

jn{2}
)

e− v2
n+v̄2

n
jn{2} Il

(
2vnv̄n

jn{2}
)

=
∫ ∞

0
dr F (vn; v̄n)Il

(
2vnv̄n

jn{2}
)

. (29)

Using Eq. (27), one gets∫ ∞

0
vndvn

∫ 2π

0
d�n Dk

vn,�n
F (vn; v̄n, �n)

=
∫ ∞

0
dvn

(−1)k4kk!

jn{2}k
F (vn; v̄n)

×
{[

Lk

(
v2

n + v̄2
n

jn{2}
)

+ αk

]
I0

(
2vnv̄n

jn{2}
)

+
k∑

l=1

βkl Il

(
2vnv̄n

jn{2}
)}

. (30)

The radial flow distribution p(vn; v̄n) using Eq. (30) can be
obtained,

pq(vn; v̄n) =
∫ 2π

0
d�nvn p(vn; v̄n, �n)

≈
∫ 2π

0
d�nvn

[
1+

∑
k=2

jn{2k}Dk
vn,�n

4k (k!)2

]
F (vn; v̄n, �n)

= F (vn; v̄n)
q∑

k=0

(−1)kγk

k!

[
α′

kI0

(
2vnv̄n

jn{2}
)

+
k∑

l=0

βkl Il

(
2vnv̄n

jn{2}
)]

, (31)

where α′
k ≡ Lk ( v2

n+v̄2
n

jn{2} ) + αk and γk ≡ jn{2k}/ jn{2}k =
qn{2k}/qn{2}k + · · · . Note that I have assumed γ0 = 1
and γ1 = α0 = βk0 = 0 in Eq. (31). The first term (q = 0) of
pq(vn; v̄n) is a Bessel-Gaussian distribution. Other terms are
the corrections to the Bessel-Gaussian distribution.

Figure 3 compares the obtained distribution from iEBE-
VISHNU with estimated distribution in Eq. (31). In this
figure, I investigate different truncations of pq(vn; v̄n) for q =
0, 2, 3, 4 presented by dotted black, dashed red, dot-dashed
blue, and solid green lines, respectively. Since the main short-
coming of the Bessel-Gaussian distribution compared with the
simulation data are in peripheral collisions, I only show the
results in 65–70%, 70–75%, and 75–80% centrality classes.
As demonstrated in this figure, the generated data cannot
be described by the black curve, which corresponds to the
Bessel-Gaussian distribution. Also, studying χ2/NDF for the
Bessel-Gaussian distribution and pq(vn; v̄n) for q = 2, 3, and
4 plotted in Fig. 4 for the investigated centralities in Fig. 3. As
can be seen, the values of χ2/NDF associated pq(vn; v̄n) are
more closer to 1 comparing with the Bessel-Gaussian distri-
bution. The results of Fig. 3 and 4 show that the distribution

FIG. 3. Comparing the obtained flow distribution from iEBE-
VISHNU output with different truncations of distribution pq(vn; v̄n)
for q = 0, 2, 3, 4 presented by dotted black, dashed red, dot-dashed
blue, and solid green lines, respectively.

of elliptic flow is deviated from the Bessel-Gaussian distribu-
tion. So, the corrections to the Bessel-Gaussian distribution
becomes important which is described by pq(vn; v̄n).

IV. JOINT FLOW DISTRIBUTION

The information of the event-by-event flow fluctuations are
encoded in the joint flow harmonic distribution p(v1, v2, . . . ),
as mentioned in Sec. I. Therefore, using joint cumulant- and
moment-generating functions, I obtain joint distribution of
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FIG. 4. χ 2/NDF values of fitting the Bessel-Gaussian distribu-
tion and pq(vn; v̄n) for q = 2, 3, 4 to simulation plotted in 65–70%,
70–75%, and 75–80% centrality collisions. The corresponding
χ 2/NDF value of the Bessel-Gaussian distribution multiplied by
0.878. This is done to increase the resolution in other parts of the
plot.

flow harmonics in this section. To do this, I consider the
relation between joint generating functions of moments and
cumulants as follows:

〈eWnλn+Wmλm〉 = exp

[∑
k,l=0

(λn)k (λm)l

k!l!
Kkl

]
, (32)

where Wn and Knm are shifted flow vectors and joint flow cu-
mulants, respectively. The relations between Kkl and moments
are

K00 = K10 = K01 = 0, (33a)
K11 = 〈WnW

∗
m 〉 = 〈vnvm cos(�1 − �2)〉 − v̄nv̄m, (33b)

K20 = 〈|Wn|2〉 = 〈
v2

n

〉 − v̄2
n, (33c)

K02 = 〈|Wm|2〉 = 〈
v2

m

〉 − v̄2
m, (33d)

... (33e)
Note that because the average of sifted flow vector 〈Wn〉 is

zero the cumulants K10 and K01 are zero for all harmonics.
Using Eq. (22), one can rewrite the cumulants of flow joint
distribution in terns of jn{2k} and flow correlations are as
follows:

K11 = Re[〈VnV
′∗

m 〉] − v̄nv̄m, (34a)

K20 = jn{2}, (34b)

K02 = jm{2}, (34c)
... (34d)

FIG. 5. Comparing the combinations of joint cumulants K,
K22 + 1

2K04 − K31, and K22 + 4K2
11 and symmetric cumulants ob-

tained from iEBE-VISHNU with the results of ALICE Collaboration
[8].

One way to investigate the event-by-event flow fluctuations is
by measuring the correlation between the magnitudes of dif-
ferent flow harmonics using a cumulant analysis. These new
observables are commonly known as symmetric cumulants
(SC). Recently, ALICE has measured SC(2, 3) and SC(2, 4)
as a function of centrality [8] at center-of-mass energy per nu-
cleon pair

√
s = 2.76 TeV, with transverse momentum in the

range of 0.2 < pT < 5 GeV. In this paper, I show that these
experimental data can be explained by a combination of joint
cumulants K. Figure 5 present a comparison between simula-
tion and experimental data. It is worth mentioning that using
VISHNU output pT is in the range 0.28 < pT < 4 GeV. As
can be seen, there is a mismatch between SC(2, 3) obtained
from simulation and experiment. But the experimental data
can be described by combination K22 + 1

2K04 − K31. Also,
one can find that SC(2, 4) = K22 + 4K2

11 can explain the AL-
ICE data [39]. Now, having the joint cumulants enables us
to obtain the joint distribution of flow harmonics. To do this,
one should find a form of cumulative characteristic function
G(λn, λm) by expanding it to k + l = 2,

exp(G(λn, λm)) = exp

[ ∑
k+l�3

K̃kl (λn)k (λm)k

]
exp

[
λ2

nK̃20 + λ2
mK̃02 + λnλmK̃11

]

= exp

[ ∑
k+l�3

K̃kl (λn)k (λm)l

]
N (λn, λm). (35)

where the standard joint cumulants K̃mn are Kmn/(m!n!). Applying Fourier transforming to both sides of Eq. (32), one gets∫
dWndWmP (Wn,Wm)eWnλn+Wmλm = exp

[ ∑
k+l�3

K̃kl (λn)k (λm)l

]
N (λn, λm), (36)
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where dWn = dwn,xdwn,y. Eventually, one finds the joint distribution P (Wn,Wm) as

P (Wn,Wm) = 1

2π�
exp

[ ∑
k+l�3

K̃kl (∂n)k (∂m)l

]
exp

[
− K̃02w

2
n + K̃20w

2
m − K̃11(wn,xwm,x + wn,ywm,y)

�2

]

≈
[

1 +
∑

k+l�3

K̃kl (∂n)k (∂m)l

]
N (Wn,Wm), (37)

where � defined (4K̃20K̃02 − K̃2
11)1/2 or in the simplified case ( jn{2} jm{2} − Re[〈VnV ′∗

m 〉2])1/2. Note that if one only considers
N (Wn,Wm) as the first term of P (Wn,Wm) and compare it with bivariate normal distribution [40], then the following relations
are obtained:

σ 2
n = 2K̃20 = 〈|Wn|2〉, (38a)

σ 2
m = 2K̃20 = 〈|Wm|2〉, (38b)

ρnm = K̃11

2
√
K̃20K̃02

= Re[〈WnW ′∗
m 〉]√

〈|Wn|2〉〈|Wm|2〉
. (38c)

These results show that the general joint distribution of flow vectors can be obtained,

P (W1,W2, . . . ,Wn) ≈
[

1 +
∑

k1+...+kn�3

K̃k1...kn(∂1)k1 · · · (∂n)kn

]
N (W1,W2, . . . ,Wn), (39)

by defining the joint cumulant- and moment-generating function relation,

〈eW1λ1+...+Wnλn〉 = exp

[ ∑
k1,..,kn=0

(λ1)k1 · · · (λn)kn

k1! . . . kn!
Kk1...kn

]
, (40)

where Kk1...kn are the generalized joint cumulants, and the
first cumulant, K0...0, is equal to zero by considering the
normalization condition of the probability distribution. Note
that the distribution N (W1,W2, . . . ,Wn) in Eq. (39) is a
generalization of the one-dimensional normal distribution
to higher dimensions which is dubbed as the joint normal
distribution. But it should be noted that since the souls
of the multivariate normal distribution and the distribu-
tion N (W1,W2, . . . ,Wn) in Eq. (40) are different, one gets∫

dW1 · · · dWn N (W1,W2, . . . ,Wn) �= 1. So in the following,
I use normalized kernel N (W1,W2, . . . ,Wn) to find the joint
distribution of flow magnitudes.

Let us return to the computation of the joint radial distri-
bution of two flow harmonics using Eq. (37). In Ref. [41], a
technique has been introduced that enables us to study the cor-
relations between any rapidity windows and any harmonics. In
this technique denoting the relative angle � = �m − �n [42],
and averaging over reaction plane angle, the joint radial flow
distribution is obtained as

∫
dvndvmP (vn; v̄n, vm; v̄m)

≡
∫

vndvnvmdvm

∫
dP (Wn,Wm)

d�md�n
d�md�nd�

× δ(� − �m + �n). (41)

To study the joint radial flow distribution, I consider the first
term in Eq. (37) for simplicity. Inserting it into Eq. (41) one

obtains the joint flow distribution [43]:∫
dvndvmP1(vn; v̄n, vm; v̄m)

=
∫

dvndvmd�χmneζ3 cos �I0[
√

ζ 2
1 + ζ 2

2 + 2ζ1ζ2 cos(�)],

(42)
where

χmn ≡ 4vnvm

π�2
exp

[
− v2

n + v̄2
n

�2/2K̃02
− v2

m + v̄2
m

�2/2K̃20
+ v̄nv̄m

�2/2K̃11

]
,

(43a)

ζ1 ≡ vn

(
2v̄n

�2/2K̃02
− v̄m

�2/2K̃11

)
, (43b)

ζ2 ≡ vm

(
2v̄m

�2/2K̃20
− v̄n

�2/2K̃11

)
, (43c)

ζ3 ≡ v̄nv̄m

�2/2K̃11
. (43d)

Note that Eq. (42) is the first approximation of the radial
joint distribution of any two flow harmonics. To study the
distribution P (vn; v̄n, vm; v̄m), I investigate it for v2 and v3.
In this case, since the triangular flow distribution is rotation-
ally symmetric, v̄3 is zero. Also, as mentioned above, �2

v2,v3

is j2{2} j3{2} − Re[〈V2V ∗
3 〉2]. Checking �2

v2,v3
, one finds that

the term Re[〈V2V ∗
3 〉2] is very small and negligible against

j2{2} j3{2}. So �2
v2,v3

 j2{2} j3{2} can be written. It should
be noticed that the contribution of Re[〈V2V ∗

3 〉2] in ζi is non-
negligible, because it is in the numerator. Concerning these
variables, the joint distribution of second and third harmonics
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can be rewritten

P1(v2; v̄2, v3; 0) = 4v2v3

π j2{2} j3{2} exp

[
−v2

2 + v̄2
2

j2{2} − v2
3

j3{2}
]

×
∫

d�I0[
√

γ 2
1 + γ 2

2 + 2γ1γ2 cos(�)],

(44)

where

γ1 ≡ 2vnv̄n

K20
, γ2 ≡ − vmv̄n

K20K02/2K11
. (45)

Equation (44) shows that because there is a nonnegligi-
ble correlation between V2 and V3 the first approximation
of joint distribution P (v2; v̄2, v3; 0) cannot be written as
p0(v3; 0)p0(v2; v̄2). Note that p0(vn; v̄n) is the first trun-
cation of the distribution Eq. (31) which is called the
Bessel-Gaussian distribution. However, I checked that if
one considers P (v2; v̄2, v3; 0) = p0(v3; 0)p0(v2; v̄2), its re-
sults and the results of Eq. (44) approximately are the same.
Figure 6 present the smooth density histogram of v2 and v3,
which is obtained by using the results of the event-by-event
3 + 1D viscous hydrodynamics at center-of-mass energy per
nucleon pair

√
s = 5.02 TeV [44]. These data are obtained

with the wounded-quark initial conditions, and the contour
plot of the first term of distribution P (v2; v̄2, v3; 0) in 30–40%
centrality. As can be seen in this figure, the results show that
there is a decent agreement between theory and simulation
data. To find the best estimation, one have to insert the com-
plete form of Eq. (37) in Eq. (41).

V. CONCLUSION

In this paper, I employed the relation between joint
cumulant- and moment-generating function of vn,x and vn,y

to relate the radial flow distribution to cumulants by using
the standard method of finding Gram-Charlier series. I have
found a general flow distribution in Eq. (31) by using Fourier
transformation both sides of Eq. (21). It is an expansion
around Bessel-Gaussian distribution where the coefficients of
the expansion have been written in terms of shifted cumulants
jn{2k}. I have shown that p(vn; v̄n) can explain the generated
data in the peripheral collisions, by assuming v̄n �= 0 for even
harmonics. My results indicate a significant improvement over
the Bessel-Gaussian distribution. Also, I have obtained the
odd flow distribution which has been found in Refs. [22]
and [23] by setting v̄n = 0. The shifted cumulants jn{2k}
were written in terms of moments 〈wk

n〉 where wn is the
magnitude of the shifted flow vector. If one assumes v̄n =
0, then the cumulants jn{2k} would be 2k-particle correla-
tion functions cn{2k} which can be observed experimentally.
Also, I have shown that the shifted cumulants jn{2k}, which
is obtained from the relation between joint cumulant- and
moment-generating functions, have more information than the
cumulants qn found in previous works. In the final step, I have
studied the joint distribution of flow harmonics and presented
a general form for P (W1,W2, . . . ,Wn). To do this, I intro-
duced new observables Knm and showed that the experimental
data for symmetric cumulants SC(2, 3) and SC(2, 4) can be
explained by combinations of these observables. So I think
that the cumulants Kmn can be interesting observables for

FIG. 6. Comparing the smooth density histogram of v2 and v3

obtained from 3 + 1D viscous hydrodynamic simulation [44] and the
contour plot of the first term of distribution P (v2; v̄2, v3; 0) in 30–
40% centrality class.

experimentalists. I also obtained the joint radial distribution
of the two flow harmonics and showed that the first terms of
this distribution for v2 and v3 can justify the simulation data.
Investigating joint distributions of other flow harmonics is left
to future studies.
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APPENDIX A: ODD FLOW DISTRIBUTION

As mentioned in Sec. II, in Eq. (8) only terms with k = l are nonzero. Moreover, Eq. (8) can be written as

G(λx, λy) = 〈evn,xλx+vn,yλy〉 exp

[∑
k=1

(λ2
x + λ2

y )k

2(2k)(k!)2
cn{2k}

]
. (A1)

Since I use the Gram-Chalier series with normal kernel, I can rewrite G(λx, λy) as follows:

G(λx, λy) = exp

[∑
k=2

(λ2
x + λ2

y )k

2(2k)(k!)2
cn{2k}

]
e

λ2
x +λ2

y
4 cn{2}. (A2)

One can find the odd flow distribution podd(vn,x, vn,y ) by using inverse Fourier transform of G(λx, λy),

podd(vn,x, vn,y) = 1

(2π )2

∫ ∞

−∞

∫ ∞

−∞
dλxdλye−i(vn,xλx+vn,yλy )G(λx, λy)

= 1

(2π )2

∫ ∞

−∞

∫ ∞

−∞
dλxdλye−i(vn,xλx+vn,yλy ) exp

[∑
k=2

((−iλx )2 + (−iλy)2)k

2(2k)(k!)2
cn{2k}

]
e− λ2

x +λ2
y

4 cn{2}. (A3)

Since I also mentioned that (it )nGN (t ) is the characteristic function of (−D)nGN (x), the following relation is obtained:

podd(vn,x, vn,y) = 1

(2π )2
exp

[∑
k=2

(∂2
x + ∂2

y )k

2(2k)(k!)2
cn{2k}

] ∫ ∞

−∞

∫ ∞

−∞
dλxdλye−i(vn,xλx+vn,yλy )e− λ2

x +λ2
y

4 cn{2}

= 1

(2π )2
exp

[∑
k=2

(∂2
x + ∂2

y )k

2(2k)(k!)2
cn{2k}

][
4π

cn{2}e− v2
n,x+v2

n,y
cn{2}

]

= exp

[∑
k=2

cn{2k}(∂2
x + ∂2

y )k

22k (k!)2

][
1

πcn{2}e
−v2

n,x−v2
n,y

cn{2}

]
. (A4)

APPENDIX B: GENERAL FORM OF RADIAL DERIVATIVES

If one differentiates 1D normal distribution, N (r) = e− r2

a /(
√

πa) with a = 2σ 2, n times, then the result of each time is
approximately a Laguerre polynomial,

k = 1 : D1
rN (r) = Dr

(
N (r)L0

(
r2

a

))
,

k = 2 : D2
rN (r) ≈ Dr

(
N (r)L1

(
r2

a

))
,

k = 3 : D3
rN (r) ≈ Dr

(
N (r)L2

(
r2

a

))
,

k = 4 : D4
rN (r) ≈ Dr

(
N (r)L3

(
r2

a

))
,

...

k = n : Dn
r (e− r2

a ) ≈ Dr

(
N (r)Ln

(
r2

a

))
. (B1)

Note that the radial derivative is Dr = ∂2
r + (1/r)∂r . Using above derivative in Eq. (17), one can rewrite the p(vn) as follows:

podd(vn) = 2vn

cn{2}

{
e− v2

n
cn{2} +

∑
k=2

cn{2k}
4k (k!)2

[(
− 4

cn{2}
)k−1

(k − 1)!

]
Dvn

[
e− v2

n
cn{2} Lk−1

(
v2

n

cn{2}
)]}

. (B2)

If one differentiates N (r)Lk−1( r2

a ) in the radial direction,

Dr

(
N (r)Lk−1

(
r2

a

))
= −4n

a
N (r)Lk

(
r2

a

)
, (B3)
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and then replace it in Eq. (B2), in the result one obtains the distribution of odd flow harmonics as

podd(vn) =
(

2vn

cn{2}
)

e− v2
n

cn{2}

[
1 +

∑
k=2

(−1)kcn{2k}
k! cn{2}k

Lk
(
v2

n/cn{2})
]
. (B4)

APPENDIX C: TWO-DIMENSIONAL DERIVATIVES

As mentioned in Sec. III, to find a general flow distribution one gets

p(vn,x, vn,y) = exp

[∑
k=2

jn{2k}Dk

4k (k!)2

]
F (vn,x, vn,y ), (C1)

by using Eq. (21) and considering the relation∫
Dλ

(
λ2

x + λ2
y

)k
e−i(vn,x−v̄n )λx−ivn,yλy × e−(λ2

x+λ2
y ) jn{2}/4 = Dk

∫
Dλ e−i(vn,x−v̄n )λx−ivn,yλy × e−(λ2

x+λ2
y ) jn{2}/4, (C2)

where Dλ = dλxdλy. Evaluating the derivative D for k = 1, 2, . . . , k in Eq. (C1), one obtains:

k = 1 : D1F (vn,x, vn,y ) = − 4

jn{2}F (vn,x, vn,y)L1

[
(vn,x − v̄n)2 + v2

n,y

jn{2}
]
,

...

k = n : DnF (vn,x, vn,y) = (−1)n4nn!

jn{2}n
F (vn,x, vn,y)Ln

[
(vn,x − v̄n)2 + v2

n,y

jn{2}
]
. (C3)

Note that the calculations of Eq. (C3) are obtained by using Cartesian partial derivatives. To find radial flow distribution one has
to integrate over azimuthal angle. Therefore, it is better to write down in polar coordinates,

k = 1 : D1
vn,�n

F (vn; v̄n, �n) = −4

a
F (vn; v̄n, �n)

[
L1

(
v2

n + v̄2
n

jn{2}
)

+ A1 + B1

]
,

...

k = n : Dn
vn,�n

F (vn; v̄n, �n) = (−1)n4nn!

an
F (vn; v̄n, �n)

[
Ln

(
v2

n + v̄2
n

jn{2}
)

+ An + Bn

]
, (C4)

where Ak and Bk are

A1 = 0,

B1 = 2vnv̄n

jn{2} cos �n,

A2 = v2
n v̄

2
n

jn{2}2
,

B2 = 2vnv̄n

jn{2}

[
2L1

(
v2

n + v̄2
n

2 jn{2}
)]

cos �n + v2
n v̄

2
n

jn{2}2
cos 2�n,

A3 = v2
n v̄

2
n

jn{2}2

[
3L1

(
v2

n + v̄2
n

3 jn{2}
)]

,

B3 = 2vnv̄n

jn{2}

[
3L2

(
v2

n + v̄2
n

2 jn{2}
)

+ 1

8 jn{2}2

(
v4

n + 6v2
n v̄

2
n + v̄4

n

)]
cos �n + v2

n v̄
2
n

jn{2}2

[
3L1

(
v2

n + v̄2
n

3 jn{2}
)]

cos 2�n + v3
n v̄

3
n

3 jn{2}3
cos 3�n,

...

Ak = αk,

Bk =
k∑

l=1

βkl cos l�n. (C5)
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