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Rapidity decorrelation of anisotropic flow caused by hydrodynamic fluctuations

Azumi Sakai ,1,* Koichi Murase ,2,1,† and Tetsufumi Hirano 1,‡

1Department of Physics, Sophia University, Tokyo 102-8554, Japan
2Center for High Energy Physics, Peking University, Beijing 100871, China

(Received 31 March 2020; revised 10 June 2020; accepted 22 September 2020; published 2 December 2020)

We investigate the effect of hydrodynamic fluctuations on the rapidity decorrelations of anisotropic flow
in high-energy nuclear collisions using a (3 + 1)-dimensional integrated dynamical model. The integrated
dynamical model consists of twisted initial conditions, fluctuating hydrodynamics, and hadronic cascades on
an event-by-event basis. We consider several choices of the cutoff which is the free parameter of fluctuating hy-
drodynamics within the current modeling. To understand the rapidity decorrelation, we analyze the factorization
ratio in the longitudinal direction. Comparing the factorization ratios between fluctuating hydrodynamics and
ordinary viscous hydrodynamics, we find a sizable effect of hydrodynamic fluctuations on rapidity decorrela-
tions. We qualitatively describe the experimental data of the factorization ratios. We also propose to calculate
the Legendre coefficients of the flow magnitude and the event-plane angle to understand the decorrelation of
anisotropic flow in the longitudinal direction.
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I. INTRODUCTION

High-energy nuclear collision experiments have been per-
formed at the Relativistic Heavy Ion Collider (RHIC) at
Brookhaven National Laboratory and at the Large Hadron
Collider (LHC) at CERN to understand bulk and transport
properties of the deconfined nuclear matter, the quark gluon
plasma (QGP) [1]. A vast body of the experimental data
has been taken at RHIC and LHC. Among them, the large
magnitude of the second-order azimuthal anisotropy of the
emitted hadrons, also known as the elliptic flow parameter
[2], is one of the major discoveries at RHIC [3–8]. These data
were consistent with predictions and/or postdiction from ideal
hydrodynamic models [9–14], which leads to the discovery
of the almost perfect fluidity of the QGP fluids [15–19]. The
large elliptic flow parameters were also confirmed even at
higher collision energies at LHC [20–23]. The higher-order
anisotropic flow parameters have also been measured at RHIC
[24,25] and LHC [21,26,27].

These anisotropic flow parameters are useful measures to
determine the properties of the created QGP fluids. They are
sensitive not only to the collision geometry [2] and the event-
by-event fluctuations [28] of the initial transverse profiles but
also to viscosities of the QGP fluids. So far, relativistic hydro-
dynamic models with viscosities have made a huge success
in understanding these anisotropic flow parameters [29–36].
Active studies are going on to extract the transport properties
of the QGP such as the shear and bulk viscosity coefficients.
Recently Bayesian analysis technique has been employed to
constrain the various model parameters such as transport co-
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efficients and initial state parameters within current viscous
fluid dynamical models [37,38]. In this direction, more sys-
tematic studies would be needed for rigorous determination
of these physical parameters by sophisticating the dynamical
models to include important physics such as longitudinal dy-
namics and thermal fluctuations.

The thermal fluctuations of the systems described by hy-
drodynamics are called hydrodynamic fluctuations. In the
framework of hydrodynamics, microscopic degrees of free-
dom are integrated out by coarse-graining, and only a few
macroscopic variables, such as flow velocities and thermody-
namic fields, remain as slow dynamical variables. However,
the macroscopic dynamics cannot be completely separated
from the microscopic one when the scale of interest is close to
the microscopic scale. The microscopic dynamics induces the
fluctuations of the macroscopic variables around its coarse-
grained values on an event-by-event basis, which is nothing
but the thermal fluctuations. Because of the insufficient scale
separation of the relevant macroscopic hydrodynamics of the
created matter and the microscopic dynamics in the collision
processes, hydrodynamic fluctuations would be of signifi-
cant importance in the dynamical models of the high-energy
nuclear collisions. So far, almost all the hydrodynamic mod-
els applied to the analysis of experimental data are based
on conventional viscous hydrodynamics without hydrody-
namic fluctuations. Towards a thermodynamically consistent
description of the event-by-event dynamics of thermodynamic
fields, it is important to develop dynamical models for the
high-energy nuclear collisions based on relativistic fluctuating
hydrodynamics [39–48], which is the viscous hydrodynamics
with hydrodynamic fluctuations. The fluctuation-dissipation
relation (FDR) tells us the magnitude of the thermal fluctu-
ations is determined by the corresponding dissipation rates.
Therefore the system maintains its proper thermodynamic
distributions near the equilibrium by the balance of effects
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of the dissipations and fluctuations. Since fluctuations cause
the deviation of thermodynamic variables while the dissipa-
tion pulls it back to its mean value on an event-by-event
basis, fluctuations as a whole broaden the distributions of
the thermodynamic variables while the dissipation narrows
the distribution. In the conventional viscous fluid dynamics,
dissipative currents such as the shear stress tensor and the bulk
pressure are driven by thermodynamic forces. In addition,
they fluctuate around these systematic forces in fluctuating
hydrodynamics, and the power of these fluctuating forces is
given by the FDR.

In this paper, we focus on how the hydrodynamic fluc-
tuations affect the longitudinal dynamics of the QGP fluids
produced in high-energy nuclear collisions. The initial profile
of the QGP fluids possesses a strong correlation in the direc-
tion of the collision axis (the longitudinal direction), which
comes from the color flux tubes or hadron strings stretched
in the longitudinal direction between the two collided nu-
clei. This longitudinal correlation in the initial stage can be
observed in approximately boost-invariant transverse profiles
and participant-plane angles aligned for different rapidities
in each event. Since the QGP fluids respond to anisotropy
of the initial transverse profiles in expansion, the resultant
event-plane angle of the azimuthal momentum distribution
in the final stage is expected to be almost independent of
(pseudo)rapidity. However, when the hydrodynamic fluctu-
ations are taken into account, this naive picture should be
modified. Since the hydrodynamic fluctuations arise at each
space-time point independently without any longitudinal cor-
relations, they disturb the spatial longitudinal structure of the
initial stage. This enhances the fluctuation of the event-plane
angles of final azimuthal anisotropies at different rapidities.
Thus the hydrodynamic fluctuations are expected to decrease
the longitudinal correlation.

To investigate this rapidity decorrelation phenomenon
caused by the hydrodynamic fluctuations, we consider the ob-
servable called factorization ratios which quantify the decor-
relation. The factorization ratio was initially proposed as a
function of transverse momentum [49] and was later extended
in the longitudinal direction as a function of pseudorapidity
[50] for the purpose of analyzing the longitudinal dynamics.
Since then, the factorization ratios in the longitudinal direction
are widely measured in experiments [50–54]. The origin of
the rapidity decorrelation is understood from decorrelation of
event-plane angle and/or magnitude of flow. To separate the
effects of these two decorrelations, the factorization ratios are
defined in different ways [51,55]. These factorization ratios
are studied in various models with the effects of initial twists
[55,56], longitudinal fluctuations [57–63], glasma [64], and
dynamical initial states [65]. The factorization ratios can be
reasonably described by the effects of initial twists [55]. Also,
the factorization ratios are affected by the length of the initial
string structures [57] which depends on the collision energy.
The effects of eccentricity decorrelation in various collision
systems are investigated recently [66]. Although these mod-
els exhibit the factorization breakdown, they have not yet
quantitatively described all the measurements, including all
the centrality, different harmonic orders, and the collision
energy dependence, in a single model. So far, the effects of

the hydrodynamic fluctuations on the factorization ratio have
not been studied systematically. In this paper, we investigate
the effects of this mechanism of the rapidity decorrelation by
the hydrodynamic fluctuations. We also propose to calculate
the Legendre coefficients of the flow magnitude and the event-
plane angle of anisotropic flow parameters as functions of
pseudorapidity to characterize the event-by-event longitudinal
structure of the QGP fluid evolution.

This paper is organized as follows. We first review in
Sec. II the integrated dynamical model highlighting the frame-
work of relativistic fluctuating hydrodynamics. In Sec. III,
after describing the details of the model parameter tuning,
we show results of factorization ratios in the longitudinal
direction. We also propose and calculate the Legendre co-
efficients of anisotropic flow parameters. Finally Sec. IV is
devoted to the summary of the present study. We use the
natural units, h̄ = c = kB = 1, and the Minkowski metric,
gμν = diag(1,−1,−1,−1), throughout this paper.

II. MODEL

In this paper, we employ the integrated dynamical model
discussed in Ref. [67] to describe space-time evolution of
high-energy nuclear collisions. The integrated dynamical
model in the present study is composed of three models
corresponding to three stages of collision reactions: a
Monte Carlo version of the Glauber model extended in the
longitudinal direction [68] for the entropy production in
the initial stage which is implemented in the code MCKLN,
relativistic fluctuating hydrodynamic model RFH [43] for
space-time evolution of matter close to equilibrium which
is dissipative hydrodynamics with causal hydrodynamic
fluctuations, and a hadron cascade model JAM [69] for a
microscopic transport of hadron gases.

A. Causal fluctuating hydrodynamics

To describe the space-time evolution of fluids in the inter-
mediate stage of collisions, we use the relativistic fluctuating
hydrodynamics model RFH [43] which solves the second-order
causal fluctuating hydrodynamic equations in which the hy-
drodynamic fluctuations are treated as stochastic terms. We
consider three types of hydrodynamics to quantify the effects
of the hydrodynamic fluctuations and dissipations. In fluctuat-
ing hydrodynamic models, we include both the shear viscosity
and the corresponding hydrodynamic fluctuations with several
choices of the cutoff parameter. For comparison, we also run
the viscous hydrodynamic model in which the fluctuations are
turned off, and also the ideal hydrodynamic model in which
both the fluctuations and the dissipations are turned off.

The main dynamical equations of the second-order fluc-
tuating hydrodynamics are the same with the usual hydrody-
namics, the conservation law of energy and momentum:

∂μT μν = 0, (1)

where T μν is the energy-momentum tensor of fluids, which is
written in terms of thermodynamic variables as

T μν = (e + P)uμuν − Pgμν + πμν. (2)
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Here, e is the energy density, P is the pressure, and πμν is the
shear stress tensor. It should be noted here that the stochastic
terms are included in the shear stress πμν in this formalism
for the second-order theory. We employ the Landau frame to
define the fluid velocity uμ as T μ

ν uν = euμ so that no energy
current appears in Eq. (2). We do not consider the bulk pres-
sure in the present study. We also neglect the conservation law
of the baryon number since we focus on high-energy nuclear
collisions at the LHC energies at which the baryon number
is expected to be small around midrapidity. For an equation
of state, we employ s95p-v1.1 [70], which is a smooth inter-
polation of the equation of state from (2 + 1)-flavor lattice
QCD simulations and that from the hadron resonance gas
corresponding to the hadronic cascade model described in
Sec. II C.

In the second-order fluctuating hydrodynamics, the fluctu-
ation terms can be introduced in the constitutive equations for
the shear-stress tensor [43,44]:

τπ�μν
αβuλ∂λπ

αβ + (
1 + 4

3τπ∂λuλ
)
πμν

= 2η�μν
αβ∂αuβ + ξμν, (3)

where η is the shear viscosity, τπ is the relaxation time, and the
tensor �

μν

αβ = 1
2 (�μ

α�ν
β + �

μ

β�ν
α ) − 1

3�μν�αβ is a projector
for second-rank tensors onto the symmetric and traceless com-
ponents transverse to the flow velocity. The noise term ξμν ,
which represents the hydrodynamic fluctuations, is given as
random fields of the Gaussian distribution in which autocor-
relation is determined by the fluctuation-dissipation relation,1

〈ξμν (x)ξαβ (x′)〉 = 4η(x)T (x)�μναβδ(4)(x − x′). (4)

Here, the angle brackets mean ensemble average and T is the
temperature. Note that the ensemble average of the noise term
vanishes by definition,

〈ξμν (x)〉 = 0. (5)

In the hydrodynamic simulations, we employ the Milne
coordinates (τ, ηs, x, y) ≡ (τ, ηs, x⊥), where τ = √

t2 − z2 is
the proper time and ηs = tanh−1(z/t ) is the space-time rapid-
ity. Here, z is a coordinate along the collision axis and we
assume the Lorentz-contracted two nuclei collide with each
other at z = 0 fm and t = 0 fm. The origin in the transverse
plane is taken to be the center of mass of the participant
nucleons with x axis parallel to the impact parameter vector.

In the Milne coordinates, the fluctuation–dissipation rela-
tion (4) is rewritten as

〈ξμν (τ, ηs, x⊥)ξαβ (τ ′, η′
s, x′

⊥)〉

= 4ηT �μναβ 1

τ
δ(τ − τ ′)δ(ηs − η′

s)δ(2)(x⊥ − x′
⊥), (6)

where the factor 1/τ comes from the Jacobian of variable
transformation from the Cartesian to the Milne coordinates.
Here, the Lorentz indices, such as μ and α, run over τ , ηs, x,

1The second-order modification terms of the fluctuation-dissipation
relation in arbitrary backgrounds derived in Ref. [44] are not included
in the present study.

and y. In the actual calculations, to avoid the ultraviolet singu-
larity, we generate a smeared fluctuation term by considering
the convolution with the Gaussian kernel:

G(ηs, x⊥; λη, λ⊥) = 1√
2πλ2

η

1

2πλ2
⊥

exp

(
− η2

s

2λ2
η

− x2
⊥

2λ2
⊥

)
,

(7)

where λη and λ⊥ are the cutoff parameters in the longitudinal
and transverse directions, respectively. The detailed procedure
of smeared noise generation is described in Ref. [43]. It should
be noted here that these cutoff parameters effectively change
the magnitude of the fluctuations: the smaller the cutoff length
is taken to be, the larger the magnitude of fluctuations be-
comes. The proper cutoff can be physically determined as
the lower bound of the coarse-graining scale in which the
dynamics can be effectively described by the considered set
of macroscopic variables, which is nontrivial to derive mi-
croscopically. Therefore, in the current modeling, the cutoff
is rather treated as a free parameter that can be determined
by fitting some experimental data. In the present study, we
consider several values for the cutoff as will be described in
Sec. III A.

Note also that the smearing in the temporal direction is not
introduced. The reason is that the singularity in the temporal
direction is already physically regulated to the scale of the
relaxation time τπ due to the structure of the second-order
constitutive equation which has the form of the relaxation
equation. One may still consider the additional regulation by
temporal smearing, but the effect is expected to be limited
when the time step of the calculation is smaller than the
relaxation time.

B. Initial condition

For the initial conditions of the causal fluctuating hydro-
dynamics, we parametrize the entropy density distributions,
s(τ0, ηs, x⊥), at the hydrodynamic initial proper time τ0. For
the parametrization of the entropy distribution, we employ the
Monte Carlo version of the Glauber model in the transverse
plane [67,71] and combine it with the modified Brodsky-
Gunion-Kuhn (BGK) model in the longitudinal direction
[68,72]. Using the Monte Carlo Glauber model, we calculate
the transverse profiles of the participant number densities of
nuclei A and B, ρA

part (x⊥) and ρB
part (x⊥), respectively, and

the number density of the binary collisions, ρcoll(x⊥), for a
randomly sampled impact parameter b. In the modified BGK
model, the idea of “rapidity triangle” or “rapidity trapezoid”
[68,72,73] is demonstrated by parametrizing the space-time
rapidity dependent entropy density distribution as

s(τ0, ηs, x⊥) = C

τ0
θ (Yb − |ηs|) f pp(ηs)

[
αρcoll(x⊥)

+ 1−α

2

(
Yb−ηs

Yb
ρA

part (x⊥)+Yb+ηs

Yb
ρB

part (x⊥)

)]
,

(8)

where parameters Yb, C, and α are the beam rapidity, the
normalization factor, and the hard fraction, respectively. The
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function θ (x) is the Heaviside step function to cut off the
profile beyond the beam rapidity. The function f pp(ηs) models
a longitudinal profile of proton–proton collisions, for which
we use the following form:

f pp(ηs) = exp

[
−θ (|ηs| − �η)

(|ηs| − �η)2

σ 2
η

]
, (9)

where �η and ση are model parameters. The function
f pp(ηs) = 1 when |ηs| < �η, and decreases with the Gaus-
sian when |ηs| � �η. The parameter ση controls the Gaussian
width. It would be instructive to see the initial entropy at
midrapidity ηs = 0 in the coordinate space scales with a lin-
ear combination of the number of participants Npart and the
number of binary collisions Ncoll as

dS

dηs
(τ0, ηs = 0) =

∫
d2x⊥τ0s(τ0, ηs = 0, x⊥)

= C

[
αNcoll + (1 − α)

Npart

2

]
. (10)

We determine the model parameters C, α, �η, and ση compar-
ing the results with experimental data of the centrality and the
pseudorapidity dependences of charged-hadron multiplicity
(see Sec. III A).

In the modified BGK model, the initial entropy den-
sity is asymmetric with respect to space-time rapidity when
the number densities of participants at the same transverse
position x⊥ are different between nuclei A and B, i.e.,
ρA

part (x⊥) �= ρB
part (x⊥). This asymmetry brings a twist struc-

ture to the entropy density distribution in the reaction plane
(x-ηs plane) [73]. This twist structure results in a rapidity-
dependent eccentricity [13] and participant-plane angle. The
rapidity dependence of eccentricity and participant-plane an-
gle is important in understanding the rapidity decorrelation of
anisotropic flow as we will discuss in Sec. III B.

For the initial flow velocity, we put the Bjorken scaling
solution [74], uμ(τ0) = (cosh ηs, 0, 0, sinh ηs) in the Carte-
sian coordinates. This means there are no fluctuations in flow
velocity at τ = τ0. It should be also noted that there are no
longitudinal fluctuations of the initial profiles in this model
since Eq. (9) is a smooth function of space-time rapidity ηs.
We set the initial shear stress tensor to πμν (τ0) = 0 in the
present study.

The factorization ratio of the initial state rε
n (ηa

s , η
b
s ) [61] is

defined as

rε
n

(
ηa

s , η
b
s

) =
〈
εn

( − ηa
s

)
ε∗

n

(
ηb

s

))〉
〈
εn

(
ηa

s

)
ε∗

n

(
ηb

s

))〉 , (11)

εn(ηs) =
∫

d2x⊥s(τ0, ηs, x⊥)einφrn∫
d2x⊥s(τ0, ηs, x⊥)rn

. (12)

Here, εn(ηs) is the nth order of eccentricities at space-time
rapidity ηs. The angle bracket 〈· · · 〉 represents the average
over the events at a given centrality. Note that we define the
centrality from the final-state multiplicity in Sec. III.

Figure 1 shows the factorization ratios of the initial ec-
centricities, rε

2 (ηa
s , η

b
s ) and rε

3 (ηa
s , η

b
s ), in Pb + Pb collisions at√

sNN = 2.76 TeV. Both rε
2 (ηa

s , η
b
s ) and rε

3 (ηa
s , η

b
s ) are close

FIG. 1. Factorization ratio of the initial eccentricities,
(a) rε

2 (ηa
s , η

b
s ) and (b) rε

3 (ηa
s , η

b
s ) in Pb + Pb collisions at√

sNN = 2.76 TeV. The parameters of initial conditions are
C/τ0 = 41 fm−1, α = 0.16, �η = 3.2, and ση = 1.9. The
space-time rapidity for reference is ηb

s = 4.5. The results are
shown for centrality 0–5% (filled square), 5–10% (filled circle),
10–20% (open square), 20–30% (filled triangle), 30–40% (open
circle), and 50–60% (open diamond).

to unity at small ηa
s and decreases with increasing ηa

s in all
the centralities. The factorization ratio rε

2 (ηa
s , η

b
s ) decreases

more in the central collisions (i.e., 0–5%) than in semicentral
collisions (i.e., 10–50%). This is because the initial transverse
profile becomes more elliptical in semi-central collisions and
generates strong correlations. On the other hand, the factor-
ization ratio rε

3 (ηa
s , η

b
s ) decreases less in 0–5% and 30–50%

centralities and more in 10–30% centralities. Note that the
factorization ratios rε

2 (ηa
s , η

b
s ) and rε

3 (ηa
s , η

b
s ) are larger than in

a multiphase transport (AMPT) initial conditions [61] for all
centralities. This implies the modified BGK model provides a
relatively weak twist structure.

064903-4



RAPIDITY DECORRELATION OF ANISOTROPIC FLOW … PHYSICAL REVIEW C 102, 064903 (2020)

C. Particlization and hadron cascade

After macroscopic hydrodynamic simulations, we switch
the description to the microscopic kinetic theory for hadrons at
a switching temperature, Tsw. For the space-time evolution of
hadron gases, we employ a microscopic transport model, JAM

[69]. This model deals with hadronic rescattering and decay
in the late stage of collisions.

For the initialization of hadrons in JAM, we sample hadrons
from fluid elements in the hypersurface determined by T (x) =
Tsw. We specify the four-momentum, pμ = (E , p), and posi-
tion, xμ = (t, x), using the Cooper-Frye formula [75] with a
viscous correction [76,77],

�Ni = gi

∫
d3 p

(2π )3E
p · �σ fi(p, x)θ ( fi(p, x)), (13)

fi(p, x) = f0,i(p, x) + δ fi(p, x), (14)

f0,i(p, x) = 1

exp(p · u/Tsw) − ε
, (15)

δ fi(p, x) = f0,i(p, x)[1 + ε f0,i(p, x)]
πμν pμ pν

2(e + P)T 2
. (16)

Here, gi is the degeneracy for hadron species i, �σμ is the
switching hypersurface element, and ε is a factor for fermions
(−1) or bosons (+1). In this “particlization” prescription, we
calculate all hadrons in the list of hadronic cascade code,
JAM. Since one cannot treat the negative number of the phase
space distribution in the hadron transport model, we consider
the out-going hadrons only and omit the incoming hadrons,
which bring the negative number in the Cooper-Frye formula
(13). Simulations of the hadron transport model are performed
until scattering between hadrons and decay of resonances no
longer happen. We switch off the weak and electromagnetic
decays, hence the final hadron distributions are compared
directly with experimental data in which those contributions
are corrected.

III. ANALYSIS AND RESULTS

Using the integrated dynamical model explained in the pre-
vious section, we perform simulations of Pb + Pb collisions
at

√
sNN = 2.76 TeV. For each set of the model parame-

ters, we generate 4000 hydrodynamic events and perform
100 independent particlization and hadronic cascades for each
hydrodynamic event. Thus we obtain 400 000 (=4000 × 100)
events in total corresponding to minimum bias events in
experiments. It should be noted that this oversampling pre-
scription reduces computational costs largely. Analyzing the
phase space distributions of final hadrons, we compare our
results with experimental data. As for the centrality cut, we
do almost the same way as done in the experimental analysis:
We categorize all the events into each centrality bin using the
charged-hadron multiplicity distribution in 2.9 < |ηp| < 5.2
[22,50]. For each event, we define the centrality percentile to
the total number of events. For example, we regard the top
40000 high-multiplicity events as the event class at 0–10%
centrality.

In this section, after describing the setup of the model
parameters, we analyze factorization ratios, rn(ηa

p, η
b
p), of

FIG. 2. Charged-hadron multiplicity normalized by the num-
ber of the participant pair, (dNch/dηp)/(Npart/2), as a function of
the number of participants. The results from ideal hydrodynam-
ics (open square), viscous hydrodynamics (open circle), fluctuating
hydrodynamics–λ1.0 (filled square), fluctuating hydrodynamics–
λ1.5 (filled circle), and fluctuating hydrodynamics–λ2.0 (filled
triangle) are compared with experimental data (open diamond) ob-
tained by the ALICE Collaboration [81].

charged hadrons and the Legendre coefficients of both the
flow magnitude and the event-plane angle as functions of
pseudorapidity.

A. Model parameters

In this paper, we set η/s = 1/4π for shear viscosity [78]
and τπ = 3/4πT for relaxation time [79,80]. As we will see
in Fig. 4, the shear viscosity is mostly constrained from ex-
perimental data of pT -differential elliptic flow parameters in
noncentral collisions. We choose the initial proper time τ0 =
0.6 fm and the switching temperature Tsw = 155 MeV as in
the previous calculations [67]. We tune initial parameters �η,
ση, C, and α to reproduce the centrality and the pseudorapidity
dependences of charged-hadron multiplicity as we will show
in Figs. 2 and 3. The values of ση and �η are tuned as 3.2 and
1.9, respectively, irrespective of hydrodynamic models. The
values of C and α are tuned for each hydrodynamic model as
summarized in Table I. We run simulations using the ideal hy-
drodynamic model, the viscous hydrodynamic model, and the
fluctuating hydrodynamic models with four different sets of
cutoff parameters. We assume the values of cutoff parameters
λ⊥ in the unit of fm and λη are the same for simplicity in the
present study.

Since the parameters C and α which determine the initial
entropy production are tuned to reproduce the final charged-
hadron multiplicity, their tuned values are sensitive to the
characteristics of the entropy production during the hydrody-
namic evolution, specifically, to the presence and magnitudes
of the dissipations and fluctuations. Consequently the overall
factor C/τ0 has a maximum value in the ideal hydrodynamic
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FIG. 3. Pseudorapidity distributions of charged hadrons in Pb + Pb collisions at
√

sNN = 2.76 TeV. Centralities are (a) 0–5%, (b) 5–10%,
(c) 10–20%, (d) 20–30%, (e) 30–40%, (f) 40–50%, (g) 50–60%, and (h) 60–70%. The symbols are the same as in Fig. 2. The experimental
data are taken from Refs. [82,83].
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TABLE I. Parameters of transport coefficients and initial condi-
tions in hydrodynamic models.

Model η/s λ⊥ (fm) λη C/τ0 (fm−1) α

Ideal hydro 0 N/A N/A 62 0.08
Viscous hydro 1/4π N/A N/A 49 0.13
Fluc. hydro–λ2.5 1/4π 2.5 2.5 47 0.14
Fluc. hydro–λ2.0 1/4π 2.0 2.0 42 0.16
Fluc. hydro–λ1.5 1/4π 1.5 1.5 41 0.16
Fluc. hydro–λ1.0 1/4π 1.0 1.0 31 0.20

model and decreases with increasing magnitude of viscosities
and/or fluctuations.

Figure 2 shows the centrality dependence of charged-
hadron multiplicity dNch/dηp per participant pair Npart/2
at midrapidity |ηp| < 0.5 in Pb + Pb collisions at

√
sNN =

2.76 TeV. The parameter C/τ0 and α control the overall
magnitude and the slope of multiplicity per participant pair,
respectively. Within the current framework with two ad-
justable parameters, C and α, we cannot perfectly reproduce
experimental data of multiplicity per participant pair at the
same time in all the ranges of the centrality from central to pe-
ripheral collisions. We tune these two parameters to reproduce
multiplicity at Npart � 150. When we compare our results with
experimental ratios of the factorization ratios in Sec. III B,
we use the events at 0–30% centrality in which the average
number of participants is above Npart ≈ 150. In fact, the av-
erage number of participants is slightly larger than the one of
the experimental data at Npart � 200 and the multiplicity per
participant pair is slightly out of error-bars of the experimental
data at a given centrality below Npart ≈ 150. This requires a
more sophisticated initialization method in the hydrodynamic
models, which is beyond the scope of the present paper.

Figures 3(a)–3(h) show the pseudorapidity dependence of
charged-hadron multiplicity in Pb + Pb collisions at

√
sNN =

2.76 TeV for each centrality. Experimental data obtained
by the ALICE Collaboration [82,83] are reproduced by all
hydrodynamic models in a wide rapidity region in 0–30%
centrality. The parameters ση and �η control the shape of the
distributions. We choose a single set of these parameters in
each hydrodynamic model so as to reproduce experimental
data in central collisions, which correspond to Npart � 150 in
Fig. 2. Since we do not reproduce the centrality dependence of
charged-hadron multiplicity at midrapidity below Npart ≈ 150
as shown in Fig. 2, pseudorapidity distributions are systemat-
ically larger than the experimental data in 30–70% regardless
of the hydrodynamic models.

Figure 4 shows the transverse momentum (pT ) depen-
dence of elliptic flow parameters v2{2} of charged hadrons
in (a) 0–5%, (b) 30–40%, and (c) 40–50% centralities
in Pb + Pb collisions at

√
sNN = 2.76 TeV. In centralities

(b) 30–40% and (c) 40–50%, the elliptic flow parameters
v2{2}(pT ) from the ideal hydrodynamic model is system-
atically larger than experimental data. Whereas, the shear
viscosity suppresses v2{2}(pT ) in the viscous and the fluctu-
ating hydrodynamic models. We reproduce the experimental
data below pT = 1.5 GeV in the viscous and the fluctuating

FIG. 4. v2{2}(pT ) in Pb + Pb collisions at
√

sNN = 2.76 TeV for
centrality 0–5%, 30–40%, and 40–50%. The symbols are the same
as in Fig. 2 The experimental data are taken from Refs. [20,21].
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hydrodynamic models with η/s = 1/4π . The elliptic flow
parameters v2{2}(pT ) from the viscous and the fluctuating
hydrodynamic models are almost the same with each other.
This indicates that the hydrodynamic fluctuations do not affect
v2{2}(pT ) apparently in these centralities. Although hydro-
dynamic fluctuations are supposed to enhance fluctuations of
elliptic flow parameters in general, its effect is not significant
in these centralities. On the other hand, the elliptic flow pa-
rameters v2{2}(pT ) from the fluctuating hydrodynamic model
are slightly larger than that from the viscous hydrodynamic
model in (a) 0–5% centrality. The elliptic flow parameters
from the ideal hydrodynamic model are also systematically
larger than that from the viscous hydrodynamic model. As a
result, v2{2}(pT ) from the ideal hydrodynamics and fluctuat-
ing hydrodynamics become close to each other. The elliptic
flow parameters v2{2}(pT ) from all the hydrodynamic models
are larger than experimental data above pT = 0.5 GeV. This
centrality dependence mainly comes from the initial condition
model. We need to develop a more sophisticated initialization
model to reproduce the centrality dependence of the experi-
mental data, which is beyond the scope of the current study.

B. Factorization ratio

The hydrodynamic fluctuations disturb fluid evolution ran-
domly in space and time according to Eq. (3). Therefore the
correlations embedded in the initial longitudinal profiles such
as alignment of participant-plane angles along space-time ra-
pidity tend to be broken due to hydrodynamic fluctuations.
To analyze such effects of the hydrodynamic fluctuations in
the final state observables, we calculate the factorization ratios
[49].

The factorization ratio in the longitudinal direction
rn(ηa

p, η
b
p) is defined as

rn
(
ηa

p, η
b
p

) = Vn�

( − ηa
p, η

b
p

)
Vn�

(
ηa

p, η
b
p

) , (17)

Vn�

(
ηa

p, η
b
p

) =
∫

cos(n�φ) d2N
dφadηa

pdφbdηb
p
dφadφb

∫
d2N

dφadηa
pdφbdηb

p
dφadφb

. (18)

Here, Vn�(ηa
p, η

b
p) is the Fourier coefficient of two-particle az-

imuthal correlation functions at the nth order. �φ = φa − φb

represents the difference of azimuthal angles between two
charged hadrons. These two hadrons are taken from the two
separated pseudorapidity, ηa

p and ηb
p.

In the event-by-event calculations, the actual expression of
Vn�(ηa

p, η
b
p) is given by

Vn�

(
ηa

p, η
b
p

) = 〈〈cos(n�φ)〉〉 = �〈
Qa∗

n Qb
n

〉
〈MaMb〉 , (19)

where Ma/b and Qa/b
n = ∑

i einφi are the multiplicity and the
flow vector in the pseudorapidity bins at ηa/b

p in a single event.
The single angle brackets 〈· · · 〉 represent the average over the
events at a given centrality, while the double angle brackets
〈〈· · · 〉〉 represent the average over the particle pairs in each
event in addition to the event average.

The factorization ratio (17) can be interpreted as the corre-
lation between the flows in two pseudorapidity regions, ηa

p and
−ηa

p. Here the correlation of the event-plane angles (i.e., �a
n

and �−a
n ) and that of the flow magnitudes (i.e., va

n and v−a
n )

can be considered separately. The two-particle correlations
Vn� (19) can be naively understood as

Vn�

(
ηa

p, η
b
p

)
= 〈〈cos[n(φa − φb)]〉〉
= 〈〈

cos{n[(
φa − �a

n

) − (
φb − �b

n

) + (
�a

n − �b
n

)]}〉〉
≈ 〈

va
nv

b
n cos

[
n
(
�a

n − �b
n

)]〉
(20)

by using the event-by-event flow magnitude va/b
n = vn(ηa/b

p )
and the event-plane angle �a/b

n = �n(ηa/b
p ).

If we assume that the event-plane angles are completely
aligned along rapidity, i.e., �a

n = �b
n , and also that the product

of flow magnitudes at two different pseudorapidity regions
factorized in the event averages, the two-particle correlations
Vn� would be simplified:

Vn�

(
ηa

p, η
b
p

) ≈ 〈
va

nv
b
n

〉 ≈ 〈
va

n

〉〈
vb

n

〉
. (21)

In this ideal case, the factorization ratio becomes unity:

rn
(
ηa

p, η
b
p

) ≈
〈
v−a

n

〉〈
vb

n

〉
〈
va

n

〉〈
vb

n

〉 = 1, (22)

since the flow magnitude is symmetric with respect to
the pseudorapidity after averaging over all the events, i.e.,
〈va

n〉 = 〈v−a
n 〉, in symmetric systems like Pb + Pb collisions.

However, the event-plane angle depends on pseudorapidity,
therefore the two-particle correlations Vn� (20) cannot be fac-
torized unlike in Eq. (21). Nevertheless, one still assumes the
factorization among the flow magnitudes and the event-plane
angles. In this case the two-particle correlation is written as

Vn�

(
ηa

p, η
b
p

) ≈ 〈
va

n

〉〈
vb

n

〉〈
cos

[
n
(
�a

n − �b
n

)]〉
. (23)

Thus the factorization ratio has the following form:

rn
(
ηa

p, η
b
p

) ≈
〈
cos

[
n
(
�−a

n − �b
n

)]〉
〈
cos

[
n
(
�a

n − �b
n

)]〉 < 1. (24)

The factorization ratio becomes smaller than unity since
the event-plane angles are expected to be (�b − �−a) �
(�b − �a) on average due to the ordering of the rapidity
gap (ηb

p − η−a
p ) � (ηb

p − ηa
p). Therefore, the factorization ratio

being smaller than unity implies that the event-plane angle
depends on pseudorapidity.

Besides the event-plane angle decorrelation, asymmetry of
the event-by-event flow magnitude also causes the factoriza-
tion breakdown. Even if the event-plane angles are completely
aligned, the two-particle correlations have an additional term
coming from the correlation of the flow magnitude fluctua-
tions:

Vn�

(
ηa

p, η
b
p

) ≈ 〈
va

nv
b
n

〉 = 〈
va

n

〉〈
vb

n

〉 + 〈
�va

n�vb
n

〉
, (25)

where �vn is the event-by-event flow magnitude fluctuations:

vn = 〈vn〉 + �vn. (26)
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In this case, the factorization ratio becomes

rn
(
ηa

p, η
b
p

) ≈
〈
v−a

n

〉〈
vb

n

〉 + 〈
�v−a

n �vb
n

〉
〈
va

n

〉〈
vb

n

〉 + 〈
�va

n�vb
n

〉 . (27)

If the flow magnitude fluctuates asymmetrically in different
pseudorapidity regions, 〈�v−a

n �vb
n〉 � 〈�va

n�vb
n〉 is expected

due to the ordering of the rapidity gap. Thus the denominator
becomes larger than the numerator in Eq. (27). There-
fore the factorization ratio (27) becomes smaller than unity,
rn(ηa

p, η
b
p) < 1, due to the reason similar to the case of the

event-plane angle decorrelation in Eq. (24).
To summarize, the factorization ratio being smaller than

unity indicates that the event-by-event rapidity decorrelation
of the event-plane angle and/or the flow magnitude, i.e., the
event-plane angle �n and/or the flow magnitude vn depend
on pseudorapidity in an event. Further discussions will be
given in Sec. III C by introducing the Legendre coefficients to
discriminate between the event-plane decorrelation and flow
magnitude decorrelation.

In the following, Vn�(ηa
p, η

b
p) is calculated with the rapidity

region 0 < ηa
p < 2.5 and the transverse momentum region

0.3 < pa
T < 3.0 GeV for a particle a, and the reference rapid-

ity region 3.0 < ηb
p < 4.0 for a particle b. These rapidity and

transverse momentum regions follow the experimental setup
of the CMS Collaboration [50].

Figure 5 shows the factorization ratio in the longitudinal di-
rection, r2(ηa

p, η
b
p), in Pb + Pb collisions at

√
sNN = 2.76 TeV

for 0–5% and 20–30% centralities. The experimental data
of r2(ηa

p, η
b
p) from the CMS Collaboration [50] is close to

unity at small ηa
p and decreases with increasing ηa

p. On the
other hand, the factorization ratios r2(ηa

p, η
b
p) from the ideal

and viscous hydrodynamic models modestly decrease with
increasing ηa

p in comparison with the experimental data, which
means that expansion of the fluids tends to keep the long-range
correlation in the rapidity direction. As discussed in Sec. II B,
the initial entropy distributions (8) are smooth functions of
space-time rapidity and their transverse profile fluctuates due
to the random positions of nucleons in colliding nuclei. In
such a case, its participant-plane angles are almost the same
for different space-time rapidities. Therefore, ideal and vis-
cous hydrodynamic evolution directly translates longitudinal
correlations in the initial profiles into correlations of the
event-plane angle along pseudorapidity in final momentum
anisotropy. It should be noted here that the small decorrelation
in ideal and viscous hydrodynamic models is understood from
the weak twist structure in the modified BGK model which is
mentioned in Sec. II B. In comparison with the results from
the ideal and the viscous hydrodynamic models, the factor-
ization ratios from the fluctuating hydrodynamic models are
significantly smaller than unity at a large rapidity separation
and are comparable with the experimental data. This indi-
cates that hydrodynamic fluctuations break the factorization
of the two-particle correlation function and cause rapidity
decorrelation of the magnitude of anisotropic flow and/or
the event-plane angle. Results from the fluctuating hydrody-
namic models depend on the cutoff parameters in Eq. (7).
Larger cutoff parameters correspond to smaller magnitudes of
hydrodynamic fluctuations, and fluctuating hydrodynamics is

FIG. 5. Factorization ratio in the longitudinal direction,
r2(ηa

p, η
b
p), in Pb + Pb collisions at

√
sNN = 2.76 TeV for

(a) 0–5% and (b) 20–30% centralities. The rapidity region
for reference is 3.0 < ηb

p < 4.0. The results from ideal
hydrodynamics (open square), viscous hydrodynamics (open circle),
fluctuating hydrodynamics–λ1.0 (filled square) and fluctuating
hydrodynamics–λ1.5 (filled circle) are compared with experimental
data (open diamond) obtained by the CMS Collaboration [50].

reduced to the viscous hydrodynamics in the large limit of
these parameters. The results shown in Fig. 5 are consistent
with this perspective.

Figure 6 shows the centrality dependence of r2(ηa
p, η

b
p)

in Pb + Pb collisions at
√

sNN = 2.76 TeV. The experimen-
tal data of r2(ηa

p, η
b
p) are smaller in the central collisions

(0–10% centrality) and the peripheral collisions (50–60% cen-
trality) than in the semicentral collisions (10–50% centrality).
This is understood from the correlations embedded in the
initial profiles. In the semicentral collisions, the initial ge-
ometry becomes elliptical to generate strong correlations of
the participant-plane angle in the longitudinal direction. This
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FIG. 6. Centrality dependence of factorization ratio r2(ηa
p, η

b
p) in

Pb + Pb collisions at
√

sNN = 2.76 TeV. The rapidity regions of two-
particle correlation functions are taken as 2.0 < ηa

p < 2.5 and 3.0 <

ηb
p < 4.0. The symbols are the same as in Fig. 5. The experimental

data are taken from Ref. [50].

initial correlation is reflected in the final momentum
anisotropy, and the factorization ratio r2(ηa

p, η
b
p) tends to

be close to unity in semicentral collisions. The factoriza-
tion ratio r2(ηa

p, η
b
p) from the viscous hydrodynamic model

is close to unity and this model fails to reproduce the ex-
perimental data for the whole centrality region. In contrast,
r2(ηa

p, η
b
p) obtained from the fluctuating hydrodynamic mod-

els show qualitatively the same behavior as experimental
data. In the central collisions (0–10% centrality), the fluctu-
ating hydrodynamic model–λ1.0 reproduces the experimental
data reasonably well. Whereas, the fluctuating hydrodynamic
model–λ1.5 better reproduces the experimental data in the
semi-central collisions (centrality classes between 10–50%).
Therefore, the fluctuating hydrodynamic model could repro-
duce the experimental data of the centrality dependence of
r2(ηa

p, η
b
p) by using a different set of the Gaussian width (i.e.,

λ⊥ and λη) for a different centrality.
The second-order anisotropic flow (elliptic flow) is driven

mainly by the initial geometry. In contrast, the third- (or, in
general, odd-) order anisotropic flows are purely caused by
fluctuations. The pattern of fluctuations in the initial trans-
verse profile originating from the configuration of nucleons
in the colliding nuclei is almost the same for different ra-
pidities. The event-plane angles at the third order would also
be correlated along pseudorapidity as in the case for elliptic
flow. To suppress the effect of initial collision geometry on
the factorization ratios and to see the effects of hydrody-
namic fluctuations more directly, we also analyze r3(ηa

p, η
b
p).

The third-order anisotropic flow (triangular flow) at a given
pseudorapidity is generated from fluctuations of initial trans-
verse profile at almost the same space-time rapidity. Figure 7
shows the factorization ratio r3(ηa

p, η
b
p) in Pb + Pb collisions

at
√

sNN = 2.76 TeV for 0–5% and 20–30% centralities. The
experimental data of r3(ηa

p, η
b
p) from the CMS Collabora-

FIG. 7. Factorization ratio r3(ηa
p, η

b
p) in Pb + Pb collisions at√

sNN = 2.76 TeV for (a) 0–5% and (b) 20–30% centralities. The
symbols are the same as in Fig. 5. The experimental data are taken
from Ref. [50].

tion [50] decreases with increasing ηa
p. On the other hand,

r3(ηa
p, η

b
p) from the viscous hydrodynamic model are close

to unity and almost the same as those from the ideal hy-
drodynamic model. This indicates the viscosity itself does
not further affect rapidity decorrelation of the third-order
anisotropic flow. Whereas, hydrodynamic fluctuations reduce
r3(ηa

p, η
b
p) considerably and it drops linearly with ηa

p. Al-
though the experimental data of factorization ratio r2(ηa

p, η
b
p)

are roughly reproduced with λ⊥ = 1.0–1.5 fm in the fluctuat-
ing hydrodynamic model, r3(ηa

p, η
b
p) with the same setups are

systematically smaller than the experimental data. Note that
this is the opposite trend seen by the twist structure of the
initial profiles in Ref. [55] in which r2 decorrelates too much
while r3 reproduces experimental data.

Figure 8 shows the centrality dependence of r3(ηa
p, η

b
p)

in Pb + Pb collisions at
√

sNN = 2.76 TeV. The experimen-
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FIG. 8. Centrality dependence of factorization ratio r3(ηa
p, η

b
p) in

Pb + Pb collisions at
√

sNN = 2.76 TeV. The rapidity regions of two-
particle correlation functions are taken as 2.0 < ηa

p < 2.5 and 3.0 <

ηb
p < 4.0. The meaningful result for 50–60% centrality from viscous

hydrodynamic model was not obtained due the insufficient statistics.
The symbols are the same as in Fig. 5. The experimental data are
taken from Ref. [50].

tal data has almost no dependence on the centrality. Since
Pb + Pb collision system is symmetric in rapidity, the longi-
tudinal decorrelation of triangular flows purely comes from
fluctuations. The factorization ratio r3(ηa

p, η
b
p) from the vis-

cous hydrodynamic model is close to unity and this model
fails to reproduce the experimental data in central collisions.
In contrast, r3(ηa

p, η
b
p) obtained from the fluctuating hydrody-

namic models reproduces the experimental data reasonably
well in the central collisions (0–10% centrality). Whereas,
r3(ηa

p, η
b
p) obtained from the fluctuating hydrodynamic mod-

els are smaller than the experimental data in the peripheral
collisions (10–60% centralities).

C. Legendre coefficients

It is known that the effects of both the flow magnitude
asymmetry and the event-plane twist reduce the factorization
ratios [84]. The original definition of the factorization ratio
by CMS [50] cannot discriminate between the effects of the
flow magnitude asymmetry and the event-plane twist. While,
improved definitions of factorization ratios are proposed by
ATLAS [51] to discriminate between them by assuming the
linear dependence of flow magnitude and event-plane angles.
In addition to these two rapidity-decorrelation mechanisms,
the analysis in the previous subsection reveals that hydrody-
namic fluctuations also reduce the factorization ratios. In this
subsection, we calculate the Legendre coefficients of the flow
magnitude and the event-plane angle to separately estimate
the effects of the flow magnitude asymmetry and the event-
plane twist. The Legendre coefficients were previously used to
quantify the longitudinal multiplicity fluctuations [85,86]. We
show that they can also be used to quantify the event-by-event

longitudinal structure of the anisotropic flow parameter vn(ηp)
and the event-plane angle �n(ηp).

The pseudorapidity dependence of anisotropic flow vn and
its event-plane angle �n for each hydrodynamic event are
expanded by using the Legendre polynomial Pk as

vn(ηp) =
∞∑

k=0

ak
nPk

(
ηp

ηmax
p

)
, (28)

�n(ηp) =
∞∑

k=0

bk
nPk

(
ηp

ηmax
p

)
, (29)

where ak
n and bk

n are the Legendre coefficients which mea-
sure the magnitude of the Legendre mode in the longitudinal
direction for the flow parameters and event-plane angles,
respectively. In particular, the magnitudes of a1

n and b1
n corre-

spond to the anisotropic flow asymmetry and the event-plane
twist [84], respectively.

These Legendre coefficients fluctuate from event to event
due to the event-by-event twisted initial conditions and the
hydrodynamic fluctuations. To obtain the magnitudes of these
coefficients, we define the root mean square of the coefficients
as

Ak
n =

√〈(
ak

n

)2〉
ev, Bk

n =
√〈(

bk
n

)2〉
ev. (30)

Here, 〈· · · 〉ev represents the average over hydrodynamic
events at a given centrality.

We calculate vn(ηp) and �n(ηp) of each hydrodynamic
event combining the final-state hadrons from all the oversam-
pled cascade events. Thus we suppress the non-flow effects
and the finite particle number effects in this analysis. We
consider a rapidity range |ηp| < ηmax

p = 2.5 which we used
in the analysis of the factorization ratios. In the following, we
consider up to k = 2 and the first three Legendre polynomials
are given as

P0(x) = 1, P1(x) = x, P2(x) = 1
2 (3x2 − 1). (31)

Figure 9 shows the first-order Legendre coefficients A1
2 and

B1
2 for elliptic flow (n = 2) as functions of centrality from the

viscous and the fluctuating hydrodynamic models. Both A1
2

and B1
2 from the fluctuating hydrodynamic model are system-

atically larger than the ones from the viscous hydrodynamic
model. This implies that hydrodynamic fluctuations enhance
a linear ηp dependence of both the second-order anisotropic
flow parameter v2 and its event-plane angle �2 from event
to event. The coefficient B1

2 takes a minimum around 20–
50% for both viscous and fluctuating hydrodynamics. This
is because the event-plane angle is stabilized by the strong
elliptical geometry of initial transverse profiles in the semi-
central collisions. Therefore, the event-plane angle receives
relatively smaller influences from the twist of the initial con-
ditions and the hydrodynamic fluctuations. Meanwhile, the
coefficient A1

2 monotonically increases as a function of cen-
trality percentile. This indicates that the development of the
flow asymmetry in the longitudinal direction is independent
of the transverse anisotropy driven by collision geometry. This
increasing behavior of A1

2 can be understood in the following
way: The longitudinal asymmetries are originally introduced
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FIG. 9. Centrality dependence of the first-order Legendre coef-
ficients (a) A1

2 and (b) B1
2 for elliptic flow (n = 2). The results from

the viscous hydrodynamic model (open circle) and the fluctuating
hydrodynamic model (filled circle) are shown for comparison.

locally at each transverse position by the rapidity dependence
of Eq. (8) and hydrodynamic fluctuations and then reflected
in the observed flow by the matter evolution. When the trans-
verse area of the created matter is large, such local asymmetry
fluctuations are averaged out within the transverse plane so
that the effect on the flow asymmetry fluctuations becomes
relatively smaller. While, in the peripheral collisions, the local
asymmetries can be directly reflected in the final flow asym-
metry without the averaging effect. Thus, the magnitude of
fluctuations becomes relatively larger in peripheral collisions.

Although the effects of the linear dependence of vn(ηp)
and �n(ηp) on the rapidity decorrelation have been dis-
cussed [51,84], discussion on the effects of the higher-order
dependence is absent. From the nonlinear behavior of the
factorization ratio shown in the previous subsection, the
higher-order dependence cannot be neglected in under-
standing the detailed mechanism of rapidity decorrelation.
Therefore, we also calculate the second-order Legendre co-

FIG. 10. Centrality dependence of the second-order Legendre
coefficients (a) A2

2 and (b) B2
2 for elliptic flow (n = 2). The symbols

are the same as in Fig. 9.

efficients to quantify nonlinear behaviors of the second-order
anisotropic flow as a function of pseudorapidity.

Figure 10 shows the second-order Legendre coefficients A2
2

and B2
2 for elliptic flow (n = 2) as a function of centrality

from the viscous and the fluctuating hydrodynamic models.
A2

2 from the fluctuating hydrodynamic model is systematically
larger than the one from the viscous hydrodynamic model. A2

2
from viscous hydrodynamics has a slight hump in centrality
30–50%, which can be understood from the large magnitude
of v2 in this centrality by considering the fact that the mode
A2

2 is due not only to the flow fluctuations but also to the aver-
age flow magnitude. While, A2

2 monotonically increases with
centrality percentile in the fluctuating hydrodynamic model,
which implies the dominance of the flow fluctuations over
the average flow magnitude. B2

2 from viscous hydrodynamics
and fluctuating hydrodynamics are both nonzero and even
have a similar magnitude to the first-order coefficient B1

2. In
particular, B2

2 are sizable in central (0–10%) and peripheral
(60–100%) collisions. Since B2

2 is the Legendre coefficient
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FIG. 11. Cutoff parameter dependence of the Legendre coefficients. The first and the second-order Legendre coefficients for the magnitude
and the event-plane angle of elliptic flow parameters, (a) A1

2, (b) A2
2, (c) B1

2, and (d) B2
2, from viscous hydrodynamics and fluctuating

hydrodynamics–λ1.0, λ1.5, λ2.0, and λ2.5 are shown. The results from viscous hydrodynamics are plotted at 1/λ = 0 (or λ = ∞). The
results are shown for centrality 0–10% (open square), 20–30% (filled square), and 50–60% (open diamond).

of the second-order Legendre polynomials, the event-plane
angle is not only linear but quadratic as a function of pseu-
dorapidity. This means that the event-by-event event-plane
angle contains a rapidity-even component and that the twist
direction of the event-plane rotation is not necessarily to be in
one direction unlike in the twist case. This second-order mode
is larger in central (0–10%) and peripheral (60–100%) than
that in semicentral (10–60%) collisions. Similar to the first-
order Legendre coefficients, this decrease of B2

2 in semicentral
collisions can be understood from the stabilized event plane
due to the collision geometry.

We analyze the cutoff parameter dependence of the Legen-
dre coefficients to understand how much the hydrodynamic
fluctuations affect the pseudorapidity dependences of the
magnitude v2 and the event-plane angle �2 of the second-
order anisotropic flow parameters. Figure 11 shows the 1/λ

dependence of the first- and second-order Legendre coeffi-
cients from the viscous and the fluctuating hydrodynamic
models. Here, the viscous hydrodynamic model can be re-
garded as a fluctuating hydrodynamic model with λ = ∞
(or 1/λ = 0). The magnitude of hydrodynamic fluctuations

becomes larger with the smaller λ so that the Legendre coeffi-
cients increase with decreasing λ in Fig. 11. The coefficients
for the magnitude, A1

2 and A2
2, are minimum in central colli-

sions (0–10%) and increase with centrality percentile. On the
other hand, the coefficient for the event-plane angle, B1

2 and
B2

2, are minimum in centrality 20–30% and larger in central
collisions (0–10%) and peripheral collisions (50–60%). This
difference is due to the same reason discussed for Fig. 9. In
particular, a monotonically increasing behavior of A1

2 can also
be seen in the second-order Legendre coefficient A2

2. One sees
that the values of the Legendre coefficients at 1/λ = 0.4 =
1.0/2.5 are already almost the same as the ones from the vis-
cous hydrodynamics (1/λ = 0) except for A1

2. Therefore we
conclude that hydrodynamic fluctuations become significant
for the physics of the scale smaller than ∼2.0 fm.

IV. SUMMARY

We studied the effects of the hydrodynamic fluctuations
during the evolution of the QGP fluids on rapidity decorre-
lation. We employed an integrated dynamical model in which
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the hydrodynamic model, RFH, implementing the causal hy-
drodynamic fluctuations and dissipations, is combined with
the hadronic cascade model JAM. We performed simulations
of Pb + Pb collisions at

√
sNN = 2.76 TeV using the inte-

grated dynamical model. For comparison, we simulated the
hydrodynamic stage with or without the hydrodynamic fluc-
tuations and with different sets of the cutoff parameters (λ⊥
and λη). We fixed the model parameters so that our model
fairly reproduces the experimental data of the multiplicity nor-
malized by the number of the participant, the pseudorapidity
distributions, and the transverse momentum dependence of
v2{2} for charged hadrons. With this model, we calculated
the factorization ratio rn in the longitudinal direction and
its centrality dependence to estimate the effects of hydrody-
namic fluctuations on rapidity decorrelation. We found that
the hydrodynamic fluctuations bring the sizable effects on
the factorization ratios: Due to the nature of hydrodynamic
fluctuations being random in space and time, longitudinal
correlations of anisotropic flow tend to break down. To further
understand this, we calculated the Legendre coefficients of
the magnitude and the event-plane angle of anisotropic flow
parameters that characterize the fluctuations of the longitudi-
nal flow decorrelation. These Legendre coefficients increase
by adding hydrodynamic fluctuations. We also analyzed the
cutoff parameter dependence of the Legendre coefficients and
found that the Legendre coefficients increase with larger 1/λ

(smaller λ). These analyses showed that hydrodynamic fluc-
tuations with a small cutoff parameter below λ ≈ 2 play an
important role in understanding rapidity decorrelation phe-
nomena.

Although we found the significance of the hydrodynamic
fluctuations in understanding longitudinal dynamics in high-
energy nuclear collisions, we did not perfectly reproduce the
pseudorapidity and the centrality dependences of the factor-
ization ratios. In the future, we plan to investigate the effects

of initial fluctuations of longitudinal profiles which are miss-
ing in the present study. In particular, we will quantify how
much the initial longitudinal fluctuations together with the
hydrodynamic fluctuations bring the rapidity decorrelations in
describing the factorization ratios.

Since the power of the fluctuating forces given by the FDR
depends on temperature explicitly together with the shear
viscous coefficient, the additional temperature dependence ap-
pears. Along the lines of this perspective, the collision energy
dependence of the factorization ratios would also be interest-
ing since the maximum temperature of the system created in
heavy-ion collisions at the RHIC top energy would be smaller
compared with the one at LHC. One could have a chance
to focus more on the dynamics around the transition region
(T ≈ 160 MeV).

Finally we would like to comment on the cutoff parameter
of the fluctuating hydrodynamics which can quantitatively
affect the observables. As the cutoff is difficult to be deter-
mined microscopically, it should be treated as a free parameter
which can be determined by fitting some observable, and the
prediction should be made on the other observables. In this
study, instead of fixing the cutoff, we calculated several values
for the cutoff in the present study. In future study, a part of the
cutoff dependence should be canceled by the renormalization
(i.e., modifications that depend on the cutoff) of the equation
of state and the transport coefficients [45–47,87] to match the
bulk property (one-point expectation value) of the global equi-
librium. Nevertheless the effect of hydrodynamic fluctuations
remains in the two-point (or multipoint) correlation.
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