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We introduce an improved form for the anisotropic hydrodynamics distribution function which explicitly
takes into account the free-streaming and equilibrating contributions separately. We demonstrate that with this
improvement one can better reproduce exact results available in the literature for the evolution of moments of
the distribution function, in particular, for moments which contain no powers of the longitudinal momentum
in their definition (m = 0 moments). Using the resulting dynamical equations, we extract the non-equilibrium
attractor associated with our improved anisotropic hydrodynamics ansatz and demonstrate that the improvement
also allows one to better reproduce the exact dynamical attractor obtained using kinetic theory in the relaxation
time approximation, particularly at early rescaled times and for m = 0 moments.
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I. INTRODUCTION

In the very early universe (a few microseconds after the
Big Bang), the quark-gluon plasma (QGP) is believed to have
existed where the density can reach values ten times higher
than those of ordinary nuclei. It was speculated theoretically
that one can reach these extreme conditions by colliding two
heavy nuclei with ultrarelativistic energies. In this collision,
the temperatures can be million times hotter than the core of
the sun, and a fraction of the kinetic energies of the two col-
liding nuclei transform to heat the quantum chromodynamics
(QCD) vacuum within an extremely small volume. Because
of the appearance of modern accelerator facilities, ultrarel-
ativistic heavy-ion collisions (URHICs) be able to provide
an opportunity to systematically create and study different
phases of the bulk nuclear matter. In heavy-ion collision ex-
periments at Relativistic Heavy-Ion Collider (RHIC) located
at Brookhaven National Laboratory, USA, and Large Hadron
Collider (LHC) at European Organization for Nuclear Re-
search (CERN), Geneva, the new state of matter (the QGP)
is widely believed created. Results obtained at RHIC energies
and recently at LHC energies strongly suggested the forma-
tion of a quark-gluon plasma (QGP) which may be close to
(local) thermodynamic equilibrium, albeit in a tiny volume
(∼100–1000 fm3). After the QGP is generated, it is expected
to expand, cool, and then hadronize in the final stage of its
evolution, with a QGP lifetime on the order of 10 fm/c in
central collisions [1–3].
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Heavy-ion collisions such as those at RHIC provide a pri-
mary tool to study the thermodynamic and transport properties
of the QGP. Of remarkable importance is knowledge of time
evolution of the rapidly expanding the QGP that produced in
these URHICs. For this purpose, one can use a basic theoreti-
cal approach called relativistic hydrodynamics to describe the
QGP. The resulting models describe the collective behavior of
the soft hadrons with PT � 2 GeV quite well. In early studies,
it was found that the QGP created at RHIC energies was
well described by models which assume ideal hydrodynamic
behavior from very early times τ � 1 fm/c [4–6]. Strictly
speaking, one can apply ideal hydrodynamics if the system is
in perfect isotropic local thermal equilibrium. Based on these
early studies, it was expected that the QGP would isotropize
on a timescale τ ∼ 0.5 fm/c. In practice, however, when one
includes viscous corrections to the hydrodynamical models
[7–39] one observes that at times τ � 2 fm/c there can still
be sizable differences between the transverse pressure, PT ,
and longitudinal pressure, PL which is associated with the ex-
istence of a nonequilibrium hydrodynamic attractor [40–77].
In addition, as one moves closer the transverse/longitudinal
edges of the QGP, the size of the pressure anisotropies in-
creases at all times [78–80]. Faced with this, researchers
suggested to find another method to formulate hydrodynamics
in a momentum-space anisotropic QGP. Recently, there have
been theoretical and phenomenological studies that try to bet-
ter account for large deviations from isotropy by relaxing the
assumption that the QGP is close to local isotropic thermal
equilibrium. To address this issue, they introduced a frame-
work called anisotropic hydrodynamics (aHydro) in order to
describe the nonequilibrium dynamics of relativistic systems,
without breaking important physics constraints such as the
positivity of the one-particle distribution function [81–86].

In a prior paper [60], comparisons between three hydro-
dynamic models and exact solutions of the RTA Boltzmann
equation [87–89] were presented. It was found that lin-
earized viscous hydrodynamics performed more poorly than
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the canonical formulation of aHydro in reproducing the exact
attractor for all moments. However, although the canonical
aHydro formulation [81,82] did a reasonable job in describing
moments with m > 0, Ref. [60] found that it did not provide a
good approximation for moments with m = 0. The failure of
the canonical formulation was postulated to be due to the fact
that the exact solutions to the RTA Boltzmann equation have
an explicit two-component nature and cannot be accurately
described by a single ellipsoidal form. As a result, it would
be interesting to implement aHydro with a two-component
ansatz for the distribution function to see if a better description
of moments with m = 0 can be achieved. Additionally, it
would be interesting to see if this also results in a quantitative
improvement for higher-order moments.

In this paper, we report on our progress in obtaining im-
proved dynamical equations for anisotropic hydrodynamics
through the use of an improved ansatz for the form of the
underlying aHydro distribution function which explicitly in-
cludes a free streaming contribution. We demonstrate that
with this improvement one can better reproduce exact results
available in the literature for the evolution of moments of
the distribution function, in particular, for moments which
contain no powers of the longitudinal momentum in their
definition (m = 0 moments). Using the resulting dynamical
equations, we extract the non-equilibrium attractor associated
with our improved aHydro ansatz and demonstrate that the
improvement also allows one to better reproduce the exact
dynamical attractor obtained using kinetic theory in the relax-
ation time approximation, particularly at early rescaled times
and for m = 0 moments. We will focus our attention in this
first work on a conformal system undergoing boost-invariant
and transversally homogeneous Bjorken expansion, however,
the method introduced herein is easily extended to full 3 + 1d .

The paper is organized as follows. In Sec. II we present the
basic setup and assumptions used for the system and introduce
our improved aHydro distribution function ansatz. We then
use the first and second moments of the Boltzmann equation
to obtain equations of motion for the dynamical parameters
appearing in the new ansatz. We do this explicitly for a system
undergoing boost-invariant 0 + 1d Bjorken expansion. Using
the resulting dynamical equations we obtain the time evolu-
tion of all moments of the distribution function. In Sec. III,
we present our numerical results and discuss. In Sec. IV we
present our conclusions and an outlook for the future.

II. SETUP

For the current work, we assume a system of massless
particles. Furthermore, we assume that the system is under-
going boost invariant longitudinal expansion (vz = z/t ) and
expands only along the beam-line axis, ignoring the effects of
transverse dynamics. Accordingly one can assume a homoge-
neous distribution in the transverse directions and set vx,y = 0.
By taking into account these assumptions only proper-time
derivatives remain and the dynamics reduces to 0 + 1d dimen-
sional evolution [90]. In order to better describe free streaming
contributions to the evolution of the one-particle distribution
function, we propose an improved aHydro one-particle distri-

bution function of the form

f (p, τ ) = f0(ξFS,�0)D(τ, τ0) + fRS(ξ,�)[1 − D(τ, τ0)],
(1)

where the first term is the free-streaming contribution and
the second term is the equilibrating contribution. In the limit
that D → 0 this ansatz reduces to the original ansatz used in
aHydro [81,82]. In the results section we will compare to this
limit and refer to it as “old aHydro” and refer to the new
ansatz (1) as “new aHydro”. We note that the form of the
new ansatz (1) is similar in spirit to an approach advocated
recently by McNelis and Heinz, with the second term being
related to way they termed the hydrodynamic generator [91].
In Eq. (1), �0 is the initial momentum scale, f0 is the initial
particle distribution with

ξFS = (1 + ξ0)
τ 2

τ 2
0

− 1, (2)

where ξ0 is the initial momentum-space anisotropy, τ0 is the
initial proper time, and

fRS(ξ,�) = feq
(√

p2 + ξ p2
z

/
�

)
, (3)

where RS indicates the anisotropic Romatschke-Strickland
form [92]. The equilibrium distribution function feq may be
taken to be a Bose-Einstein, Fermi-Dirac, or Boltzmann distri-
bution. Here, we will assume that feq is given by a Boltzmann
distribution. For free-streaming distribution function f0 is also
of RS form but with ξ = ξFS and � = �0, i.e.,

f0(ξFS,�0) = fRS(ξFS,�0). (4)

Here, we use the label ‘0’ to emphasize that this contribu-
tion is constrained by the initial condition for the distribution
function. Additionally, −1 < ξ < ∞ is a parameter that in-
dicates the strength and type of momentum-space anisotropy.
By stretching (−1 < ξ < 0) or squeezing (ξ > 0) the under-
lying isotropic distribution function feq along one direction in
momentum-space, one can obtain an anisotropic distribution
function.

In Eq. (1) we have also introduced the damping function
D(τ, τ0)

D(τ, τ0) = exp

[
−

∫ τ

τ0

dτ ′′

τeq(τ ′′)

]
, (5)

which, for finite τeq, obeys limτ→τ0 D(τ, τ0) = 1 and
limτ→∞ D(τ, τ0) = 1. Note that, since D(τ0, τ0) = 1, at
τ = τ0 the distribution function (1) reduces to the initial dis-
tribution function f0. We note for future use that the damping
function satisfies

∂D(τ, τ0)

∂τ
= −D(τ, τ0)

τeq(τ )
. (6)

A. Moments of the improved distribution function

To calculate the energy density and pressures in the local
rest frame (LRF), one can integrate the distribution func-
tion (1) times pμ pν using the Lorentz-invariant integration
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measure∫
dP =

∫
d4p

(2π )4
2πδ(p2 − m2)2θ (p0) =

∫
d3p

(2π )3

1

E
. (7)

After performing this operation one finds that all moments of
the distribution function can be decomposed into two terms,
e.g.,

ε = T 00 = ε0(ξFS,�0)D(τ, τ0) + εRS(ξ,�)[1 − D(τ, τ0)],
(8)

PL = T zz = PL,0(ξFS, �0)D(τ, τ0) + PL,RS(ξ, �)[1 − D(τ, τ0)],
(9)

where in Eqs. (8) and (9) the left hand sides are the nonequi-
librium energy density and longitudinal pressure, respectively.
For a conformal system, one can use ε = 2PT + PL to deter-
mine the transverse pressure

PT = PT,0(ξFS,�0)D(τ, τ0) + PT,RS(ξ,�)[1 − D(τ, τ0)].
(10)

In general, one can compute a large set of moments of the
one-particle distribution function (1) of the form

Mnm[ f ] =
∫

dP (p · u)n(p · z)2m f (p), (11)

where uμ is the time-like fluid four-velocity and zμ is a space-
like vector orthogonal to uμ. In the local rest frame of the
system, one has uμ

LRF = (1, 0, 0, 0) and zμ
LRF = (0, 0, 0, 1).

Taking a general moment of Eq. (1), one finds

Mnm[ f ] = Mnm[ f0]D(τ, τ0) + Mnm[ fRS][1 − D(τ, τ0)].
(12)

Note that certain moments map to familiar hydrodynamics
variables, e.g., taking n = 1 and m = 0, one obtains the num-
ber density

n = M10 =
∫

dP (p · u) f (p)

= M10[ f0]D(τ, τ0) + M10[ fRS][1 − D(τ, τ0)].

Taking n = 2 and m = 0, one can evaluate the energy density
via

ε = M20 =
∫

dP (p · u)2 f (p)

= M20[ f0]D(τ, τ0) + M20[ fRS][1 − D(τ, τ0)],

and taking n = 0 and m = 1, one obtains the longitudinal
pressure

PL = M01 =
∫

dP (p · z)2 f (p)

= M01[ f0]D(τ, τ0) + M01[ fRS][1 − D(τ, τ0)].

Since both the free-streaming and equilibrating contribu-
tions are of RS form, we can compute the moments for both

of these contributions using [60]

Mnm
aHydro(τ ) = �2m+n+2�(2m + n + 2)

(2π )2
Hnm

(
1√

1 + ξ

)
(13)

with

Hnm(y) = 2y2m+1

2m + 1
2F1

(
1

2
+ m,

1 − n

2
;

3

2
+ m; 1 − y2

)
,

(14)

where 2F1 is a hypergeometric function, y = 1/
√

1 + ξ , and
it has been assumed that the underlying isotropic distribution
function is a Boltzmann distribution function. In practice, we
will scale these moments by their equilibrium limit, which
assuming Boltzmann statistics, gives

Mnm
eq (τ ) = 2T 2m+n+2�(2m + n + 2)

(2π )2(2m + 1)
. (15)

Using the improved aHydro ansatz (1) one obtains

Mnm
[ f ] = Mnm[ f0]D(τ, τ0) + Mnm[ fRS][1 − D(τ, τ0)]

Mnm
eq (τ )

,

(16)

where we have introduce the scaled moments

Mnm
(τ ) = Mnm(τ )

Mnm
eq (τ )

. (17)

Note that one has Mnm
aHydro(τ ) = 1 if the system is in equilib-

rium.

1. First moment

Our starting point is the Boltzmann equation for massless
particles

pμ∂μ f = C[ f ], (18)

where the collisional kernel is taken to be the relaxation-time
approximation (RTA) collisional kernel

C[ f ] = − p · u

τeq(T )
[ f − feq(T )], (19)

and uμ is the four-velocity associated with the local rest
frame. Herein we will focus our attention on a system that
is transversally homogenous and subject to boost-invariant
Bjoken flow (0 + 1d). In order to preserve conformal invari-
ance, the equilibration time must be inversely proportional to
the local temperature and, for RTA, is given by [23,28]

τeq(T ) = 5η̄/T, (20)

where η̄ = η/s is the ratio of the shear viscosity η to entropy
density s.

The first moment of the left-hand side of the Boltzmann
equation reduces to ∂μT μν ; however, in the relaxation time ap-
proximation the first moment of the collisional kernel the right
hand side results in a constraint that must be satisfied in order
to conserve energy and momentum, i.e.,

∫
dPpμC[ f ] = 0.

This constraint is referred to as the matching condition and
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allows one to compute the local effective temperature of the
system. In RTA, it results in the following constraint equation:

εeq(T (τ )) = ε(ξ (τ ),�(τ )), (21)

where the equilibrium energy density εeq only depends on the
effective temperature T .

As a result of this constraint, computing the first moment
gives

∂μT μν = 0. (22)

Expanding this equation out in terms of the nonvanishing
components of the energy-momentum tensor, for a 0 + 1d
system, one obtains

ε̇ = −ε + PL

τ
. (23)

Plugging Eqs. (8) and (9) into Eq. (23) one finds

[1 − D(τ, τ0)]

[
�̂4R′(ξ )ξ̇ + 4�̂3R(ξ ) ˙̂� + R(ξ )�̂4

τ

(
1 + 1

3

RL(ξ )

R(ξ )

)]

+ D(τ, τ0)

[
R′(ξFS)ξ̇FS −

(
1

τeq
− 1

τ

)
R(ξFS) + 1

3τ
RL(ξFS) + �̂4R(ξ )

τeq

]
= 0 (24)

with �̂ = �/�0 and

R(ξ ) = 1

2

[
1

1 + ξ
+ arctan

√
ξ√

ξ

]
,

RT (ξ ) = 3

2ξ

[
1 + (ξ 2 − 1)R(ξ )

ξ + 1

]
,

RL(ξ ) = 3

ξ

[
(ξ + 1)R(ξ ) − 1

ξ + 1

]
, (25)

which satisfy 3R = 2RT + RL due to the conformality of the
system.

2. Matching condition

At any time, we define the local effective temperature T (τ )
of the fluid using the canonical matching condition which
results from the vanishing of the right-hand side of the first
moment of the Boltzmann equation. Using the improved form
one finds

T = R1/4
eff �0 (26)

with

Reff ≡ D(τ, τ0)R(ξFS) + [1 − D(τ, τ0)]R(ξ )�̂4. (27)

3. Second moment

To close the system of equations, we use the zz projection
of the second moment of the Boltzmann equation minus the
1/3 of the sum of xx, yy, and zz projections.1 This procedure
will give us the second moment equations. For the second
moment equation of motion, we will perform a similar ma-
nipulation by starting from the relaxation-time approximation
(RTA) Boltzmann equation

pμ∂μ f = − p · u

τeq(T )
[ f − feq(T )]. (28)

1For example, for a rank-two tensor Mνλ the zz projection corre-
sponds to zνzλMνλ.

We then encounter a rank three tensor which is defined as
Iμνλ[ f ] ≡ Ndof

∫
dP pμ pν pλ f , where Ndof is the number of

degrees of freedom. One obtains the following equation of
motion from the second moment of the RTA Boltzmann equa-
tion [93]:

∂μIμνλ = 1

τeq

(
uμIμνλ

eq − uμIμνλ
)

(29)

with Iμνλ
eq ≡ Iμνλ[ feq]. Note that Iμνλ is symmetric with re-

spect to interchanges of μ, ν, and λ and traceless in any pair
of indices (massless particles/conformal invariance).

Defining Ii = uμX ν
i X λ

i Iμνλ and I0 = uμuνuλIμνλ, where uμ

is the rest frame four-velocity and X μ
i with i ∈ 1, 2, 3 are

space-like basis vectors that are orthogonal to uμ,2 in an
isotropic system one finds Ix = Iy = Iz = I0 with

I0(�) = 4Ndof

π2
�5. (30)

Using the canonical aHydro form [Eq. (1) with D → 0] one
finds

Iu = Su(ξ )I0(�),

Ix = Iy = ST (ξ )I0(�),

Iz = SL(ξ )I0(�) (31)

with

Su(ξ ) = 3 + 2ξ

(1 + ξ )3/2
,

ST (ξ ) = 1√
1 + ξ

,

SL(ξ ) = 1

(1 + ξ )3/2
, (32)

which satisfy 2ST + SL = Su due to the conformality of the
system.

2The three spacelike basis vectors can also be written as X μ

1 = xμ,
X μ

2 = yμ, and X μ

3 = zμ, for compactness.
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FIG. 1. Visualization of the one-particle distribution function
at a given moment in proper time. A bimodal structure can be
seen, with the two contributions corresponding to a highly squeezed
free-streaming component (inner ellipsoid) and a less anisotropic
equilibrating contribution (outer ellipsoid).

The i = {x, y, z} equations result from

DIi + Ii(θ − 2θi ) = 1

τeq
(Ieq − Ii ) (33)

with the co-moving derivative D = uμ∂μ, the expansion scalar
θ = ∂μuμ, and θi ≡ −uμDiX

μ
i , where X μ

i are space-like ba-

sis vectors that are orthogonal to uμ. For the case of 0 +
1d Bjorken expansion one has D = ∂τ , θ = ∂μuμ = 1/τ ,
θx = θy = 0, and θz = −1/τ . For more details concerning the
basis vectors used see Ref. [94] and Appendix A of Ref. [95].

Based on this, one has

∂τ Ix + 1

τ
Ix = 1

τeq
(Ieq − Ix ),

∂τ Iy + 1

τ
Iy = 1

τeq
(Ieq − Iy),

∂τ Iz + 3

τ
Iz = 1

τeq
(Ieq − Iz ). (34)

This results in three equations in addition to the one nontrivial
equation obtained from the first moment (24), however, we
only have two independent variables ξ and � to evolve. As a
result, with the high-degree of symmetry assumed, the system
is overdetermined. In order to reduce the three second moment
equations to one, we take a linear combination of them which
guarantees that in the near-equilibrium limit the dynamical
equations reduce to those of the conventional Mueller-Israel-
Stewart theory [83]. This prescription is not unique and it
is possible to close the system of equations use different
moments/combinations of moments [96,97], however, as our
results will demonstrate, the prescription used herein results
in quite good agreement between the new aHydro ansatz and
the exact solution of the RTA Boltzmann equation for a large
set of moments.

The first two equations (xx and yy projections) both give

[1 − D(τ, τ0)]

[
1

τ
+ S ′

T (ξ )

ST (ξ )
ξ̇ + 5 ˙̂�

�̂

]
+ D(τ, τ0)

[
1

τeq
+ S ′

T (ξFS)

�̂5ST (ξ )
ξ̇FS +

(
1

τ
− 1

τeq

) ST (ξFS)

�̂5ST (ξ )

]

= 1

τeq

[
T 5

�5
0�̂

5ST (ξ )
− D(τ, τ0)

ST (ξFS)

�̂5ST (ξ )
− [1 − D(τ, τ0)]

]
. (35)

The third equation (zz projection) gives

[1 − D(τ, τ0)]

[
3

τ
+ S ′

L(ξ )

SL(ξ )
ξ̇ + 5 ˙̂�

�̂

]
+ D(τ, τ0)

[
1

τeq
+ S ′

L(ξFS)

�̂5SL(ξ )
ξ̇FS +

(
3

τ
− 1

τeq

) SL(ξFS)

�̂5SL(ξ )

]

= 1

τeq

[
T 5

�5
0�̂

5SL(ξ )
− D(τ, τ0)

SL(ξFS)

�̂5SL(ξ )
− [1 − D(τ, τ0)]

]
. (36)

Taking the zz projection minus one-third of the sum of the xx,
yy, and zz projections gives

[1 − D(τ, τ0)]

(
1

1 + ξ
ξ̇ − 2

τ

)
+ ξ

√
1 + ξ

τeq

T̂ 5

�̂5
= 0 (37)

with T̂ = T/�0. We note that all of the free streaming contri-
butions vanish. Solving for ξ̇ using Eq. (37) we obtain

ξ̇ = (1 + ξ )

(
2

τ
− ξ

√
1 + ξ

τeq

T̂ 5

�̂5

1

1 − D(τ, τ0)

)
. (38)

As mentioned previously, in the limit τ → τ0, one has D = 1
and hence the second term on the right-hand side of Eq. (38)
will diverge at τ = τ0 unless either ξ = 0 or ξ = −1. The
latter condition makes the entire right hand side vanish and
hence does not allow for dynamical evolution of ξ . For this
reason we will use limτ→τ0 ξ (τ ) = 0.

4. Cross check (D = 0, old aHydro)

As a crosscheck on our results, one can recompute the
second-moment equation with D = 0 to see if it agrees with
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FIG. 2. Scaled moments Mnm
obtained from the exact solution (solid black line) compared with the new aHydro (red dashed lines), and

the old aHydro (blue long dashed lines). Horizontal axis is w = τT/5η. Panels show a grid in n and m.

results available in the literature. In this case on finds that the
zz projection gives

(logSL )′ξ̇ + 5∂τ log � + 3

τ
= 1

τeq

[R5/4

SL
− 1

]
, (39)

and the xx and yy projections both give

(logST )′ξ̇ + 5∂τ log � + 1

τ
= 1

τeq

[R5/4

ST
− 1

]
, (40)

where, in both cases, we used T = R1/4(ξ )�.
Finally, with D = 0, taking the zz projection minus one-

third of the sum of the xx, yy, and zz projections gives

1

1 + ξ
ξ̇ − 2

τ
+ R5/4(ξ )

τeq
ξ
√

1 + ξ = 0. (41)

One can verify explicitly that Eq. (37) reduces to this in the
limit D → 0.

III. NUMERICAL SOLUTION OF THE DYNAMICAL
EQUATIONS AND THE ANISOTROPIC ATTRACTOR

In this section we present some representative numeri-
cal solutions using different initial conditions along with the

attractor solution to which they flow. For this purpose, we
solve the first and second differential equations correspond-
ing to Eqs. (24) and (37) for the evolution of ξ (τ ) and
�(τ ). However to evolve these equations we need to know
the damping function. Herein, we solve the integral equa-
tion by using an iterative method. In the first iteration, we
assume that the temperature evolution contained within the in-
tegral defining D(τ, τ0) is given by ideal hydrodynamics, i.e.,
Tguess(τ ) = T0(τ0/τ )1/3. We then solve the dynamical equa-
tions (24) and (37). From this we obtain the approximate
dependence of the effective temperature T on proper time
using Eq. (26). The resulting effective temperature T (τ ) is
then used to load the damping function for the next iteration.
We repeat this process until the effective temperature and
longitudinal pressure converge to a part in 108. In practice,
this can be achieved with only five iterations. Once converged,
the solutions for ξ (τ ) and �(τ ) can be used to compute the
full distribution function using Eq. (1) and all moments of the
distribution function using Eq. (16).3

3One can substantially reduce the number of iterations required by
initializing instead with the canonical aHydro evolution equations.
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FIG. 3. Plots of the relative error between the new (solid black line) and old (red dashed lines) aHydro ansatz compared to the exact
solution. Error is computed as approximation/exact −1.

In Fig. 1 we present a contour plot of the one-particle
distribution function at the proper time at which the con-
tribution from the free streaming part and equilibrating part
contribute equally.4 Generically, the exact solution for the
one-particle distribution function contains two independent
components [60,87–89]. The first component is an anisotropic
part which has been squeezed in the longitudinal direction
and is exponentially damped at late times. This contribution
represents the subset particles that never had any interaction at
all. Statistically, there is always such a population of particles.
As a function of time, this contribution becomes compressed
along the longitudinal direction in momentum space resulting
in PFS

L → 0 as the system evolves. This contribution comes
from the first term in Eq. (1), which corresponds to the free
streaming contribution. Note that, because of the damping
function D(τ, τ0) in the first term in Eq. (1), the amplitude
of this very narrow ridge will decrease in time exponentially.
The second visible component in Fig. 1 is an isotropizing part
which dominates at late times. This contribution comes from
the second term in Eq. (1).

4This occurs when D(τ, τ0 ) = 1/2.

In Fig. 2, we present the evolution of the scaled moments
of the distribution function as a function the scaled time

w = τ

τeq
= τT

5η
, (42)

and we compare to the exact RTA solution (black solid lines)
obtained in Refs. [60,87,88]. Results from the new aHydro
and old aHydro ansatze are shown as red dashed and blue
dot-dashed lines, respectively. In all cases shown, the new
aHydro ansatz provides a better approximation to the exact
solution than the old aHydro ansatz. In addition, one observes
that both aHydro ansatze result in positive definite results for
all moments despite having large nonequilibrium deviations.
Comparing the old and new ansatze, we see that the new
ansatz is able to reproduce the dynamics of low-order mo-
ments much better than the old ansatz. This is particularly
striking for moments with m = 0 for which we see that the
new aHydro ansatz is very close to the exact results for all n

shown.5 We note, however, for higher moments, e.g., M33
, we

see that the new aHydro ansatz interpolates between the exact

5We have checked that this holds true for larger n than shown in
Fig. 2.
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FIG. 4. Scaled moments Mnm
obtained from the exact solution attractor (solid black line) compared with the new aHydro (red dashed

lines), and the old aHydro (blue long dashed lines). Horizontal axis is w = τT/5η. Panels show a grid in n and m.

solution at early times and the old aHydro result at late times.
As a result, one sees larger deviations from the exact solution
in these moments.

In order to provide more quantitative comparison of the
two methods, in Fig. 3 we present the relative errors of the
old and new aHydro ansatze computed as the ratio of a given
approximation to the the exact result minus one. The relative
errors for the new and old schemes are shown as solid black
and dashed red lines, respectively. As one can see from Fig. 3,
the new aHydro has a smaller error in all moments and at

virtually all times. The one exception is M01
for which one

observes a slight smaller error with the old ansatze in a small
time window. Returning to the general case, we see that, since
the new scheme merges onto the old scheme at late times, they
have similar relative errors, however at early time we see a
dramatic reduction in the relative error using the new aHydro
ansatz.

In Fig. 4, the new aHydro (red short-dashed), and the
old aHydro (blue long-dashed) attractors are compared
to the attractor obtained via exact solution of the RTA
Boltzmann equation (black solid line). In all cases shown, the
new aHydro ansatz agrees best with the exact solution for the
0 + 1d conformal RTA attractor. Additionally, for all values

of w, we note that both aHydro attractors possess positive
values for all moments. In the case of the new aHydro ansatz,
firstly one sees that for m = 0 and m = 1 (first and second
left column, respectively of Fig. 4) this scheme has the best
agreement at all times. As a result, the new aHydro accurately
describes the evolution of the modes with m = 0, and 1,
which are sensitive to the free-streaming part of the evolution.
For m > 1 one sees that, as m and n are increased, the new
aHydro results differ more from the exact solutions in the
region w ∼ [10−5, 1]. The worst agreement is for the m = 3
moments (rightmost column of Fig. 4). One finds that the
new aHydro ansatz fails to accurately describe the evolution
of the scaled moments with m = 3 which are dominated by
isotropizing contribution at late times. As a consequence,
the new aHydro does not provide reliable approximations
for these moments and the problem becomes more severe
as one increases for m > 1. Turning to the old aHydro
ansatz, for m = 1, one sees that, although the old aHy-
dro ansatz does a reasonable job in describing the m = 1
moments, as n and m are increased or decreased, the re-
sults become significantly worse. Note that, even given the
caveats mentioned above, comparing the old and new aHydro
ansatze, we see that the new approach dramatically improves
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agreement with the exact RTA attractor and, in particular,
can be used to fix the problem encountered with moments
with m = 0.

IV. CONCLUSIONS

In this study, our goal was to find an improved set of
anisotropic hydrodynamic evolution equations that can more
faithfully describe the non-equilibrium dynamics of the quark-
gluon plasma created in relativistic heavy ion collisions at
RHIC and LHC. We introduced a new version of anisotropic
hydrodynamics that includes separate free-streaming and
equilibrating contributions which allows for a better descrip-
tion of exact solutions to the Boltzmann equation available in
the literature. We computed explicit expressions for the first
and second moments of the one-particle distribution function
in the new aHydro approach and used these to obtain the new
0 + 1d conformal equations of motion given by Eqs. (24) and
(37). We presented comparisons of the numerical solution of
the conformal 0 + 1d equations of motion for both the old
and new aHydro schemes with the exact RTA solution. Our

results demonstrated that the new aHydro form allows one
to have a bimodal distribution function similar to what is
seen in the exact RTA solution for the one-particle distribu-
tion function. We then computed the evolution of the scaled
moments as a function the scaled time, w, and demonstrated
that the new aHydro ansatz provides a better approximation
to the exact solution than the original aHydro ansatz. Finally,
we determined the non-equilibrium attractor associated with
the new aHydro scheme and demonstrated that it provides
much better agreement with the exact RTA attractor than
the original aHydro scheme, in particular for moments with
m = 0. In the future, it would be interesting to apply the
ansatz obtained here to full 3 + 1d anisotropic hydrodynam-
ics, including temperature-dependent masses for the particles
similar to ‘canonical’ quasiparticle aHydro [84,95].
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