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Charge conservation and higher moments of charge fluctuations
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Higher moments of distributions of net charge and baryon number in heavy-ion collisions have been proposed
as signals of fundamental QCD phase transitions. In order to better understand background processes for these
observables, models are presented which enable one to gauge the effects of local charge conservation, decays
of resonances and clusters, Bose symmetrization, and volume fluctuations. Monte Carlo methods for generating
samplings of particles consistent with local charge conservation are presented and are followed by a review of
simple analytic models involving a single type of charge with a constant experimental efficiency. The main model
consists of thermal emission superimposed onto a simple parametrization of collective flow, known as a blast
wave, with emission being consistent with individual canonical ensembles. The spatial extent of local charge
conservation is parameterized by the size and extent over which charge is conserved. The sensitivity of third-
and fourth-order moments, skewness and kurtosis, to these parameters, and to beam energy and baryon density is
explored. Comparisons with STAR data show that a significant part of the observed non-Poissonian fluctuations
in net-proton fluctuations are explained by charge and baryon-number conservation, but that measurements of
the STAR collaboration for fluctuations of net electric charge significantly differ from expectations of the models
presented here.
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I. INTRODUCTION

The fluctuation of conserved charges is a standard means
by which to investigate and classify phase transitions. At
the critical point correlation lengths diverge, which results
in peaks in charge fluctuations as one approaches the critical
point. For systems with first-order phase transitions, fluctu-
ations turn into phase separation and fluctuation measures
are no longer intensive quantities. The growth of fluctuations
becomes increasingly dramatic as one considers progressively
higher-order fluctuations. In a volume V , fluctuations of a
charge Q can be defined as

MN ≡ 1

V
〈(Q − Q)N 〉 = 1

V

∑
n

Pn(n − n)N , (1)

when particles have unit charge. The measure is increasingly
sensitive to the tails of the multiplicity distribution, Pn, as n
increases. The free energy, F ∼ a2(n − n)2 + a3(n − n)3 · · · ,
is minimized for n = n, but the quadratic part vanishes at the
critical point, a2 → 0, which allows the fluctuations to grow
and be dominated by higher-order terms. The shapes of the
tails of the distribution are then profoundly altered.

The properties of the QCD transition, deconfinement and
the restoration of chiral symmetry, are not well understood
at finite baryon density. There exists the possibility that this
transition is a true phase transition, with a critical point at

several times nuclear density and with a critical temperature
close to the pion mass. If this is the case, then it begs the
question as to whether the conditions for phase separation or
for critical phenomena can be reproduced in the laboratory.
Heavy-ion collisions at high energy, measured at the Rela-
tivistic Heavy Ion Collider (RHIC) or at the Large Hadron
Collider, can produce mesoscopic regions at temperatures of
a few hundred MeV, which is well above the expectations for
a critical temperature, and densities of several times nuclear
matter density. These densities might or might not be suffi-
ciently high to investigate the phase transition.

High-energy heavy-ion collisions are characterized by
strong explosive collective flow. Measurement is confined
to the outgoing asymptotic momenta, but because of strong
flow, correlations in coordinate space manifest themselves as
correlations in relative momentum. Thus, measurements of
correlations binned by relative momentum or charge fluctu-
ations within some defined region of momentum space serve
as surrogates for the corresponding observables in coordinate
space. Indeed, measurements of charge and baryon number
fluctuations have been performed at RHIC. By adjusting the
beam energy of the colliding nuclei, experiments at RHIC
have explored conditions at which novel phase phenomena
might occur. Fluctuations of electric charge and baryon num-
ber have been especially popular. An initial scan of beam
energies [1–17] was rather inconclusive, but measurements
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with greatly improved statistics are currently being under-
taken and analyzed. The main thrust of these studies is to
search for evidence of a QCD phase transition with a crit-
ical point at finite baryon density, with the hope that the
phenomena one expects for an idealized equilibrated system
[18,19] becomes manifest in the measured debris of heavy-
ion collisions. Even if no true phase transition exists, charge
fluctuations, or equivalently susceptibilities, are fundamental
properties of the quark gluon plasma and can be investigated
with lattice gauge theory [20].

In addition to the finite system size (event multiplicities
might number in the thousands), the novel states of matter
created in heavy-ion collisions persist for � 10 fm/c. This
severely limits the degree to which phases can separate or to
which critical fluctuations can grow. This also limits the extent
to which conserved charges can separate from one another.
For example, if a strange and an antistrange quanta are pro-
duced together, then their separation is limited by diffusion,
which is difficult to calculate in lattice gauge theory [21,22],
but can be roughly extracted experimentally and is gaining
attention theoretically [23–26]. To justify thermal models of
fluctuations of conserved charge based on equilibration, suf-
ficient time is required for particles to enter and exit some
defining volume.

The first goal of this paper is to gauge the degree to which
charge-balance correlations affect higher-order correlations.
Charge balance functions, which are two-particle correlations
related to charge conservation, have been measured exten-
sively [27–37] and modeled theoretically [38–45]. In addition
to making it difficult for phases to separate or for critical
correlations to emerge, local charge conservation also rep-
resents its own source of correlation, which needs to be
understood as a potential source of background before making
firm arguments to have observed phenomena related to phase
transitions. It is well known that charge-balance correlations
are readily measurable at the two-particle level, N = 2 in
Eq. (1), and that they explain the bulk of the N = 2 fluctuation
measurement. However, their impact on N = 3, 4 fluctuations
has not be investigated in great detail. For instance, the four-
particle measure of correlation,

C4 = M4 − 3M2
2, (2)

which is based on cumulants, subtracts much of the contri-
bution to M4 coming from purely two-particle correlations.
However, charge conservation can involve multiple particles,
and the degree to which a cumulant-based measure, like the
kurtosis, is affected by charge conservation is not fully under-
stood. Relations based on a uniform acceptance probability
and for a single type of charge were worked out in Ref. [46],
and provide significant insight into how higher-order correla-
tions are affected by charge conservation. Extensions of these
expressions for multiple charge, but still with fixed accep-
tance, can be found in Ref. [47]. The goal of this study is to
extend such ideas to a more realistic picture, which takes into
account the conservation of all three types of charge (baryon
number, electric charge, and strangeness) and applies a more
realistic model of experimental acceptance and efficiency. The
interplay of charge conservation with chemical equilibrium,
decays, and Bose statistics are all considered.

To understand the role of chemical equilibrium and decays,
a model is presented which creates small volumes in which
the net charges B, Q, and S are each fixed at some value.
Even if the net charges are all zero, charged particles exist
in combinations that conserve the net charge. Theoretical
methods for exact calculation of the canonical ensemble and a
method for Monte Carlo generation of statistically indepen-
dent events are presented here. The method lends itself to
including decays and accounting for experimental acceptance
and efficiency. The physical picture of treating small volumes
as independent patches was previously done for calculation
of charge balance functions in Refs. [48–50] and was also
applied in Ref. [51]. Following the terminology in Ref. [51],
we sometimes refer to these subvolumes as patches. For a pp
collision, the overall collision volume might be as small a
100 fm3, and for a heavy-ion collision, that volume might
be many thousands of fm3. However, because charge con-
servation is local, it makes more sense for the scale of the
patch volume to be determined by how far conserved charges
can separate during the collision. Thus, for pp collisions this
might be on the order of 10 fm3 and for a heavy-ion colli-
sion might be many hundreds of fm3. The volume depends
on when the charges are created and how quickly the can
separate from one another. Given the crude picture of having
independent subvolumes, the patch volume is treated as a
phenemological parameter, and is varied throughout this study
throughout the range mentioned above. The method presented
here creates perfectly independent samplings and can generate
billions of such patches within a few hours. This enables
highly accurate calculations of higher moments with minimal
numeric cost.

After a brief review of cumulants and the definitions of
skewness and kurtosis in Sec. II, the method for exact calcula-
tion of the canonical ensemble describing a multicomponent,
multicharge hadron gas is presented in Sec. III. These tech-
niques extend those used for canonical ensembles used to
study isospin fluctuations of a hadron gas [52], nuclear frag-
mentation [53], the level density of a Fermi gas [54], and the
effect of restricting a quark-gluon plasma (QGP) to having
fixed charge, including being in an overall color singlet [55].
Exact methods for calculating correlations up to fourth-order
are presented. Unfortunately, when including realistic accep-
tance effects and complex decays, the exact expressions are
no longer viable. However, as shown in Sec. IV, the exact
expressions show how sample events can be generated. Each
event, defined by a set of particles and momenta, is generated
with perfect independence from the others, and perfectly re-
produces the canonical expressions from Sec. III. Section V
extends the previous sections to show how Bose correlations
can be included. Section VI considers the case of a single type
of charge and a uniform efficiency, i.e., the probability of any
particle being recorded is set to some fixed value. Much of this
discussion repeats what is said in Ref. [46], and is included
for completeness. This provides for a physical discussion of
how charge conservation, volume fluctuations, chemical equi-
librium, decays, clustering, and Bose corrections should affect
higher moments.

The heart of this study is presented in Sec. VII. Here
the patches are assigned collective velocities consistent with
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the collective flow deduced from heavy-ion collisions. A
canonical sampling of particles is generated from each patch,
followed by a simulation of their decays. The particles are
then overlaid onto the acceptance of the STAR detector at
RHIC. Each patch is uncorrelated with any other patch, so
moments can be calculated by averaging over the independent
contributions from the patches. Results are displayed along-
side results from the STAR Collaboration. The size and sign
of the fluctuations of the net-proton distributions are consis-
tent with observations, but the calculations of the net charge
distributions differs qualitatively from STAR observations. A
detailed discussion of the lessons derived from this study is
presented in Sec. VIII.

II. CUMULANTS, SKEWNESS, AND KURTOSIS

For the manuscript to be more self-contained, a brief re-
view of cumulants and the definition of skewness and kurtosis
is presented here. Cumulants of a charge distribution are de-
fined by

C1 = 〈Q〉,
C2 = 〈(Q − Q)2〉,
C3 = 〈(Q − Q)3〉,
C4 = 〈(Q − Q)4〉 − C2

2 , (3)

where Q is the net charge. Here Q might refer to baryon
number, to strangeness, or to the electric charge measured in
units of e. Rather than showing the cumulants Cn, ratios are
presented to help minimize trivial dependencies on system
size. The skewness, S, is a measure of the third moment,

S = C3

C3/2
2

. (4)

This definition has the advantage in being dimensionless, but
it does not become independent of volume in the limit of large
volumes. Thus, it is more common to consider the ratio

Sσ = S
√

C2 = C3

C2
, (5)

which becomes an intensive measure in the limit of larger
volumes. However, in this study we consider the ratio

Sσ 3

C1
= C3

C1
, (6)

which is also intensive and approaches unity for a uncorre-
lated emission, i.e., a Skellam distribution.

The kurtosis is a measure of four-particle correlations,

K = C4

C2
2

, (7)

but instead of K , one typically chooses

Kσ 2 = C4

C2
, (8)

where σ 2 = C2, to find an intensive measure of the fluctuation.
For a measure to be intensive, it should be independent of
volume in the large-volume limit. For small volumes, charge

conservation alters the average densities of various species,
which is known as canonical suppression. Canonical suppres-
sion also distorts the higher moments for smaller volumes.

The ratios C4/C2 and C3/C1 approach simple values in the
limit that the distributions would be Poissonian. For Poisso-
nian emission the observation of a charge in one region of
momentum space is uncorrelated with the emission into any
other space. Thus, particles are correlated only with them-
selves. If charges appear only in integral positive units, then
one can apply the usual expression for the Poissonian mo-
ments where the mean is η,

C1 = n = η,

C2 = 〈(n − n)2〉 = η,

C3 = 〈(n − n)3〉 = η = C1,

C4 = 〈(n − n)4〉 − 3C2
2 = η. (9)

If there exist both positive and negative charges, then the
distribution of the net charge can be derived by convoluting
the two distributions. Convoluting two Poissonians results in
a Skellam distribution. If the mean number of positives is η+
and the mean number of negatives is η−, then the distribution
of net charge for a Skellam distribution, Q = n+ − n−, yields
the following cumulants:

C1 = η+ − η−,

C2 = η+ + η−,

C3 = η+ − η− = C1,

C4 = η+ + η− = C2. (10)

Thus, if charges are produced in an uncorrelated fashion in
increments of ±1, the skewness and kurtosis become

S
σ 3

C1
= C3

C1
= 1,

Kσ 2 = C4

σ 2
= 1, (11)

where σ 2 ≡ 〈(Q − Q)2〉 = η+ + η−. Even though most of the
literature focuses on Sσ = C3/C2, this study presents results
for C3/C1 so that one can better understand deviations from
the uncorrelated baseline.

Moments depend on the efficiency α with which parti-
cles are measured. In the limit of vanishing efficiency all
distributions of positives or of negatives tend to become
Poissonian [56], and the distribution of the net charge will
thus become Skellam. Then Eq. (10) shows that as α → 0,
C4/C2 = C3/C1 = 1. This can be understood by seeing that
as α → 0, the moments are dominated by the probability
of observing either zero charges or a single charge. The
probability of observing a single charge is α → 0, while the
probability of observing two charges is proportional to α2,
which is negligible. This assumption would fall through if
multitple charges were observed on individual particle, but for
final-state hadrons the charges are only ±1.

If the net charge is fixed, then a nonperfect efficiency is re-
quired to produce fluctuations. For fixed charge, the efficiency
divides particles into two sets, the measured and nonmea-
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sured. Each set fluctuates equally, but oppositely, relative to
the mean. Thus, all the even moments of net charge will have
an even reflection symmetry about an efficiency of 1/2, and
the odd moments will have an odd symmetry,

Cn(1/2 + δα) =
{

Cn(1/2 − δα), n = 2, 4, 6 · · ·
−Cn(1/2 − δα), n = 3, 5, 7 · · · .

(12)

III. RECURSIVE TECHNIQUES FOR GENERATING
CANONICAL PARTITION FUNCTIONS

For noninteracting particles the canonical partition func-
tion can be calculated exactly, or at least to the level that all
partitions of A � Amax hadrons are taken into account, with
the exact solution being reached at Amax = ∞. For our case,
we conserve three quantities: the electric charge Q, the baryon
number B and the strangeness S. For states i with energies Ei,
the partition function,

Z (Q, B, S) =
∑

i,Qi=Q,Bi=B,Si=S

e−βEi , (13)

where Qi, Bi, and Si are the discrete values of the conserved
quantities for the state i, can be calculated recursively. The
function ZA(Q, B, S) refers to the subset of states with A
hadrons,

Z (Q, B, S) =
∑
A�0

ZA(Q, B, S). (14)

The recursive procedure begins with

ZA=0(0, 0, 0) = 1, (15)

the canonical partition function of the vacuum. The contribu-
tion for a given A, ZA(Q, B, S), can be written as

ZA(Q, B, S) = 1

A

∑
h

zhZA−1(Q − qh, B − bh, S − sh), (16)

where zh is the single-particle partition function for hadron
species h, which has charges qh, bh, and sh. This was proved
in Ref. [53], and can be understood by realizing that one can
count all the ways to arrange A hadrons with a given charge
by considering all the ways to arrange one hadron multiplied
by all the ways to arrange the remaining hadrons. To avoid
double counting, a factor of 1/A is applied. For a fixed charge
the probability to have A hadrons is

P(A) = ZA(Q, B, S)∑
A ZA(Q, B, S)

= ZA(Q, B, S)

Z (Q, B, S)
. (17)

In practice, the sum over A is cut off at some Amax, but in our
studies here that cutoff is made large enough that contributions
to Z for A > Amax are negligible. Thus, once one builds the
partition function from A = 0 to Amax one has the partition
function for all Q, B, S.

Once the partition function is calculated one can also cal-
culate the multiplicities and moments of observing specific
species. For example, the multiplicity of species h in a system
with charge Q, B, S is

〈Nh〉 = zh
Z (Q − qh, B − bh, S − sh)

Z (Q, B, S)
. (18)

This also provides expressions for the various charges, e.g.,

〈Q〉 =
∑

h

qhzh
Z (Q − qh, B − bh, S − sh)

Z (Q, B, S)
. (19)

Spectra can also be calculated. For species h with spin jh,

dNh

d3 p
= (2 jh + 1)�

(2π h̄)3
e−Eh (p) Z (Q − qh, B − bh, S − sh)

Z (Q, B, S)
. (20)

Second-order moments can also be calculated exactly,

〈NhNh′ 〉= δhh′zh
Z (Q − qh, B − bh, S − sh)

Z (Q, B, S)

+zhzh′
Z (Q−qh − qh′ , B − bh−bh′ , S−sh − sh′ )

Z (Q, B, S)
.

(21)

It is straightforward to extend this expression to higher-order
fluctuations.

These expressions can also be extended to consider nonad-
ditive conservation laws. Net isospin conservation of a hadron
gas was invoked in Ref. [52], i.e., restricting the states to being
in an isosinglet. Quark-gluon states restricted to being in both
an isosinglet and a color singlet were addressed in Ref. [55].
Bose and Fermi corrections are discussed in Sec. V.

For the case of a single kind of charge, one can see how
the the recursive method above yields the same result as what
one would expect by writing down the partition function for
a system with (A − Q)/2 negative charges and (A + Q)/2
positive charges as shown in Ref. [46],

ZA,Q =
{

zA

[(A−Q)/2]![(A+Q)/2]! , A − Q is even,

0, A − Q is odd.
, (22)

where z is the partition function of a single charge. One can
readily see that this is consistent with the recurrence relations,

ZA,Q = z

A
{ZA−1,Q−1 + ZA−1,Q+1} (23)

= z

A

{
zA−1

[(A − Q − 2)/2]![(A + Q)/2]!

+ zA−2

[(A − Q)/2]![(A + Q − 2)/2]!

}

= z

A

{
zA−1(A − Q)/2

[(A − Q)/2]![(A + Q)/2]!

+ zA−2(A + Q)/2

[(A − Q)/2]![(A + Q)/2]!

}

= zA

[(A − Q)/2]![(A + Q)/2]!
. (24)

This result is also equivalent to expectations based on setting
reaction rates equal. If one assumes that pairs are created
with some rate β, and that they are destroyed with some rate
αN+N−, where N+ and N− are the number of positive and
negative charges, then N+ + N− = A. Setting the rates equal,

α
(A − Q)(A + Q)

4
ZA,Q = βZA−2,Q. (25)
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One can see that if one chooses β/α = z that Eqs. (25) and
(22) are consistent. If the net charge is zero, then the result is
even simpler,

P(A|Q) = ZA,Q∑
A ZA,Q

,

P(A|Q = 0) = zA

[(A/2)!]2

{ ∑
A=even

zA

[(A/2)!]2

}−1

. (26)

Aside from the assumptions that Q is fixed and that there
exists only one kind of charge, Eq. (25) also requires that Bose
and Fermi quantum statistical corrections are negligible, and
that only unit charges exist. Despite these shortcomings, this
picture is useful in that it allows one to see how multiplicity
fluctuations are affected by charge conservation in a simple
model.

IV. GENERATION OF UNCORRELATED SAMPLE EVENTS

Complicated experimental acceptances are difficult to in-
corporate into expressions for the moments. It is then easiest
to generate entire events via Monte Carlo, and filter the events
through the acceptance. The Monte Carlo procedure involves
choosing a hadron proportional to the number of ways the
system might have such hadron, i.e., a product of the partition
function of the individual hadron multiplied by the partition
function of the remainder. The procedure becomes

(1) Calculate and store the partition function, ZA(Q, B, S),
up to some size A � Amax for values of Q, B, S that
might ultimately couple back to a given A = Amax for
the given total values Q, B, S.

(2) For total charge Q, B, S, choose the number of
hadrons A proportional to ZA(Q, B, S)/Z (Q, B, S),
where Z (Q, B, S) = ∑

A�Amax
ZA(Q, B, S).

(3) Choose a hadron h proportional to the probability
zhZA−1(Q − qh, B − bh, S − sh)/ZA(Q, B, S). If Bose
degeneracy is to be taken into account, then this pro-
cedure is slightly modified as described in Sec. V.

(4) Choose the momentum proportional to the thermal
weight e−Ep/T .

(5) Repeat (3) and (4) but with A, Q, B, S being replaced
by A − 1, Q − qh, B − bh, S − sh. The procedure is
finished when A = 0.

Bose effects can be included by altering the second and third
steps above. This is addressed in Sec. V.

Storing the partition function can require substantial mem-
ory for large Amax because the indices Q, B, and S must also
vary over a range of order ±Amax, so memory usage roughly
scales with A4

max. Because one is usually interested in calcu-
lations with total charge near zero, one can ignore partition
functions for charges that cannot couple back to the fixed over-
all charge at Amax. Once A exceeds Amax/2, the calculations
here cut off values of Q, B and S that could not ultimately
affect the Q = B = S = 0 partition function for A = Amax.
Even with this savings, partition functions with Amax = 250
could require approximately 12 GB of memory, and need on
the order of 10 minutes to calculate on a single processor.

For Amax = 125, less than a GB of memory was needed and
partition functions could be calculated in less than a minute.
For hadron gases at temperatures of 150 MeV, Amax = 250
was sufficient for patch volumes �700 fm3. If multiple patch
volumes are to be explored for the same temperature, then
computational time can also be saved by realizing that the
partition functions scale as �A. Thus, if one performs a cal-
culation for some initial volume �0, then scaling can provide
results for new volumes with minimal computation.

Once the partition function is calculated, event genera-
tion is remarkably fast. The time to generate an event scales
linearly with the volume, or equivalently, linearly with the av-
erage number of particles generated. Running sufficient events
to generate a million individual particles can be accomplished
within a few seconds on a single CPU. Unlike Metropolis
methods where events are modified by considering small
changes to existing events, such as in Ref. [51], each event
in this method is perfectly independent of previous events.

V. BOSE AND FERMI STATISTICS

Including Bose and Fermi statistics into the recursive re-
lations for partition functions is straight-forward, and was
shown in Refs. [52,54]. The method is related to that used
for calculating the effects of multiboson interference for pion
interferometry [57]. In a fixed volume the partition function
can be first treated as the usual procedure of accounting for
n identical particles being in different single-particle states.
This includes the 1/n! term to account for the fact that the
particles are indistinguishable, i.e., the Gibbs paradox. If m	

indistinguishable particles are in the same single-particle state
	, then one must correct the weight by a factor of m	! for
each level, which can also be thought of as the analog of
the symmetrized relative wave function with all the momenta
being equal. For fermions, the weight becomes (−1)	−1m	.
As demonstrated in Ref. [54], the recurrence relation to the
partition function then becomes

ZA(Q, B, S) = 1

A

∑
h

∑
n

ZA−n(Q − nqh, B − nbh, Q − nqh)

× zh,n(±1)n−1, (27)

where zh,n is the partition function for n particles in some
level,

zh,n = ∑
	 e−nβε	 , (28)

and 	 refers to single-particle levels of energy ε	. The ±1
refers to bosons or fermions. For hadron gases in the high-
temperature environments of relativistic heavy-ion collisions,
only pions have a nonnegligible correction from quantum
degeneracy. The correction of order n for any level 	 is of the
order e−βε	 lower than the previous term. This factor is largest
for zero momentum, and for pions becomes e−βm, where m is
the pion mass. For the zero-momentum level at a temperature
of 150 MeV, the factor is e−m/T ≈ 0.4, and as the system cools
the factor falls slightly [58]. For a more characteristic ther-
mal momentum the factor is ≈0.1. For heavier particles the
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factor is always small in the context of relativistic heavy-ion
collisions. For example, for a zero-temperature ρ meson the
factor is a fraction of a percent.

Given that symmetrization is only being applied to pions,
which are bosons, one can incorporate these corrections into
the Monte Carlo procedure outlined in Sec. IV. For fermions
this might be problematic because of the negative weights
coming from the (−1)n−1 factors in Eq. (27), but fortunately
this is unneccessary because the degeneracy of fermions is
negligible in the systems considered here. For pions, the
algorithm is adjusted by treating each value of n as being
a different species, with charges nqh and with the partition
function calculated with a reduced temperature T → T/n. If
one picks such a species in step (3) of the algorithm, then n
pions are generated, all with the same momentum. For a finite
system, the n pions would be assigned small relative momenta
on the order of the inverse system size.

It is well known that bosonic effects can broaden mul-
tiplicity distributions, consistent with negative binomial
distributions [59,60], making them super-Poissonian. One of
the goals of this study is to discern how bosonic statistics alter
the skewness and kurtosis.

VI. MODELS WITH UNIFORM EFFICIENCY
AND FIXED CHARGE

Even for a volume of fixed charge, finite efficiency and
acceptance leads to nonzero fluctuations. The degree to which
these fluctuations affect the skewness and kurtosis was worked
out in Ref. [46] for emission of a fixed charge where the prob-
ability of any charge being observed was a constant α. More
detailed expressions involving multiple types of conserved
charges, but also with fixed acceptance α, can be found in
Ref. [47]. If α were zero or unity, then there would be no
fluctuations, and because the charge on those particles that
are not observed must fluctuate exactly opposite to the charge
that is observed, the even moments must be symmetric about
α = 1/2, and the odd moments must be antisymmetric. One of
the most important results of Ref. [46] is that for fixed Q and α

the ratios of cumulants depend only on α and the variance and
mean of the underlying multiplicity distribution. Even though
Q is fixed, the net number of charged particles M can fluctuate.

From Ref. [46], the probability that M charged particles
with total charge Q will result in a measured charge q = n+ −
n− due to a uniform efficiency α is the convolution of two
binomial distributions

P(q|M, Q) =
(M+Q)/2∑

n+=0

(M−Q)/2∑
n−=0

[(M + Q)/2]![(M − Q)/2]!

[(M + Q)/2 − n+]![(M − Q)/2 − n−]!n+!n−!
αn++n− (1 − α)M−n+−n− . (29)

After some tedious algebra, one can find the cumulants for
fixed multiplicity,

C′
1 = q = αQ,

C′
2 = 〈(q − q)2〉M = α(1 − α)M,

C′
3 = 〈(q − q)3〉M = α(1 − α)(1 − 2α)Q,

C′
4 = 〈(q − q)4〉M − 3〈(q − q)2〉2

M

= α(1 − α) − 6α2(1 − α)2M. (30)

Here the primes emphasize that the averages 〈· · · 〉M . denote
that they consider only those events with fixed base multi-
plicities M. The even moments are all linear in M, while the
odd moments are linear in Q. It might appear that due to the
linearity one might replace M with 〈M〉 for a fluctuating base
multiplicity, but the second term in the fourth cumulant

−3
∑

M

P(M )〈(q − q)2〉2
M �= −3〈(q − q)2〉2. (31)

Instead,
〈(q − q)2〉2 = α2(1 − α)2M

2
. (32)

This provides a contribution to C4, and the cumulants and their
ratios become [46]

C1 = αQ,

C2 = α(1 − α)M,

C3 = α(1 − α)(1 − 2α)Q,

C4 = α(1 − α)M − 6α2(1 − α)2M

+ 3α2(1 − α)2〈(M − M )2〉,

C2

C1
= (1 − α)

M

Q
,

C3

C1
= (1 − α)(1 − 2α),

C3

C2
= (1 − 2α)

Q

M
,

C4

C2
= 1 + 3α(1 − α)(ωM − 2),

ωM ≡ 〈(M − M )2〉
M

. (33)

The relative variance of the multiplicity of the base distri-
bution, ωM , is unity for a Poissonian distribution. In that
case C3/C1 and C4/C2 fall below unity for nonzero α. The
assumptions for this relation are that the charge and volume
are fixed, that the efficiency is uniform, and that Bose and
Fermi symmetrization is ignored. This relation is important
as it implies that if one understands the efficiency and the
second moment of the base multiplicity distribution, one can
construct a baseline of cumulant ratios, and attribute any de-
viation from the baseline as due to fluctuations in Q, which is
precisely the goal.

A reasonable value of α can be taken from balance func-
tion analysis. If a charge is observed, then there should be
a balancing charge emitted nearby, and detected with prob-
ability α. This should correspond to the integrated strength
of the charge balance function, which for electric charge is
in the neighborhood of 0.35 assuming the full acceptance of
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the STAR TPC. Of course, α is not a constant. If a charge
is observed in the center of the detector, then its balancing
charge has a better chance of being observed than for one
observed near the periphery of the acceptance. Nonetheless,
for the purposes of roughly setting expectations, this suggests
that C4/C2 and C3/C1 can significantly differ from unity. In
the next five subsections, VI A through VI E, we consider
how various effects, aside from fluctuating the base charge
Q, might push ωM to be either super-Poissonian, ωM > 1 or
sub-Possonian, ωM < 1. We discuss the effects of volume
fluctuations, charge conservation with a single type of charge,
decays, Bose condensation, and, finally, the sensitivity to con-
sidering a realistic collection of resonances accounting for all
three types of conserved charge.

A. Volume fluctuations

Heavy-ion experiments measure collisions spanning a
range of impact parameters. Even for a fixed impact param-
eter, energy deposition might significantly vary depending on
how many nucleons actually collided or how many jets were
produced. If more energy is deposited into a fixed volume,
then it might expand further before it hadronizes, resulting
in larger volumes when the system hadronizes. Experimental
analyses attempt to minimize these fluctuations by constrain-
ing a given fluctuation measurement to a specific centrality
bin, where “centrality” might be defined by multiplicity, trans-
verse energy, or energy deposition in a forward calorimeter. To
reduce autocorrelation, centrality measurements are usually
constrained to particles other than those used to construct the
moments. Nonetheless, it is inevitable that a range of initial
conditions is explored within any centrality bin, and one might
thus expect the base multiplicity distribution to broaden. If the
patch volumes are fixed at some constant value, then volume
fluctuations can be thought of as a fluctuation in the number
of patches.

It is tempting to expect that the ratio of cumulants would be
independent of the number of patches, and thus impervious to
volume fluctuations. Independently, each cumulant Cn scales
linearly with the number of patches because there are no cross
correlations between patches. Thus, if Pp(N ) is the probability
of having N patches and if cn is the cumulant for a single
patch, then the cumulant for the overall system is

Cn =
∑

N

Pp(N )Ncn, (34)

and the ratio of cumulants is

Cn

Cm
=

∑
N Pp(N )Ncn∑

M Pp(M )Mcm

= cn

cm
. (35)

Thus, the ratio of cumulants is independent of the number of
patches, and so independent of the overall volume, though the
ratio can still depend on the volume of an individual patch.

Unfortunately, although the ratios of cumulants are inde-
pendent of the overall volume, they are not impervious to
fluctuations of the overall volume, or equivalently, to fluctua-
tions of the number of patches [61–63]. To illustrate this, one

can consider a system with a distribution Pp(N ) as in Eq. (34),
where the average number of patches is N . For n > 1 the
cumulants are expressed in terms of δQ = Q − Q. Because
Q varies with the number of patches we rewrite it as

δQ = δQN + δNQ1,

δQN ≡ Q − NQ1, (36)

where Q1 = c1 is the average charge in a single patch. Here
δQN is the fluctuation of the charge for a specific number N of
patches, and δN = N − N . Inserting these definitions into the
expressions for the cumulants,

C1 = κ1c1,

C2 =
∑

N

Pp(N )〈(δQN + δNQ1)2〉 = κ1c2 + κ2c2
1,

C3 =
∑

N

Pp(N )〈(δQN + δNQ1)3〉 = κ1c3 + κ3c3
1,

C4 =
∑

N

Pp(N )〈(δQN + δNQ1)4〉 − 3C2
2

= κ1c4 + 3κ2c2
2 + 6κ3c2c2

1 + κ4c4
1, (37)

where κn are the cumulants of Pp(N ),

κ1 =
∑

N

NPp(N ) = N,

κ2 =
∑

N

(N − N )2Pp(N ),

κ3 =
∑

N

(N − N )3Pp(N ),

κ4 =
∑

N

(N − N )4Pp(N ) − 3κ2
2 . (38)

If the number of patches is fixed, i.e., the overall volume
does not fluctuate, then κn>1 = 0 and each cumulant satisfies
Cn = Ncn. The ratio of cumulants then cancels the factor
N . Once the volume fluctuates, the ratios of cumulants of
the charge distribution depend on the ratios of cumulants of
Pp(N ). Methods have been constructed to reduce the depen-
dence on volume fluctuations [62–65], and have been applied
to STAR data [66,67]. These methods are built on the as-
sumption that the observable used to identify the volume is
correlated to the fluctuating charge only through the fact that
they both scale with the volume. If the phase space used for
the centrality measure is clearly distinct of the phase space
over which charge is measured, then this should be a good
approximation.

Equations (37) and (38) are built on the assumption that
the average charge scales linearly with the number of patches.
This differs from the assumptions going into Eq. (33), where
it was assumed that charge was fixed within the overall vol-
ume. If the total charge in the volume is absolutely fixed
despite fluctuations in the number of patches, then volume
fluctuations affect the answer in that the relative variance
of the multiplicity distribution, ωM , is increased by volume
fluctuations as described in Eq. (33).
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B. Chemically equilibrated canonical distribution

One can calculate the relative variance, ωM , for an
equilibrated system of a single type of charge, where the
measurement directly samples the equilibrated canonical dis-
tribution. This ignores decays, which in later stages proceed
without the regeneration needed to maintain equilibrium. The
results of the equilibrated canonical ensemble in Eq. (26) can
be used to find ωM , the relative variance of the multiplicity dis-
tribution, and thus generate the moments using Eq. (33). For
large average multiplicities M, the value of ωM approaches
unity, the Poissonian limit. For small M it approaches two.
This is expected, because for a fixed charge, you can only
add particles pairwise. In fact, as will be shown in the next
section, if one generates a Poissonian number of pairs, the
relative variance will be ωM = 2 for all multiplicities. Because
ωM varies from from two to unity in a canonical ensemble, as
the system size increases from zero to infinity, the values of
C4/C2 and C3/C1 stay below unity as shown in Fig. 1.

The fact that ωM is above unity for small systems (due to
only being able to sample even numbers of charges) is known
as canonical suppression. This lowers the mean multiplicity
and raises the relative variance, ωM . As seen in Fig. 1 it also
raises the ratio C4/C2 relative to its value for a large system.

C. Decays

A system of uncorrelated neutral particles that decay to
charged particles also leads to fixed zero net charge. But un-
like the results for the equilibrated canonical ensemble above,
this can lead to ratios of C4/C2 > 1. If each neutral-particle
decays into Nbodies charged particles, where the charges
are ±1, then the charged-particle multiplicity distributions
become

〈Mch〉 = NbodiesM0,

〈(Mch − Mch )2〉 = N2
bodies〈(M0 − M0)2〉,

ωM = 〈(Mch − Mch )2〉
Mch

= Nbodies
〈(M0 − M0)2〉

M0
. (39)

If the emission of neutrals is Poissonian, then the result is
simple, ωM = Nbodies. Figure 1 illustrates how this picture
affects C4/C2. In this case, because ω depends only on Nbodies

and does not change with multiplicity or system size, the
cumulants are also independent of multiplicity. For Nbodies = 2
the cumulant ratios do not even depend on the efficiency. For
Nbodies > 2 the ratio C4/C2 exceeds unity, so if charge creation
proceeded through the creation and decay of neutral clusters
it would be easy to generate large values of C4/C2. This has
been discussed at length in Ref. [68].

In an equilibrated system, decays and recombination have
equal rates. However, as the system decouples recombination
stops and decays proceed until only stable hadrons remain.
During the hadronic phase the number of charged particles

FIG. 1. Upper panel: The relative variance, ωM , of the charged
multiplicity distribution is shown for three cases for a system car-
rying only a single type of ±unit charge. For a neutral equilibrated
system (red dashed line) in a canonical ensemble, ωM approaches
unity, the Poissonian limit for higher mean multiplicities M. In the
low multiplicity limit the multiplicity will be either M = 0 or M = 2,
which gives ωM = 2. This is in contrast to a system where one has a
Poissonian distribution of neutral particles which all decay into pairs
(green dashed line) which gives ωM = 2 for all multiplicities, or if
the neutral particles all decay to four charges, which gives ωM = 4.
Lower panel: According to Eq. (33), which was derived in Ref. [46],
the ratio C4/C2 is determined by ωM and the acceptance probability
α. It is unity for ωM = 2, below unity for ωM < 2, and above unity
for ωM > 2. This shows that charge conservation in an equilibrated
system pushes C4/C2 below unity, whereas if an equilibrated system
of neutral-particle decays, and if the decay products do not reform
into the resonances, the resulting ratio of C4/C2 is unity for two-body
decays, or above unity for four-body decays.

nearly doubles due to these decays. Thus, if the systems do
equilibrate, then decay after chemical freeze-out, one would
expect the ratio C4/C2 to lie somewhere between the value for
the canonical ensemble in Fig. 1 and the value for pure decays
with Nbodies = 2. STAR’s experimental results for net proton
fluctuations indeed satisfy this expectation, but their measured
C4/C2 for net charge fluctuations exceed unity, which can only
be attained if Nbodies > 2. Very few hadronic decays proceed
via more than one charged pair, but one could have decays of
clusters or hot spots. Other possible explanations for having
C4/C2 > 1 are volume fluctuations, which were discussed
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previously, or Bose symmetrization, which will be discussed
ahead.

D. Bose correlations

It has long been understood that Bose correlations induce
super-Poissonian fluctuations [59,60]. Here we illustrate how
Bose effects combine with charge conservation to determine
C4/C2. Partition functions for a gas of positive and negative pi-
ons, mπ = 139.57 MeV/c2, were considered to be kinetically
equilibrated but with a chemical potential enforcing a fixed
average density. If a gas is created at chemical equilibrium
one expects μ = 0, but if it cools while maintaining a fixed
number of pions, and if the pion number is fed by decays, then
an effective chemical potential, μ, is required. This changes
the average number of pions by adjusting the phase-space
density as

f ( �p) = e−(Ep−μ)/T

1 − e−(Ep−μ)/T
. (40)

Because the system is out of equilibrium, and because the
number of positives and negatives are nearly the same, the
effective chemical potential has the same sign for both π+
and π−. At decoupling one expects kinetic temperatures to
fall near 100 MeV and the pion chemical potential to grow
to perhaps as high as 75 MeV [58]. This estimate can be un-
derstood by the fact that the phase-space occupancies should
stay roughly constant for fixed entropy per particle for an ex-
pansion at fixed entropy, which suggests a chemical potential
of approximately 50 MeV by the time the system cools to
100 MeV. Decay products further feed the phase-space occu-
pancy. Pion condensation occurs when this chemical potential
reaches the pion mass. In the absence of Bose effects, this
requires roughly doubling the phase-space density of pions as
compared to the expectations above. If such conditions were
realized, then Bose effects could result in super-radiance [57],
which should be accompanied by large multiplicity fluctua-
tions. As a function of the effective chemical potential μ, the
partition function for a pion gas in a volume of 500 fm3 and
at a temperature of 100 MeV was calculated from Eq. (27).
For μ in the range of of 75 MeV the relative variance of the
charged multiplicity distribution is ωM ≈ 1.2, which modestly
increases C4/C2 as shown in Fig. 2 for a fixed efficiency of
α = 0.3. More dramatic results for C4/C2 are not expected
unless the chemical potential reaches within a few MeV of the
pion mass. As discussed above, this is not expected. However,
if the number of pion sources fluctuated wildly from one
event to another, and if there were some events with twice
the number of sources emitting into the same phase space,
then super-radiance might occur in some small fraction of the
events. Such behavior would strongly contradict expectations
based on chemical equilibrium.

E. Hadron gas

Thus far, all the simple examples presented in this section
considered a system with one type of conserved charge, but in
actuality a hadron gas obeys the conservation of three types of
charge: baryon number, strangeness, and electric charge. This

FIG. 2. Fluctuations for a canonical ensemble of pions at fixed
charge, Q = 0, with an effective chemical potential, μ, applied to
adjust the net pion number in a volume of 500 fm3 at a temperature
of 100 MeV. The relative variance of the multiplicity distribution
(dashed red line) and the ratio C4/C2 of the net-charge distribu-
tion (solid green line) grow dramatically as μ approaches the pion
mass. Super-radiant effects can take place once μ reaches mπ =
139.57 MeV. Heavy-ion collisions are expected to decouple with
effective chemical potentials near 75 MeV, which is well below the
onset of large fluctuations.

invalidates the use of the recurrence relation of Eq. (33) and
requires the application of Eq. (16), or if Bose corrections are
included, Eq. (27). Here we calculate the canonical ensem-
ble, ZA(Q, B, S), using the recurrence relation, then apply the
Monte Carlo techniques of Sec. IV to generate sample sets of
particles. The calculation is based on a large number, ∼300, of
hadron resonances listed in Ref. [69]. Although this is seem-
ingly a large list, and includes known resonances with masses
up to 2 GeV, results would be altered if even higher-energy
masses, or those simply not experimentally observed were
included. In Ref. [70] it was shown that the strangeness sector
was especially altered by including unobserved states from a
quark model [71]. Model calculations can also be sensitive to
the choice of spectral functions. For the calculations in this
study, the contribution to the partition functions from a spe-
cific resonance was calculated assuming the spectral strength
was purely at the pole mass. It would not be surprising to
find that similar calculations with different assumptions might
affect the pressure at the 10% level, or perhaps even more.
But, that change should be less when taking the ratio of
cumulants because the extra strength would contribute to both
the numerator and denominator. After generating the particles,
unstable resonances are decayed. For this section, a uniform
efficiency α is assumed, independent of species, momenta, or
whether the products came from a weak decay (charged pions
and kaons were not decayed).

Emission is assumed to come from subvolumes, or patches,
of fixed size. Because each subvolume is independent, there
are no correlations between the various subvolumes. Also,
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FIG. 3. The ratio of cumulants is shown for a ρB = 0 system
as a function of the patch volume. For small patches a baryon is
always accompanied by an extra antibaryon, but for larger systems
the observation of a baryon might also enhance the probability that
one fewer baryons is present in the remainder.

because cumulants scale linearly with the number of sub-
volumes, ratios of cumulants can depend only on the patch
volume, not on the overall volume. However, if the number of
patches fluctuates, the result is modified by volume fluctua-
tions as shown in Sec. VI A.

Here the sensitivity to three parameters is investigated. The
three varied parameters are the patch volume �, the baryon
density ρB, and the fixed efficiency α. When one parameter is
varied, the other two are set at default values. The defaults are
set at T = 150 MeV, ρB = 0, α = 0.3 and the default patch
volume is � = 200 fm3. The electric charge density is set to
half of the given baryon density. After these sensitivities are
studied, calculations at finite baryon density are modified so
that the net baryon and electric charges responsible for the
nonzero charge density are allowed to fluctuate across subvol-
umes according to a Poissonian distribution. This is motivated
by the fact that charges transported far away from midrapidity
at early times cause this nonzero baryon density, so local
charge conservation should play little role in the distribution
of net charge across patches.

The dependence on patch size is exhibited in Fig. 3. For
small patches the emission of baryons is discouraged because
each baryon must be accompanied by the existence of an
antibaryon. Thus, the Boltzmann factor, e−M/T , for the mass
is compounded by the necessity of having a second accompa-
nying massive particle. Once the volumes become larger, and
the mean number of baryon pairs exceeds unity, the observa-
tion of a baryon might be accompanied by seeing one fewer
baryon in the remainder of the system, rather than seeing an
extra antibaryon. In fact, this is exactly what happens in a
canonical ensemble in the large volume limit. In that limit,
if a baryon is observed in some small amount of phase space,
the mean number of baryons observed in the remainder of the

FIG. 4. As the fixed acceptance probability α approaches zero,
distributions become Poissonian, and the ratios C4/C2 approach
unity. Even for perfect acceptance, the fluctuations are nonzero for
a multicharge system because the conserved charges carried by a
proton can be balanced by an array of other species, and charge
within the proton and antiproton sector is not conserved. Thus,
the ratio is not symmetric about α = 0.5 as one might infer from
Eq. (33), because protons and antiprotons represent only a fraction
of the species that carry electric charge and baryon number.

system is decreased by one half, while the mean number of
antibaryons is increased by one half. It is expected that the
dependence of cumulant ratios on patch size should disappear
as the patch size increases beyond the threshold for the mean
baryon density to be unity. Figure 3 displays this behavior
by displaying the ratio C4/C2 as a function of patch volume.
Because the mean multiplicity for charged particles exceeds
unity at a smaller volume, the ratio levels off faster for net
charge than for net protons. Qualitatively, the same behavior
was seen for a system with a single type of charge in Fig. 1.

The sensitivity to the acceptance probability, α, is dis-
played in Fig. 4. As α approaches zero, distributions tend to
become Poissonian, because the number of particles measured
is dominantly either zero or unity. Equation (33) describes
similar behavior for a system of a single type of charge. For
net charge, the ratio is symmetric about α = 0.5. This is be-
cause when net charge is conserved, any charges not measured
fluctuate exactly opposite to those that are measured. The
same property is apparent in Eq. (33). However, the distri-
bution of net protons considers only protons and antiprotons,
so it does not represent the entirety of particles that carry
baryon number or electric charge. Thus, that distribution is
not symmetric about α = 0.5 and fluctuations are large even
for α → 1.

Figure 5 presents C4/C2 and C3/C1 as a function of baryon
density. The patch volume is fixed at 200 fm3 and the den-
sities chosen correspond to a fixed number, 4, 8, 12, . . . , of
baryons. The choice is made to display C3/C1 rather than
C3/C2 because C3/C1 would be unity for uncorrelated emis-
sion. The ratios all decrease, moving further from unity, as
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FIG. 5. The ratios C4/C2 and C3/C1 are shown for net charge and
for net baryon number as a function of the baryon density. The ratios
fall increasingly below the Poissonian limit of unity as the baryon
number is increased. For this calculation the net baryon charge was
fixed at B = ρBV and the net electric charge was fixed at Q = B/2.

baryon density increases. The densities displayed cover the
range of what might be reached in heavy-ion systems at the
point when temperatures fall below 150 MeV. The ratio C4/C2

displays a sharper fall when the baryon densities approach
twice nuclear density. This feature was unexpected and we
have no easy explanation for it.

For the calculations illustrated in Fig. 5, the net baryon
number, electric charge, and strangeness were all fixed. Be-
cause of local charge conservation and the limits of diffusion,
balancing charges created after the collision are constrained to
stay within the same neighborhood. This constraint is adjusted
by setting the size of the patch volume. However, even for
measurements at midrapidity, nonzero charges can arise due
to the transfer of baryon number and electric charge from
the projectile and target rapidities. These intruder charges are
not typically balanced by charges within the acceptance of
the detector, and thus their fluctuation should be considered
separately. Figure 6 shows how C4/C2 and C3/C1 behave as
a function of baryon density, if the nonzero baryon number
and electric charge are chosen to fluctuate within the patch
according to a Poissonian distribution. As expected, the ratios
rise as compared to the fixed case shown in Fig. 5, but they
do not exceed unity. A more realistic treatment of understand-
ing the correlations of the intruder charges might take into
account global charge conservation, as has been discussed in
Refs. [72,73]. This would suggest replacing the Poissonian as-
sumption for the presence of intruder charges with a binomial
distribution, which could differ in the limit that the acceptance
carries a large fraction of the overall baryon number. Another
option would be to model the deposition of baryon number
and correlations from the initial state by employing a model
of the stopping stage such as HIJING [72]. Discerning these
fluctuations of the actual net charges is of particular interest.

FIG. 6. The ratios C4/C2 and C3/C1 are shown for net charge and
for net baryon number as a function of the baryon density. Calcu-
lations differ from those in Fig. 5 in that the net charge fluctuates
according to a Poissonian distribution. The ratios rise relative to those
in the fixed-charge case, but they remain below unity.

These results suggest that the starting point for the ratios
C4/C2 and C3/C1 is below unity for random uncorrelated net
charges accompanied by an ensemble of baryon charges.

VII. BLAST-WAVE MODEL WITH A FULL HADRON GAS
AND COMPARISON TO STAR RESULTS

The calculations of the previous section were based on a
simple picture, where each subvolume emitted particles whose
probability of being observed was uniform, denoted by α. In
practice, this probability depends on where the subvolume
is located within the overall reaction volume. A subvolume
in the region with spatial rapidity, |ηs| > 1, emits particles
that are only rarely recorded by detectors that specialize in
midrapidity measurements. Even for a subvolume centered at
midrapidity, thermal motion can spread some of its emission
to rapidities outside the acceptance. This is especially true
when the experiments narrow their acceptance. For example,
STAR’s acceptance nominally covers ±1 units of pseudora-
pidity, but the acceptance for identified particles is confined
to ±0.9 units. For real rapidity, the effective acceptance is
narrowed further, due to the fact that the true rapidity y is
less than the pseudorapidity η. This difference is magnified
for more massive or slower particles. In fact, STAR analyses
of identified particles often enforce cuts that only consider
particles with true rapidities −0.5 < y < 0.5. Of course, even
particles within the rapidity acceptance must exceed some
minimum transverse momentum, and the efficiency for being
detected is imperfect. For particles identified only by charge,
the efficiencies are typically �80%, and for identified parti-
cles the efficiency falls by another few tens of percentages.

Collective flow plays a critical role. First, longitudinal flow
is what allows the measurement of rapidity to correlate to
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a measurement in coordinate-space rapidity. In the Bjorken
model of boost-invariant flow, the mapping is simple in that a
fluid element with spatial rapidity ηs moves with a rapidity ηs,
and particles emitted from a subvolume with rapidity ηs have
rapidities y ≈ ηs. This simple mapping is smeared by thermal
motion. Collective radial flow and cooling combine to better
align the spatial rapidity ηs and the measured rapidity y. The
thermal spread for pions is ≈0.6 units of rapidity, while that
for protons is ≈0.25.

The extent of the region over which particles are emitted
in spatial rapidity, ηs, should affect the result. If the extent
in ηs is small, then there is an enhanced probability that a
charge and its balancing charge will both be identified and
cancel one another when assigning the net charge for an event.
If the region extends over a large rapidity range, then the
effects of charge balance are minimized because there is a
better chance that one charge will be observed while the other
is outside the acceptance. The extent of the region in the
transverse direction is less important. For emitting regions at
the edge of the fireball, which have more collective velocity,
there is a modest increase of having balancing charges both
pushed into the acceptance. In addition to the size of the region
over which particles from a given subvolume are emitted, the
overall size of the subvolume at the point where chemical
freeze-out occurs also plays a role as it sets the degree to
which canonical suppression affects the results. As discussed
in the previous section, this matters only for for smaller
subvolumes.

For the model in this section, canonical subvolumes are
overlaid onto a blast-wave parametrization of collective flow.
The net charge and baryon number of each subvolume is
assigned via a Poissonian distribution as was discussed in the
previous section. A filter is applied to the calculations, rep-
resenting the experimental STAR acceptance and efficiency.
This should be sufficiently realistic to make meaningful com-
parisons to STAR data. The four main parameters for the
blast-wave model describe the radial flow u⊥, the kinetic
freeze-out temperature, Tk , and the baryon chemical poten-
tial and temperature at chemical freeze-out, μc and Tc. The
chemical freeze-out temperature μc and chemical potential,
Tc, are chosen to fit relative particle yields, while Tk and
u⊥ are determined by simultaneously fitting the spectra of
species with varying mass, typically π, K, p. A variety of
parametrizations exist, such as having the velocity increase
linearly from the origin, or the transverse rapidity, or having
a sharp cutoff in radius vs. assuming a Gaussian profile. De-
pending on the choice, the value of Tk and u⊥ vary, but are
typically in the neighborhood of Tk ≈ 100 MeV and u⊥ ≈
0.6. For increasing multiplicities, the reaction volumes can
expand and cool further, which leads to modestly increased
values of u⊥ and modestly decreased values of Tk for ei-
ther more central or for more energetic collisions. For this
study the chemical freeze-out parameters were taken from
Refs. [74,75], which extracted Tc and μc for a variety of beam
energies. A more detailed extraction of the same parameters
for the lower beam energies [76] has also been performed
by STAR. This latter study shows how the extraction of
temperatures and chemical equilibrium were quite dependent
on which hadron species were included in the analysis, and

could change the assigned temperatures or chemical potentials
by 10 MeV or more. Given that the sensitivities to baryon
density for our calculations will be found to be modest, it
is unlikely that the uncertainties in extracting the chemical
potentials and temperatures from particle yields will signifi-
cantly affect the ratios of cumulants calculated here. For this
section, Bose statistics were ignored. The same ≈300 hadron
species used in the earlier sections were included in this
analysis.

The distribution of spatial rapidities ηs over which all par-
ticles are emitted is chosen to be Gaussian, with a width σ0

that depends on beam energy as

dN

dηs
∼ e−η2

s /2σ 2
0 ,

σ0 = 0.4 ybeam, (41)

where ±ybeam are the rapidities of the incoming beams. This
choice reproduces the rapidity widths measured at RHIC to
roughly 10% accuracy [77].

The distribution of spatial rapidities for particles of a given
subvolume was also spread according to a Gaussian with a
width ση. The parameter ση describes how far particles created
from the same subvolume may have separated by the time
of emission. Like the patch volume, �, this is a measure of
size. They differ in two ways. First, ση only refers to a size
along the beam axis, and secondly, it refers to the extent of
the correlation at kinetic freezeout. The volume � regulates
hadron creation at chemical freezeout, but that volume can
increase, and the charges might diffuse between subvolumes,
by the time particles are emitted. For these reason, these two
sizes are treated separately, thought it should be stated that
they should be correlated and that small values of ση are
not physical unless � is also small. For increasingly larger
values of ση, the chance that any two observed particles are
correlated decreases. The rapidity of a subvolume was then

distributed according to a Gaussian with width
√

σ 2
0 − σ 2

η ,

so that the emission overall was characterized by the width
σ0. Whereas the other blast-wave parameters were chosen
to describe spectra and yields, the parameter ση is related
to charge conservation. If charge is created early, and espe-
cially if the diffusion constant is large, then the width might
be close to one unit of spatial rapidity, whereas if all the
charge were to come after hadronization, the width might
more likely be a few tenths. Blast-wave models of charge
balance functions, which are also driven by charge conser-
vation and diffusion, suggest widths should be of the order
of a third, but variations of a factor of two were not ruled out
[48]. One goal of this section is to investigate the sensitivity to
ση.

For this blast-wave model, each subvolume was also as-
signed a radial transverse velocity according to a Gaussian,

dN

d2u⊥
≈ e−(u2

x+u2
y )/2u2

⊥ , (42)

and a small spread in �u⊥. However, given that for this study,
cuts are not being considered in transverse momenta or az-
imuthal angle, varying �u⊥ has little effect. Particles from each

064906-12



CHARGE CONSERVATION AND HIGHER MOMENTS OF … PHYSICAL REVIEW C 102, 064906 (2020)

differential volume element were assigned momenta using the
Monte Carlo algorithm described in Ref. [78].

The calculations of this section are filtered through a
simplified model of the STAR detector’s acceptance and
efficiency. For unidentified particles, pseudorapidities are re-
quired to be between ±0.5 and transverse momenta are
constrained to being above 200 and below 2 GeV/c. For
identified particles, rapidities were restricted to being between
±0.5, and transverse moment were required to be between
200 and 1.6 GeV/c for pions or kaons, and between 400 and
2 GeV/c for protons and antiprotons. Because the STAR data
are corrected for efficiency, the efficiencies were set to unity.
In order to compare results to measurement from STAR, the
baryon densities and chemical freeze-out temperatures were
mapped to beam energy according to the analysis of Ref. [75],
which extracted chemical freeze-out temperatures and chem-
ical potentials by considering ratios of particle yields. The
parameter u⊥, which controls the transverse radial flow, was
chosen along with the kinetic breakup temperature, Tk , to
simultaneously roughly fit the mean transverse momenta of
both the protons and pions reported [79]. The kinetic freeze-
out parameters were chosen according to the parametrization,

Tk = 120 − 20 f MeV, (43)

u⊥ = 0.5 + (0.74 − 0.5) f , (44)

f = 1

ln(2)
ln

[
1 +

√
s − √

s0√
s f − √

s0

]
, (45)

where
√

s0 = 7.7 GeV and
√

s f = 200 GeV. Decays were
simulated, and the products of weak decays (aside from pions
or charged kaons) were included in the analysis. Undoubtedly,
a more realistic model of the acceptance might change the
ratios, but given that these are ratios, and that the overall
efficiency and acceptances are not wildly off, a more rigorous
model of the acceptance is unlikely to change the result by
more than a few percentages.

The summation over subvolumes was performed by sum-
ming over 400 values of u⊥ and ηs consistent with the
distributions described above. For each value, emission of
Nsample = 2 × 105 subvolumes was simulated so that cumu-
lants could be calculated for each value of ηs and u⊥. Because
emission from different subvolumes is uncorrelated, the cu-
mulants for the total emission are simply the sum of the
cumulants of each subvolume. Further, because the net cumu-
lants behave linearly in Nsample, the ratios of net cumulants is
independent of Nsample.

Figure 7 illustrates how results are sensitive to the size
of the subvolume, �. This is the effective volume at which
charge conservation is enforced at chemical freeze-out. For
these calculations ση was fixed at 0.3. For a volume of 100
fm3 the average number of hadrons is several dozen. For
small subvolumes, where in a grand canonical ensemble the
typical number of charges would be zero or one, the ther-
modynamic cost of having a second charge to balance the
first charge reduces the probability of having any charges. As
mentioned earlier, this is known as canonical suppression, and
it lowers both the multiplicities and the moments. For larger
subvolumes, this thermodynamic cost vanishes as the system

might have had fewer balancing charges of the same sign,
rather than an extra balancing charge of the opposite sign.
The characteristic volume for the disappearance of canonical
suppression is the volume where the mean number of pairs
exceeds unity. In general, for charged particles this sets in at
around 50 fm3, but for baryons the characteristic volume is
closer to 100 fm3 because of their being heavier and fewer.
Thus, the proton moments for volumes of 50 and 200 fm3

differ more noticeably. These volumes are similar to those
used to study the effects of canonical suppression in yields
[80]. The time for a fluid element to expand and cool to the
point where it reaches chemical freeze-out tends to be on the
order of 5 fm/c. These times are shorter for matter on the
periphery, at a lower beam energy or centrality. The times are
longer for fluid elements at the center, at higher beam energy,
or in a more central collision. The maximum transverse dis-
tance a charge can travel before chemical freeze-out is ≈10
fm if they move in opposite directions, and if charge moves
diffusively or if the charge is created later in the reaction, the
separation should be significantly less. As discussed below,
charge can separate further along the beam axis, and because
that is not well understood, the size of the subvolume carries
a large uncertainty. Anywhere from 50 fm3 to a few hundred
fm3 might be reasonable.

Balancing charges separate from one another, and depend-
ing on when they are created, they can diffuse apart from
one another. This separation, represented by the parameter ση,
accounts for the separation of balancing charges both before
and after hadronization, or both before and after chemical
freezeout. After chemical freeze-out charges might separate
and mix between the subvolumes. Because some of the sep-
aration comes after chemical freeze-out, this distance might
exceed the scales representing the size of the subvolume �.
Charge can spread further in the longitudinal direction due to
the strong initial longitudinal collective flow at early times.
This enhancement to the separation depends sensitively on
when charge pairs are created. Matter thermalizes at an early
time, where large collective velocity gradients along the beam
axis are expected. If the motion is diffusive, then the sepa-
ration along the beam axis depends logarithmically on the
ratio of the final time to the initial creation time [38]. Thus,
if a pair is created at 0.2 fm/c, then the separation for times,
0.2 < τ < 1.0 fm/c is as important as the additional separa-
tion they gain during the times 1.0 < τ < 5.0 fm/c. For this
reason the size of charge spread, ση, in spatial rapidity might
be anywhere between a few tenths of a unit of rapidity to a
full unit. Figure 8 shows the sensitivity of the moments to
this parameter. For large ση the observation of a charge is less
likely to influence the observation of a second charge, which
is similar to having a lower efficiency. For low efficiencies
one expects the behavior to be more Poissonian, and C4/C2

and C3/C1 to be closer to unity. Indeed, this is the case, but
the dependence on ση, as shown in Fig. 8, is negligible for net
charge and modest for net protons.

The beam energy dependence mainly derives from the
fact that the baryon density is higher for lower beam ener-
gies. Given that C1 falls with increasing beam energy, while
C2 increases because multiplicity increases, it is no surprise
that the ratio C1/C2 falls with increasing beam energy. The
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FIG. 7. Ratios of cumulants from blast wave models, begining with C1/C2 [panels (a)–(c)], then skewness [panels (d)–(f)] and finally,
kurtosis [panels (g)–(i)], are plotted for for different values of the subvolume �. For smaller subvolumes the ratios C1/C2, C3/C1, and C4/C2

increase. For net charge, the ratios approach an asymptotic value once � begins to pass ∼50 fm3, whereas for net protons the ratios appear to
approach the limit at somewhat higher values of �. STAR measurements for net protons are not wholly dissimilar to the blast-wave calculations
here, but those for net charge differ greatly. Additional physics from volume fluctuations might explain how C4/C2 might exceed unity, but it
is difficult to explain how this might happen for net-charge distributions while leaving C4/C2 of the net-proton distribution unchanged.

skewness, C3/C1, should approach unity if emission is ran-
dom, i.e., a Skellam distribution. The effects of local charge
conservation keep C3/C1 < 1. In the limit that there are no
antibaryons, which is the limit of high net baryon density and
equivalently low beam energy, the assumption that baryons
are deposited amongst the subvolumes according to a Pois-
sonian distribution also drives C3/C1 for net protons closer
to unity. Combined with higher canonical suppression for
heavier particles, the sensitivity to �, shown in Fig. 7, or
to ση, illustrated in Fig. 8, is more pronounced for blast-
wave calculations of net protons than of net kaons or of net
charge.

The measure of kurtosis, C4/C2, varies only modestly with
beam energy. For net charge, the ratio does not vary far from
0.8 in model calculations. In contrast, C4/C2 from model
calculations for net protons varies from 0.6 to 0.9 depending
on the values of � and ση. The models also exhibit a modest
dependence on beam energy for C4/C2. The ratio rises approx-
imately 20% as the beam energy increases to 20 GeV, then
plateaus and falls 10% until it becomes flat. Similarly to the
C3/C1 ratio, this ratio stays below the Skellam limit.

Figures 7 and 8 also display results from the STAR Col-
laboration for data recorded for central collisions, 0–5%

centrality [10,17]. For net proton fluctuations, the blast-wave
model results are similar to STAR measurements for all three
ratios. It is difficult to conclude the meaning of the solid agree-
ment shown in the C1/C2 ratios. This agreement covers net
charge, net kaons and net protons, as long as the subvolume �

is of the order of 50 fm3 or greater. Interpreting the meaning
of this agreement is difficult because it is mainly driven by
having the model correctly match the particle yields with mul-
tiplicity. Unlike the C3/C1 and C4/C2 ratios there is no simple
baseline for a Skellam distribution. The Skellam baseline
would depend on knowing the charged particle multiplicity
distributions, i.e., the moments of the multiplicity distribu-
tions for protons plus antiprotons, kaons plus antikoans, or all
charged particles.

For the net-proton distribution, the behavior of C3/C1 as a
function of beam energy seems consistent with the experimen-
tal uncertainties, but the statistical errors in the experimental
data are so large, that little can be concluded aside from
the fact that the models predict that C3/C1 should be in the
neighborhood of 0.75. These ratios from the models can show
a modest sensitivity to beam energy, but any such trends
are overwhelmed by the statistical errors of the experimental
results at the moment.
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FIG. 8. Ratios of moments are displayed for different values ση, which sets the longitudinal size of over which subvolumes emit charge. A
modest sensitivity is found for net protons, while the moments for net charge were fairly insensitive.

For both net kaons and for net charge, C3/C1 and C4/C2

lie above the range of model predictions, but the large ex-
perimental error bars forbid one from stating this with much
confidence. Should the experimental results with improved
statistics confirm this discrepancy, it will be difficult to ex-
plain unless a significant number of charges are emitted from
large clusters. In contrast, the model should always give ratios
below unity for C4/C2, regardless of the choice of parameters.
These discrepancies for net kaons and for net charge are
discussed in the upcoming summary, Sec. VIII.

VIII. SUMMARY

The principal goals of this study were to clarify back-
ground contributions for higher moments of charge distri-
butions measured by the STAR Collaboration at RHIC, and
to state the degree to which current experimental results are
either consistent or inconsistent with these contributions. By
background, this refers to sources of fluctuations besides those
that arise from baryon number or charge clustering due to
processes such as phase separation. The list of such sources
includes charge conservation, Bose corrections, volume fluc-
tuations, and the decays of resonances. In order to gain better
insight both simple semianalytic models with a single type of
conserved charge, similar to the work performed in Ref. [46],
and a more realistic blast-wave model which includes a more
realistic accounting of the STAR acceptance, similar to what

was applied in Ref. [51], were investigated. By using a highly
efficient algorithm for Monte Carlo generation of particles ac-
cording to the canonical ensemble, results were produced with
small statistical uncertainties. This enabled the exploration of
sensitivities to critical parameters of the model.

Of the various background correlations, charge conser-
vation provided the strongest non-Poissonian contributions.
Because fourth-order cumulants were defined to subtract con-
tributions from second-order correlations, one might have
expected a small contribution. Consistent with the result from
Ref. [46] for a single type of charge, it was found that generat-
ing sets of particles from a subvolume equilibrated according
to the canonical ensemble produced values of C3/C1 and
C4/C2 which were significantly lower than the Skellam value
of unity, which is what one would expect for uncorrelated
emission. In contrast, the contribution from two-particle de-
cays does not change either C3/C1 or C4/C2. This conclusion
persisted for the more realistic blast-wave model which incor-
porated the conservation of all three charges and included a
filter of the STAR acceptance. The correlation varied modestly
according to the size of the canonical subvolume for small
subvolumes due to canonical suppression. A modest sensitiv-
ity was also found to the spatial extent of this volume along
the beam axis, as the overlay of collective longitudinal flow
onto the finite acceptance in rapidity effectively lowers the
probability for two balancing charges to both be observed.
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Due to the fact that baryon density falls with increasing beam
energy, the strength of such correlations do depend on beam
energy. But this sensitivity was not dramatic. Thus, even
though this background contribution is rather large, it is quite
smooth with respect to beam energy, so if sharp nonmonotonic
structures are observed experimentally with respect to beam
energy, such structures are not likely to be driven by charge
conservation.

A second source of background arises from multiparticle
symmetrization of the outgoing pions. By extending the recur-
sive techniques applied for the canonical ensemble to include
symmetrization, it was found that such effects should not
affect the skewness or kurtosis unless the pion phase-space
density were to become surprisingly large. In order for the
symmetrization effects to become large, the pion phase-space
density in the absence of symmetrization would have to dou-
ble. If this were the case, then the pion spectra would be more
dramatically altered by Bose effects and the measured HBT
radii would have to be significantly altered.

Volume fluctuations are somewhat of a wildcard for back-
ground processes. As shown in Sec. VI A, such fluctuations
can significantly increase the C4/C2 ratio. The STAR Collab-
oration invested great effort in minimizing their impact, but
it is difficult to gauge the degree to which such effects might
have persisted. Volume fluctuations also increase similar mo-
ments of the multiplicity distribution, which is constructed by
counting charged particles rather than net charge. It is critical
for the experiments to simultaneously present moments of
the multiplicity distribution alongside those of the net-charge
distributions. This sensitivity was also illustrated with the
simple results from a system with one charge and uniform
acceptance, restated in Eq. (33) from the previous work of
Ref. [46]. Because volume fluctuations should similarly in-
crease the C4/C2 ratio for net charge, net strangeness and net
baryon number, behavior of such ratios for one type of charge
that are not seen in other types of charge can be considered as
originating from some other effect.

Due to the way in which cumulants are constructed, the
third- and fourth-order cumulants should be impervious to the
effects of two-particle decays. However, decays of clusters
that produce four or more charged particles do contribute to
C4. Here it was found that if a significant fraction of charged
particles come from such decays, the higher moments can be
profoundly altered, as was already known from the work in
Ref. [68]. However, the decays of such clusters would also af-
fect the multiplicity distribution, which again underscores the
importance of the experiments to simultaneously analyze fluc-
tuation of net charge and of the the multiplicity distribution.
If such effects were important, then it would suggest novel
contributions to the dynamics of charge production, outside
of the usual paradigm of creating equilibrated distributions of
hadrons.

The results of the blast-wave calculations were displayed
alongside STAR results in Sec. VII. The experimental results
had much larger statistical errors than the calculations, which
limits the conclusions that can be drawn. The fluctuations of
net protons were not far from the range of those calculated
here. This is consistent with charge conservation being the
dominant source of non-Poissonian behavior, i.e., C4/C2 �= 1

and C3/C1 �= 1. By no means does this suggest that this is
evidence for a lack of more novel sources of correlation in the
baryons, such as that arising from phase separation. The ex-
perimental uncertainties may be currently too large to unmask
such phenomena.

The large observed moments of the net-charge distribution
are perplexing, although there are large statistical uncertain-
ties in the experimental data. If the improved statistics of
the ongoing beam-energy scan at RHIC confirms that C4/C2

well exceeds predictions of the blast-wave calculations, and
even lies above unity, then one would have to consider novel
sources of fluctuations. Given that the net-proton distribu-
tions are roughly in line with the model predictions, this
discrepancy could not be explained by volume fluctuations,
or equivalently by the systematics of event binning. Because
phase transition phenomena are expected to manifest them-
selves mainly in the net-proton distributions, it also suggests
that phase separation or critical phenomena would not be
driving the fluctuation. Instead, this would then suggest that
decays of larger clusters into four or more charged particles
might be present. If such processes were present, then it would
motivate a rethinking of models of chemical evolution and
charge production in heavy-ion collisions. In order to confirm
or dismiss this hypothesis, it is imperative that a simultaneous
analysis of charge (not net charge) multiplicity distributions
be undertaken from the same data sets with the same cuts on
centrality. Another way in which experiment might provide
additional insight is to measure cross correlations between
different species. Measurements have already been performed
to second order, e.g., Ref. [8], and their connection to lattice
calculations has been discussed in Ref. [81]. Given the greatly
improved data sets currently being analyzed by STAR in the
Beam Energy Scan II program at RHIC [82], this issue should
be clarified in the next year or two.

Finally, the studies here help point the way to fu-
ture improvements in modeling. The picture of independent
canonical subvolumes is crude. It does incorporate the truth
that charge conservation is enforced locally, over some length
scale, and is sufficient to provide the understanding of how
large such effects might be. However, in reality baryon num-
ber, electric charge and strangeness are created and evolve in
different ways. Strangeness tends to be created early in the
collision, thus allowing the balancing strange and antistrange
quarks to separate before the emission of the hadrons to which
they are asymptotically assigned. In contrast, up and down
quarks are more likely to be produced later in the reaction.
Thus, the characteristic canonical volumes should have dif-
ferent sizes and different longitudinal extents depending on
whether one is considering up, down or strange quarks. This
is also true for off-diagonal correlations, e.g., correlations
between strange and up. These only appear in the hadronic
phase. A diagrammatic formalism has been developed for
evolving such two-, three-, and four-body correlations as a
function of the positions of each charge. These equations are
based on knowing the chemical evolution of the system and
the diffusion constants for each type of charge. Such calcu-
lations have been performed for two-body correlations and
compared to experimentally measured charge-balance func-
tions [83,84] or fluctuations [23]. Unfortunately, the method
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for three- and four-body correlations is challenging to im-
plement numerically [85]. It is tractable, but would require
significant effort. The study presented here suggests that such
calculations would be warranted if one wanted to reproduce
the moments of these distributions for each type of charge,
and especially if one wants to consider cross terms [86], such
as moments involving powers of both charge and net baryon
number. Otherwise, given that charge conservation effects are
expected to evolve smoothly with beam energy, one could
simply see whether measurements of the ongoing Beam En-
ergy Scan at RHIC unveil any sharp features, and assign such
features to more novel types of physics.
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