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Electric dipole response of low-lying excitations in the two-neutron halo nucleus 29F
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Background: The neutron-rich 28,29F isotopes have been recently studied via knockout and interaction
cross-section measurements. The two-neutron halo in 29F has been linked to the occupancy of p f intruder
configurations.
Purpose: We investigate the bound spectrum and continuum states in 29F, focusing on the electric dipole (E1)
response of low-lying excitations and the effect of dipole couplings on nuclear reactions.
Method: 29F (27F +n + n) wave functions are built within the hyperspherical harmonics expansion formalism,
and total reaction cross sections are calculated using the Glauber theory. Continuum states and B(E1) transition
probabilities are described in a pseudostate approach using the analytical transformed harmonic oscillator
basis. The corresponding structure form factors are used in continuum-discretized coupled-channels (CDCC)
calculations to describe low-energy scattering.
Results: Parity inversion in 28F leads to a 29F ground state characterized by 57.5% of (p3/2)2 intruder compo-
nents, a strong dineutron configuration, and an increase of the matter radius with respect to the core radius of
�R = 0.20 fm. Glauber-model calculations for a carbon target at 240 MeV/nucleon provide a total reaction
cross section of 1370 mb, in agreement with recent data. The model produces also a barely bound excited state
corresponding to a quadrupole excitation. B(E1) calculations into the continuum yield a total strength of 1.59
e2 fm2 up to 6 MeV, and the E1 distribution exhibits a resonance at ≈0.85 MeV. Results using a standard
shell-model order for 28F lead to a considerable reduction of the B(E1) distribution. The four-body CDCC
calculations for 29F + 120Sn around the Coulomb barrier are dominated by dipole couplings, which totally cancel
the Fresnel peak in the elastic-scattering cross section.
Conclusions: Our three-body calculations for 29F, using the most recent experimental information on 28F,
are consistent with a two-neutron halo. Our predictions show the low-lying enhancement of the E1 response
expected for halo nuclei and the relevance of dipole couplings for low-energy reactions on heavy targets. These
findings may guide future experimental campaigns.
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I. INTRODUCTION

Nuclei lying away from the stability valley typically show
exotic properties which allow us to study shell evolution.
Halo nuclei, in particular, severely test our nuclear structure
knowledge and have motivated extensive experimental and
theoretical developments [1]. These systems exhibit a diffuse
density distribution, with one or more weakly bound neutrons
exploring distances far from a more compact core, and giving
rise to an abnormally large matter radius. As a consequence,
reactions with halo nuclei are characterized by large interac-
tion cross sections [2,3]. The case of two-neutron halo nuclei
is especially interesting, since they are Borromean systems
[4]. With the corresponding core + n subsystems being un-
bound, the strong correlations between the valence neutrons
are key in binding two-neutron halos [5,6]. Textbook exam-
ples of two-neutron halo nuclei are 6He, 11Li, and 14Be [2,7].
More recently, heavier two-neutron halos, such as 22C [8,9],
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have also been explored. In all cases, the low-lying spectra of
the unbound core + n subsystems are known to play an im-
portant role in shaping the properties of these nuclei [10,11].

Together with the extended matter distribution and strong
dineutron correlations, one of the most salient features of halo
nuclei is an enhancement of the low-lying E1 (electric dipole)
strength into the continuum [12]. For different two-neutron
halo nuclei (6He, 11Li, 14Be), this near-threshold enhance-
ment has been observed via invariant mass spectroscopy in
Coulomb dissociation (CD) experiments [13–15] and is seen
as a signature of the halo wave function. Very recently, a high-
energy CD measurement for 19B into 17B +n + n has reported
this enhanced E1 strength, providing the first evidence that
this exotic nucleus has a prominent two-neutron halo [16].
Various theoretical investigations within three-body models
have been found to describe reasonably well these features in
light nuclei (see, for instance, Refs. [16–25]). Similar studies
for heavier systems could help in assessing the limits of halo
formation when neutrons occupy higher shells.

In the particular case of 11Li, the presence of intruder 2s1/2

components is crucial in developing the two-neutron halo
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wave function, which is linked to the low-lying spectrum of
the unbound 10Li showing an s-wave ground state [4,26–28].
This is due to the fact that lower � orbitals have more extended
distributions, which favor the formation of a diffuse halo [29].
In this context, neutron-rich fluorine isotopes have received
special attention recently, since 28-31F lay at the southern bor-
der of the so-called island of inversion [30–32]. With 28F and
30F being unbound, 29F and 31F nuclei are Borromean systems
[33,34]. Thus, parity inversion in the low-lying spectrum of
the corresponding core + n subsystems could lead towards
halo formation [35,36]. While 27F is assumed to be an sd-
shell nucleus [37], with p f intruder configurations playing
a role only for its excited states [38], the situation for fluo-
rine isotopes with A > 27 has been long debated [39–41]. In
Refs. [39,40], a two-resonance structure was found just above
the 27F +n threshold. No robust spin-parity assignment could
be drawn, but shell-model calculations suggested that p f in-
truder components should play a minor role in the ground
state of 28F. However, Ref. [41] reported the measurement of
a bound excited state in 29F, and the energy gap with respect
to the ground state could be reproduced only by considering
p f components.

In Ref. [42], we performed three-body calculations for
29F considering different scenarios for the corresponding
27F +n subsystem. Our results show that the enhancement
of the matter radius, as well as the strong dineutron con-
figuration of the possible halo, are linked to the degree of
mixing between standard 1d3/2 components with 2p3/2 in-
truder configurations. Recently, the relative-energy spectra
and momentum distributions extracted from high-precision
nucleon-knockout data showed that the ground-state res-
onance of 28F at 0.199(6) MeV is dominated by � = 1
components, thus extending the island of inversion [43]. Sev-
eral other states were measured, including an � = 2 dominated
resonance around 0.966 MeV. Even more recently, interaction
cross-section measurements for 27,29F observed a significant
increase of the matter radius, 0.35 ± 0.08 fm [44], with new
shell-model calculations also supporting a two-neutron halo
wave function characterized by a large occupancy of the 2p3/2

orbital. These findings are consistent with our predictions in
Ref. [42].

The halo structure in 29F should have strong implications
for direct reactions, such as the high-energy CD discussed
above, but also for low-energy elastic scattering and breakup.
For instance, in the case of 6He impinging on heavy targets,
continuum-discretized coupled-channel (CDCC) calculations
showed that dipole couplings produce a strong reduction of
the elastic-scattering cross section at near-barrier energies
[45], leading to a cancellation of the typical Fresnel peak.
This feature is associated to the large B(E1) strength at low
energies, so it provides a direct link between the halo structure
and the reaction mechanism. Interestingly, this effect is even
larger in the case of dipole resonances, as observed for 11Li
[25,46].

In view of the recent developments and experimental
results, it is the goal of this paper to refine our previous three-
body model for 29F and to make predictions for its low-energy
continuum, in particular dipole and quadrupole excitations
and their role in nuclear reactions. Some preliminary results
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FIG. 1. Jacobi-T (left) and -Y (right) coordinates for the 29F
nucleus described as 27F +n + n.

were briefly discussed in a recent perspective article [47].
Here we present a more exhaustive study including additional
calculations. In Sec. II, we briefly introduce the theoretical
framework employed in this paper, which is based on the
hyperspherical harmonics (HH) expansion method. Then, in
Sec. III we discuss the halo wave function of the 29F ground
state and search for additional bound states. We also provide
Glauber-model calculations for total reaction cross sections.
In Sec. IV we study electromagnetic transitions into contin-
uum states and present three-body calculations for the B(E1)
distribution of this nucleus, and in Sec. V we give also CDCC
predictions for its scattering around the Coulomb barrier on a
heavy target, discussing the role of dipole couplings. Finally,
in Sec. VI we summarize the main results of the present pa-
per, and we highlight how these theoretical predictions could
guide further experimental studies.

II. THREE-BODY MODEL FOR 29F

A. Hyperspherical formalism

In the present paper, as in Ref. [42], we describe three-body
states by using the hyperspherical framework [4,48]. For sim-
plicity, here we focus only on the case of a three-body system
composed by a compact core and two valence neutrons. The
corresponding Jacobi coordinates {x, y} are shown in Fig. 1,
where two distinct sets of coordinates can be identified: (i) the
Jacobi-T set, in which the valence neutrons are related by the
x coordinate, and (ii) the Jacobi-Y set, where the coordinate
x′ connects the core with one of the neutrons. Note that a
third set, analogous to the Y system, is obtained by switching
the neutron connected to the core. For the particular case
under study, and in the Jacobi-T representation, the relations
between the scaled Jacobi coordinates (x, y) and the actual
physical distances (rx, ry) between the particles are

x = rx

√
1

2
, (1)

y = ry

√
2A

A + 2
, (2)

where A = 27 is the mass number of the core. From Ja-
cobi coordinates, we introduce the hyperspherical coordinates
{ρ, α, x̂, ŷ}, using the usual definitions for the hyperradius ρ

and the hyperangle α:

ρ =
√

x2 + y2, (3)

α = arctan

(
y

x

)
. (4)
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Note that transformation between the T and Y coordinate
systems preserves the hyperradius, while the hyperangle is
changed [49].

In principle, the three-body problem can be solved equiva-
lently in any Jacobi representation. However, the Jacobi-T set
is the most convenient one for core + n + n systems, since the
wave function must be antisymmetric under exchange of the
valence neutrons related by the x coordinate. The states for a
given total angular momentum j are expanded as

ψ jμ(ρ,�) = ρ−5/2
∑

β

χ
j
β (ρ)Y jμ

β (�), (5)

where � ≡ {α, x̂, ŷ} and β represents a set of quantum num-
bers coupled to j. Our coupling scheme for the angular
functions Y jμ

β (�) is given in terms of HH ϒ
lx ly
Klml

(�), eigen-

states of the hypermomentum operator K̂ , as

Y jμ
β (�) = {[

ϒ
lx ly
Kl (�) ⊗ φSx

]
jab

⊗ κI
}

jμ. (6)

Here, l = lx + ly, and the HH for a given (lx, ly)l configura-
tion is given by

ϒ
lx ly
Klml

(�) = ϕ
lx ly
K (α)

[
Ylx (x) ⊗ Yly (y)

]
lml

, (7)

ϕ
lx ly
K (α) = N

lxly
K (sin α)lx (cos α)ly P

lx+ 1
2 ,ly+ 1

2
n (cos 2α), (8)

where Pa,b
n is a Jacobi polynomial of order n = (K − lx −

ly)/2 and N
lxly
K is a normalization constant. The spin Sx gives

the coupled spin of the two particles related by the x coor-
dinate, jab = l + Sx, and I represents the spin of the core
nucleus, which in this paper is assumed to be fixed. The spin
of 27F is finite due to the odd number of protons, but for
simplicity we neglect it. This allows us to reduce the previous
expression by using jab = j (I = 0):

Y jμ
β (�) = [

ϒ
lx ly
Kl (�) ⊗ κSx

]
jμ. (9)

This amounts to considering only neutron degrees of freedom,
simplifying the choice of the corresponding core + n potential
and drastically reducing the number of components needed in
Eq. (5). Note that a similar approach has been employed in
the past, with great success, for other odd-even core + n + n
nuclei such as 11Li [46,50]. It is also worth noting that, in
the Jacobi-T set, Sx comes from the coupling of two s = 1/2
neutrons, so only Sx = 0 or 1 is allowed. Moreover, the Pauli
principle for two identical neutrons (with isospin T = 1) im-
poses that Sx + lx must be an even number.

The hyperradial functions in Eq. (5) are solutions of the set
of coupled differential equations[

− h̄2

2m

(
d2

dρ2
− 15/4 + K (K + 4)

ρ2

)
− ε

]
χ

j
β (ρ)

+
∑
β ′

V jμ
β ′β (ρ)χ j

β ′ (ρ) = 0, (10)

where it is clear that K defines an effective three-body barrier,
and V jμ

β ′β (ρ) are the so-called coupling potentials defined as

V jμ
β ′β (ρ) = 〈Y jμ

β (�)
∣∣V12 + V13 + V23

∣∣Y jμ
β ′ (�)

〉
. (11)

Here, Vi j are the two-body potentials between each pair of
particles, which will be described in the next section. In this
paper, the radial functions are expanded in a discrete basis:

χ
j
β (ρ) =

∑
i

C j
iβUiβ (ρ), (12)

where the coefficients C j
iβ can be easily obtained by di-

agonalizing the three-body Hamiltonian for i = 0, . . . , N
basis functions. Eigenstates corresponding to negative-energy
eigenvalues describe bound states, while positive-energy
states provide a discrete representation of the continuum. This
approach is referred to in the literature as the pseudostate (PS)
method [51].

Different bases can be used within the PS approach (see,
e.g., Refs. [19,52,53]). Our choice is the analytical trans-
formed harmonic oscillator (THO) basis [24,54], obtained
from the harmonic oscillator (HO) functions in hyperspherical
coordinates as

U THO
iβ (ρ) =

√
ds

dρ
U HO

iK [s(ρ)], (13)

where

U HO
iK (s) = DiK sK+5/2LK+2

i (s) exp (−s2/2), (14)

the functions LK+2
i (s) are the generalized Laguerre poly-

nomials, and DiK is just a normalization constant. The
transformation in Eq. (13) is given by

s(ρ) = 1√
2b

⎡⎣ 1(
1
ρ

)4 + (
1

γ
√

ρ

)4

⎤⎦
1
4

, (15)

and depends on two parameters (b, γ ), which change the
Gaussian asymptotic behavior of the HO functions (e−ρ2/2)
into a simple exponential (e−γ 2ρ/2b2

). This improves the con-
vergence of the calculations with respect to the number of
basis functions N . Moreover, the ratio γ /b governs the hyper-
radial extension of the basis. As discussed in Refs. [24,55],
this feature controls the PS density after diagonalization. For
instance, a small γ parameter, keeping the oscillator length b
fixed, provides a larger number of PSs just above the breakup
threshold, which are suitable to compute electromagnetic tran-
sitions into the continuum. More details will be given in
Sec. IV.

B. Binary potentials

The present three-body calculations require appropriate
two-body potentials as an input in Eq. (11). For the nn inter-
action, we use the Gogny-Pires-Tourreil potential [56], which
includes central, spin-orbit, and tensor terms. This poten-
tial describes nn scattering data reasonably, and it has been
used with success in several other three-body calculations for
core + n + n nuclei [4,24,49]. Other choices are available in
the literature (e.g., the Gaussian interaction in Ref. [57], or
more sophisticated interactions such as AV18 [58]). We have
checked that the use of a different nn interaction introduces
only minor differences, provided they all reproduce nn scat-
tering data.

064627-3



J. CASAL et al. PHYSICAL REVIEW C 102, 064627 (2020)

0 1 2 3 4 5
27

F + n energy (MeV)

0

0.5

1

1.5

2

2.5

3

δ 
 (

ra
d)

d3/2
p3/2
f7/2

FIG. 2. Phase shifts for the 27F +n system in the present paper.
The dotted line corresponds to δ = π/2.

For the 27F-n interaction, we fix a Woods-Saxon potential
to the available experimental information for 28F, as presented
in Sec. I. Including only central and spin-orbit terms, we use
the form

V27F -n =
(

−V0 + Vls�l · �s 1

r

d

dr

)
1

1 + exp
(

r−R
a

) , (16)

with R = r0A1/3, the standard values r0 = 1.25 fm and a =
0.75 fm adopted from Ref. [59], and Vls = 34.666 MeV fm2

from systematics [60]. Then, V0 = V (�)
0 is assumed to be � de-

pendent, allowing for effects beyond the simple inert core + n
picture. In our previous work [42], we fixed this depth by
considering different scenarios from a standard shell-model
picture to an extreme inversion of the 1d3/2 and 2p3/2 single-
particle levels. By using the recent results of Ref. [43], we
adjust V (�)

0 to produce a 2p3/2 ground-state resonance around
0.199(6) MeV above the 1n separation threshold and a 1d3/2

state around 0.996(13) MeV, corresponding to the first two 28F
levels measured in the −1n channel from 29F. This was the
prescription used also in our previous perspective article [47],
and provides V (1)

0 = 46.78 MeV and V (2)
0 = 37.68 MeV. For

other � partial waves, we adopt the same value as for � = 2.
In this way we obtain also an f -wave resonance at about the
same energy of one of the states reported in Ref. [43]. The
corresponding phase shifts for this new potential are shown
in Fig. 2. Note that this potential gives rise to 1s1/2, 1p3/2,
1p1/2, 1d5/2, and 2s1/2 bound states which represent Pauli
forbidden states. As discussed in our previous work [42], in
order to perform three-body calculations using this two-body
interaction we remove these bound states by constructing
phase-equivalent shallow potentials within a supersymmetric
transformation [61]. In our scheme, the d3/2 shell is fully
available for the valence neutrons, which is a limitation of
inert-core models. A particular treatment of this issue might
require additional studies.

III. GROUND-STATE PROPERTIES

In addition to the nn and core + n potentials, it is custom-
ary to introduce in Eq. (11) a phenomenological three-body
force to account for possible effects not explicitly included
in our three-body description [19,23,24,49]. For simplicity,
this additional term can be assumed to be diagonal in the HH
expansion, δβ,β ′V3b(ρ), with its hyperradial dependence given
by a Gaussian form:

V3b(ρ) = v3be−(ρ/ρo)2
, (17)

where ρo = 6 fm and the depth v3b is adjusted to recover the
known energy of the states, if available. In the case under
study, this parameter is fixed to yield a 29F ground state char-
acterized by the experimental two-neutron separation energy
of S2n = 1.44 MeV [33]. This provides v3b = −0.35 MeV,
that we keep fixed to generate all the states considered in
the present paper unless otherwise mentioned. It was checked
that the specific shape of the three-body force in Eq. (17)
is not crucial. For instance, a less confined potential such
as an exponential leads essentially to the same ground-state
properties. Note that this choice to correct the three-body
spectrum is not unique, and a similar solution can be obtained
by incorporating some scaling factors in the binary potentials
[52,62].

With all these ingredients, we focus first on the 29F ground-
state properties. As discussed in Sec. II, we neglect the spin
of the core, so that our ground state is characterized by
jπ = 0+. Note that, due to the unpaired proton in the 1d5/2

shell, the actual spin of 29F is assumed to be 5/2+ [41]. We
consider 0+ states including wave-function components up to
a maximum hypermomentum Kmax [Eq. (5)], which restrict
also the possible orbital angular momenta with the condition
that lx + ly � K [4]. To that end, the three-body Hamiltonian
is diagonalized in a THO basis with i = 0, . . . , N functions
[Eq. (12)].

A. Convergence of the ground state

We first analyze the convergence of the ground state.
Figure 3 shows the behavior of the ground-state energy as a
function of Kmax and N . In both cases, the other parameter
has been fixed to a sufficiently large number, and calculations
correspond to a THO basis characterized by b = 0.7 fm and
γ = 1.4 fm1/2. The position of the ground state evolves rather
slowly with the size of the model space, and we need Kmax =
30 to achieve a stable solution. The convergence with respect
to the number of basis functions N is much faster, and N = 16
is found to provide converged results. It is worth noting that
this is a consequence of the basis choice.

In Fig. 4 we present the convergence of the ground-state
hyperradial density:

P(ρ) = ρ5
∫

d�|ψ (ρ,�)|2 =
∑

β

|χβ (ρ)|2. (18)

It is clear that Kmax = 30 is more than enough to achieve
a robust description of the wave function. The distribution
presents a maximum around 6.4 fm and vanishes beyond
15 fm. From the corresponding root-mean-square hyperra-
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FIG. 3. Convergence of the ground-state energy with (a) Kmax

and (b) N , keeping the other parameter fixed. Vertical dotted lines
represent the adopted values at which the three-body force has been
adjusted to reproduce S2n = 1.44 MeV.

dius, the matter radius is defined as

Rm =
√

1

A + 2

(
R2

cA + 〈ρ2〉), (19)
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FIG. 4. Convergence of the ground-state density P(ρ ) with Kmax.
Calculations correspond to N = 16.

where Rc is the radius of the core, which is required as
an input parameter. In Ref. [44], a new experimental value
[Rexp

c = 3.15(4) fm] and several theoretical estimations [Rth
c =

3.12–3.23 fm] are presented. In our previous work [42], we
adopted Rc = 3.21 fm, obtained from an auxiliary 25F +n + n
calculation using the experimentally known 25F radius. Here
we adopt the value Rc = 3.16 fm, which is consistent with
Ref. [44], and analyze the resulting 29F matter radius in
relative terms. We obtain �R = Rm − Rc = 0.20 fm, well be-
yond the increase expected by scaling the radius using the
standard A1/3 formula. As already discussed in Ref. [47],
this is an indication of the extended matter distribution as-
sociated to halo nuclei, but our result is smaller than the
value reported in Ref. [44], �Rexp = 0.35(8) fm. Nonethe-
less, we note that the calculated value is sensitive to the
two-neutron separation energy of 29F, which entails large
uncertainties. The experimental S2n value is 1.443(436) MeV
[33]. If we consider its lower limit, by adjusting the three-
body force to yield a shallower ground state at ≈1 MeV
below the three-body threshold, we obtain instead �R =
0.25 fm, which is closer to the experimental value. A more
precise knowledge of the S2n value could help in bridging
the gap between our theoretical estimation of �R and the
experiment.

To evaluate the reliability of our wave function, in this
paper we also investigate the total reaction cross section using
the standard Glauber theory [63]. We adopt the nucleon-target
formalism [64] with the nucleon-nucleon profile function
given in Ref. [65]. The other theoretical inputs to this reaction
model are the density distributions of projectile and target nu-
clei. The validity of this approach has been confirmed in many
examples of high-energy nucleus-nucleus collisions involv-
ing unstable nuclei, e.g., the isotope dependence of the total
reaction cross sections was reproduced fairly well when ap-
propriate density distributions were employed [66,67]. First,
we generate a HO-type density distribution for 27F by assum-
ing the lowest shell-model filling, the size parameter of which
is fixed so as to reproduce the interaction cross-section data
on a carbon target at 240 MeV/nucleon [44]. The resulting
rms matter radius (total reaction cross section) is 3.16 fm
(1240 mb), which is consistent with the value 3.15 ± 0.04 fm
(1243 ± 14 mb) extracted in Ref. [44]. The density distribu-
tion of 29F is simply constructed by adding the two-neutron
density distribution obtained from our three-body model to
the HO density of 27F. The calculated total reaction cross
sections are 1370 mb if we assume S2n = 1.44 MeV, and
1390 mb if we take the lower limit (S2n ≈ 1 MeV), which are
in good agreement with the observed interaction cross section
1396 ± 28 mb [44].

B. Mixing and dineutron correlations

The ground-state probability of two-neutron halo nuclei is
generally analyzed in terms of the so-called dineutron and
cigarlike configurations [4]. The former corresponds to two
neutrons close to each other at some distance from the com-
pact core, while the latter represents the valence neutrons at
opposite sides of the core. With the wave function (5) writ-
ten in the Jacobi-T set, the corresponding two-dimensional
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FIG. 5. Ground-state probability density (in fm−2) of 29F using
the present three-body model, as a function of rx ≡ rnn and ry ≡ rc-nn.

probability is given by

P(x, y) = x2y2
∫

dx̂dŷ|ψ (x, y)|2, (20)

which can be easily converted to physical distances by using
Eqs. (1) and (2). This probability satisfies∫

P(rx, ry)drxdry = 1. (21)

In Fig. 5 we present our results for the ground state of 29F, as
shown in Ref. [47], where a dominant dineutron component
can be clearly identified.

Since the mixing between different-parity states in the
core + n system favors dineutron correlations [68], the com-
puted distribution can be understood by studying the partial-
wave content of the state. This requires a transformation of
the wave function into the Jacobi-Y set (see Fig. 1), where the
core and a single neutron are related by the x′ coordinate. As
discussed in Ref. [42], this representation is more akin to a
typical shell-model picture and can be numerically obtained
by using Raynal-Revai coefficients [49,69]. Then, we change
the couplings in Eq. (6) to contain a single-particle angular
momentum Jx′ = lx′ + Sx′ , where Sx′ = 1/2 is just the spin of
a neutron (provided we neglect the spin of the core). More
details on these transformations are given in Appendix A.

Our ground state is characterized by 57.5% of neutron
intruder (p3/2)2 components, followed by 29.0% of (d3/2)2

and 6.1% of ( f7/2)2. These numbers are obtained when the
ground-state energy is adjusted to the central value of the ex-
perimental S2n. By considering instead its lower limit, which
corresponds to a more weakly bound system, the (p3/2)2

weight increases by 5%, while the (d3/2)2 decreases by the
same amount. Both situations are consistent with a dominant
(p3/2)2 configuration, which clearly leads to the significant
increase of the matter radius with respect to the core radius.
The large mixing between the (p3/2)2 and (d3/2)2 components
is responsible for the strong dineutron peak observed in Fig. 5
and plays a key role in the formation of the two-neutron halo

in 29F. We checked also the effect of the small f7/2 component
by performing test calculations removing the potential for f
waves. In that case, the missing f7/2 weight goes to p waves,
so the mixing between different parity states remains and the
resulting density plot is almost identical. Thus, in the present
calculations the halo nature and strong dineutron configura-
tion of 29F are totally driven by the p3/2 intruder.

C. Search for additional bound states

In Ref. [41], a state in 29F was measured at an excitation
energy of Ex = 1.080(18) MeV. With the adopted value for
S2n, this corresponds to a bound state at E = Ex − S2n =
−0.363 MeV with respect to the three-body threshold. The
spin parities of the ground state and this bound excited state
are assumed to be 5/2+ and 1/2+, respectively, due to the
unpaired proton of the core in the sd shell. In the present three-
body model, we neglect the spin of the core, so our ground
state is represented by coupling the valence neutrons to 0+.
Thus, we look for bound excited states corresponding to 2+
within our scheme. Note that the inclusion of the spin of the
core would lead to a multiplet with several possibilities (from
1/2+ to 9/2+). If these states could be found experimentally
and resolved in energy, this splitting could be used to constrain
the spin-spin interaction in 27F-n.

Interestingly, the same Hamiltonian without any fitting
parameters (i.e., using the same binary potentials and the
three-body force adjusted to the 0+ ground-state energy) pro-
duces a very weakly bound 2+ state at E 
 −0.1 MeV. This
energy is not quantitatively consistent with the experimental
value, but given the simplicity of the model, the qualitative
agreement is remarkable. By following the same partial-wave
analysis done for the ground state, the leading (valence-
neutron) components in the wave function for this excited
state are 65.6% of (p3/2)2, 16.5% of (p3/2)(p1/2), and 7.1% of
(d3/2)2. Since the valence neutrons occupy mostly the p-wave
orbitals, the mixing between different-parity states is small,
and the dineutron configuration for this state is weaker. This
can be seen in Fig. 6, which corresponds to a very diffuse
wave function. While some dineutron component is visible,
the relative probability of finding the two valence neutrons
close to each other is clearly smaller than that in the ground
state. Nevertheless, the presence of this state very close to
the breakup threshold will have an impact on low-energy
reactions involving 29F, as will be discussed in Sec. V.

It is worth noting that, with the same Hamiltonian, no
bound 1− states were found.

IV. E1 TRANSITIONS

We are interested in studying the E1 strength function from
the ground state of 29F into the continuum. In general, the
reduced transition probability for an Eλ excitation from the
ground state is given by

B(Eλ) = |〈n0 j0||ÔEλ||n j〉|2. (22)

Here, |n0 j0〉 represents the ground state, |n j〉 stands for states
with total angular momentum j, and ÔEλ is the electric opera-
tor of order λ. In the case of a core + n + n system described
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FIG. 6. As Fig. 5 but for the 2+ excited bound state predicted in
this paper. Note that, for a proper comparison, the probability scale
is the same in both figures.

in the Jacobi-T coordinates, this operator can be written as

ÔEλ = Zerλ
c YλMλ

(̂y), (23)

where Z is the charge of the core, and rc is its relative distance
from the center of mass of the three-body system:

rc =
√

2

A(A + 2)
y. (24)

By using the expansion (5) and Eq. (9), the matrix elements
for the particular case of λ = 1 transitions between the 0+
ground state and 1− states are given by [24]

〈g.s.||Q̂1||n1〉 =
√

3Ze

√
2

A(A + 2)

∑
β,β ′

δlx l ′x δSxS′
x
(−)lx+Sx l̂yl̂ ′

yl̂ l̂ ′

×W (ll ′lyl ′
y; 1lx )W (01ll ′; 1Sx )

(
ly 1 l ′

y
0 0 0

)
×

∑
ii′

Ciβ0
g.s. C

i′β ′1
n Iiβ,i′β ′ , (25)

where we use the common notation �̂ = √
2� + 1, W are

Racah coefficients, and Iiβ,i′β ′ represents the double inte-
grals (in ρ and α) of y = ρ cos α between hyperradial basis
functions Uiβ (ρ) and hyperangular functions ϕ

lx ly
K (α). Note

that the index n labels the final states in a discrete repre-
sentation, i.e., corresponds to the different 1− pseudostates
obtained upon diagonalization of the three-body Hamiltonian.
This means that, within the present formalism, we obtain
discrete B(E1)[g.s. → n] values even if the 1− states lay in
the continuum. In order to construct an energy distribution
from the discrete B(E1) values, we may perform a standard
convolution with Gaussian or Poisson distributions (see, e.g.,
Refs. [19,62,70–72]), which preserves the total strength.

In order to achieve a detailed description of the B(E1)
distribution within our pseudostate representation of the con-
tinuum, it is convenient to diagonalize the Hamiltonian for 1−
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FIG. 7. Convergence of the B(E1) distribution for 29F with re-
spect to Kmax.

states using a THO basis characterized by a large hyperra-
dial extension, as discussed in Sec. II. This enables a larger
concentration of pseudostates at low relative energies. It is
also convenient to work with large basis sets (i.e., large N
values). Then, the completeness of the basis can be checked
by comparing the calculated transition probabilities with the
corresponding cluster sum rule for electric dipole transitions
[73]. In the case under study, the non-energy-weighted sum
rule reads

ST (E1) =
∑

n

B(E1)[g.s. → n]

=
∑

n

|〈g.s.||Q̂1||n1〉|2

= 3

4π

2Ze2

A(A + 2)
〈g.s.|y2|g.s.〉, (26)

which depends solely on the ground-state properties.

A. B(E1) distribution for 29F

We generate the 1− states using a THO basis with b =
0.7 fm and γ = 1.0 fm1/2, N = 20, and including partial
waves up to Kmax = 20. No bound states are obtained, so
ensuring convergence of the calculations with respect to Kmax

and N is not straightforward. In this case, we looked instead
for a stable B(E1) distribution. With the adopted values, our
discretized 1− continuum contains 1578 positive-energy pseu-
dostates from 0.1 up to 10 MeV. As in the case of the 2+
bound excited state discussed in Sec. III C, here we used the
same three-body force employed to fix the 0+ ground state to
the experimental S2n value. In that sense, once convergence is
achieved, our B(E1) calculations involve no parameter fitting.
Our results for the B(E1) distribution are shown in Figs. 7, 8,
and 10.

Figure 7 presents the convergence of the calculations with
respect to the maximum hypermomentum Kmax used to gener-
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FIG. 8. B(E1) distribution for 29F as a function of the continuum

energy. The inset shows the cumulative integral up to ε. The dashed
blue line corresponds to the RCE cross section of 29F at 235 MeV/u
on a lead target. Note the different scales.

ate the dipole continuum. The curves have been obtained by
smoothing the discrete B(E1) values with Poisson functions.
Note that one should pay more attention to this issue in case
that experimental data become available, in particular to take
into account the corresponding energy resolution. It is shown
that the distribution converges to a localized peak at low
excitation energies. Calculations with Kmax > 20 were found
to be indistinguishable from that with Kmax = 20.

The converged distribution, up to a continuum energy of
6 MeV, is singled out in Fig. 8. The calculations are charac-
terized by a clear maximum around 0.85 MeV, as we already
discussed in Ref. [47]. The inset shows the cumulative integral
up to a given continuum energy, which gives 1.59 e2 fm2 up
to 6 MeV. This number is a large fraction (83%) of the dipole
cluster sum rule given by Eq. (26), that yields ST (E1) =
1.92 e2 fm2. If we integrate the B(E1) distribution up to 15
MeV, the result approaches the exact value for the sum rule.
As discussed in Sec. I, such a large integrated B(E1) value at
low continuum energies is a signature of neutron halo nuclei.
Note that a similar value was measured recently for the case
of 19B [16], which was claimed to present a two-neutron halo,
and it is also consistent with the reported values for other halo
nuclei [15,74].

To assess whether the peak in the B(E1) distributions cor-
responds to a resonant state, we have checked the stability
of its position with changes in the ground-state energy. If we
move the ground state by changing the three-body force, the
total E1 strength changes, but the maximum remains at the
same energy. This implies that the peak may arise from a
dipole resonance. We explicitly checked that the maximum
is not due to a threshold effect (see the discussion on low-
energy enhancement, for instance, in Ref. [75]) by performing
a calculation with plane waves for the dipole states, i.e.,
setting the potential to zero. The result is shown in Fig. 9,
where the narrow peak observed in Figs. 7 and 8 disappears
and the E1 strength spreads towards higher energies in the
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FIG. 9. B(E1) distribution compared with the results setting the
potential for dipole states to zero (dashed red line). The inset shows
this unrealistic calculation with a more appropriate scale and up to
10 MeV in the continuum.

continuum. To gain more insight into this structure, we did ad-
ditional calculations using the identification method proposed
by one of us in Ref. [76], and we confirmed the presence
of a dipole resonance at the peak energy. We also com-
puted the three-body eigenphases using the STURMXX code
[77], finding the same resonant state. The situation for the
dipole continuum in 29F resembles that of 11Li, where several
works indicate the presence of a low-energy dipole resonance
[12,25,46]. As shown in Fig. 8, the resonance extinguishes
a substantial portion of the total strength. By studying the
partial-wave content of a single 1− pseudostate around the
peak, we find that it corresponds to 73% of (2p3/2)(1d3/2)
configurations, so the computed E1 distribution is governed
by (2p3/2)2 → (2p3/2)(1d3/2) and (1d3/2)2 → (2p3/2)(1d3/2)
transitions from the ground state. These predictions for the
low-lying B(E1) strength in 29F, including its resonance
character, require an experimental confirmation in CD experi-
ments.

In Fig. 8 we show also the relativistic Coulomb excitation
(RCE) cross section obtained by using the well-known Alder
and Winther theory [78,79]. Within this semiclassical ap-
proach, the cross section is proportional to the electromagnetic
strength function. In the case of E1 transitions, this is given by

dσ

dε

∣∣∣∣
E1

= (αZt )
2
∑

μ

dB(E1)

dε
| GE1μ(β−1)|2gμ(ξ ), (27)

where Zt is the charge of the target, α is the fine-structure
constant, and GE1μ are relativistic Winther-Alder functions for
dipole excitations, which depend on the bombarding energy.
Note that, although the previous expression does not contain
an explicit dependence on the continuum energy, the function
g has a decreasing dependence on the energy through the
so-called adiabaticity parameter ξ . This modulates the cross
section, flattering its tail. By considering the case of a 29F
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model order.

beam impinging at 235 MeV/u on a 208Pb target, we get an
estimate for the Coulomb dissociation cross section of ≈550
mb up to 6 MeV. By using again the Glauber theory, we
provide new estimations for the nuclear breakup contribution
simply by taking the difference between the total reaction
cross sections of 29F and 27F. The values are 300 mb for
S2n = 1.44 MeV and 390 mb for S2n = 1.00 MeV, which are
comparable to the CD cross section. This estimation may
guide future CD experiments to assess the halo structure of the
exotic 29F nucleus. Note that the higher-order contributions
might play a role, and this requires further investigations.

As a final comment on the B(E1) distribution, we note
that this observable (and the corresponding cross section) is
highly sensitive to the ground-state radius and configuration
mixing. In particular, calculations using the model A (standard
shell-model order) of Ref. [42] lead to a reduction of the total
strength by ≈40%. This is illustrated in Fig. 10. The present
calculations are built on the recent experimental results for
the unbound 28F subsystem [43] and are in agreement with
the interpretations in Ref. [44] that 29F is a two-neutron halo
nucleus linked to the occupancy of the intruder 2p3/2 orbital.
Therefore, a measurement of the B(E1) distribution for this
nucleus could provide a natural confirmation of these findings.

V. FOUR-BODY REACTION CALCULATIONS

The coupling to breakup channels plays a key role in low-
energy reactions involving halo nuclei (see, for instance, the
studies on 6He or 11Li [25,45,46]). While such data for 29F
are not yet available, the low-energy dynamics involving this
nucleus could also help in assessing its halo nature, comple-
menting the interaction cross-section measurement and the
high-energy Coulomb dissociation discussed in the previous
sections.

27F

n

n
�x

�y

target

�R

FIG. 11. Coordinates in the four-body CDCC framework, con-
sidering a three-body projectile impinging on a structureless target.

Formally, these effects can be studied within the CDCC
formalism [80,81], by expanding the total projectile-target
scattering wave functions in (bound and unbound) states of the
projectile, which can be generated in a given few-body model.
In the case of three-body projectiles, this is typically referred
to as four-body CDCC [45,82]. Assuming a structureless tar-
get, and introducing the relative coordinate R in Fig. 11, the
scattering wave function is expanded as

�JM =
∑

c

iL

R
uJ

c (R)�JM
c (R̂, x, y), (28)

where c ≡ {L(n j)} stands for a channel wave function corre-
sponding to a projectile state with labels (n j) and a relative
projectile-target angular momentum L:

�JM
c (R̂, x, y) = [

YL(R̂) ⊗ ψ j
n (x, y)

]
JM . (29)

As in Sec. IV A, here index n labels the different pseudostates
for a given total angular momentum j of the three-body nu-
cleus. We consider the Hamiltonian of the projectile-target
system:

H (R, x, y) = hp(x, y) + TR + Vpt (R, x, y), (30)

where hp is the internal three-body Hamiltonian of the pro-
jectile (used to generate the states ψ

j
n in Sec. II), TR is the

kinetic-energy term associated to the relative motion, and Vpt

represents the interaction between projectile and target. Thus,
the radial functions in Eq. (28) are obtained from the coupled
equations[

− h̄2

2mr

(
d2

dR2
− L(L + 1)

R2

)
+ En j − E

]
uJ

c (R)

+
∑

c′
V J

c,c′ (R)uJ
c′ (R) = 0, (31)

where mr is the reduced mass, and the scattering coupling
potentials are

V J
c,c′ (R) = 〈

�JM
c

∣∣Vpt

∣∣�JM
c′

〉
, (32)

integrated over R̂ and {x, y}. Here, we assume that Vpt = V1 +
V2 + V3, and Vi are optical potentials between each particle
and the target. In this case, we need suitable core-target and
n-target optical potentials. Then, the coupling potentials in the
previous expression are generated by performing a multipole
expansion of the projectile-target interaction. Details on how
to compute these couplings can be found in Refs. [45,83] and
are summarized in Appendix B. Once the radial equations are
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solved with scattering boundary conditions, we can obtain the
corresponding scattering matrices and cross sections. In the
present paper, this is done by inserting the computed coupling
potentials in the code FRESCO [84].

It is worth noting that, in the CDCC framework, only
inelastic excitations and breakup are treated explicitly. Thus,
possible target excitations and/or the effect of other reaction
channels not explicitly included in the coupling form factors
are considered implicitly through the imaginary part of the
optical potentials employed. For the present calculations, we
use the Koning-Delaroche (n-target) [85] and the São Paulo
(core-target) [86] global optical potentials at the appropriate
energy per nucleon.

In this paper, we present predictions for the elastic scat-
tering of 29F on 120Sn at Elab = 84 MeV, i.e., slightly above
the Coulomb barrier for this system. We choose this situation
in order to illustrate the qualitative effect of dipole couplings
due to the strong Coulomb field generated by the target. Note
that the calculations for heavier targets, such as 208Pb, are
computationally more demanding due to convergence issues
(see, e.g., Ref. [45]), so here we study the reaction on 120Sn.
We consider j = 0+, 1−, 2+ excitations of the 29F projectile,
including bound and continuum states generated up to a given
maximum energy (εmax) within our THO basis. Since the
number of continuum states to be coupled depends not only
on the maximum energy but also on the size of the model
space and basis choice, one needs to ensure the convergence
of the elastic cross section also with respect to Kmax and N ,
in a similar fashion as the convergence analysis presented
in Sec. III for the ground-state properties. From such analy-
sis, we set Kmax = 14, N = 8, and εmax = 8 MeV. Note that
these Kmax and N values are well below the ones needed
to ensure convergence of the ground state. Nevertheless, we
have checked that the final elastic distributions are converged
within a 5–10% difference, which is sufficient for the present
discussion. This required a small change in the three-body
force (v3b) so that the ground-state energy matches that of the
full calculations.

Since the optical potentials and the states describing the
structure part are fixed, our four-body CDCC calculations
involve no parameter fitting. The states we couple in the
calculations are shown in Fig. 12, which include the ground
state of 29F and the only excited bound state in the present
model, as well as our pseudostate representation of the contin-
uum. In Fig. 13 we show the monopole diagonal form factors
for the two bound states. Note the slightly longer extension
of the form factor corresponding to the excited bound state,
which is highlighted in the inset. In Fig. 14, we present some
higher-order couplings. The top panel shows the quadrupole
form factors involving the two bound states, while the bot-
tom panel illustrates the couplings between the ground state
and continuum states for monopole (only nuclear), dipole,
and quadrupole excitations. The latter panel has been ob-
tained by considering, in the three cases, a pseudostate around
1 MeV above the 27F +n + n threshold. From this figure,
it is clear that low-energy dipole couplings have a longer
range than their quadrupole counterpart, so they are expected
to play a significant role in the low-energy reaction under
consideration.
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FIG. 12. Energies of the 0+, 1−, and 2+ states of 29F included in

the present four-body coupled-channels calculations. Note there are
two bound states (thick red lines).

The elastic cross section, relative to the Rutherford cross
section, is presented in Fig. 15. This figure shows different
calculations to illustrate the effect of an increasing number of
coupled states. The thin blue line is the result by considering
only the ground state of 29F, which has a clear Fresnel peak
around 60◦. The dashed red line corresponds to a calculation
including also the bound excited state (i.e., includes the
inelastic excitation of 29F). In that case, the quadrupole
coupling between bound states shifts the maximum to smaller
angles and slightly increases the cross section at backward

0 5 10 15 20 25
R  (fm)

-1500

-1000

-500

0

di
ag

on
al

 f
or

m
 f

ac
to

r 
 (

M
eV

)

g.s.
ex. bound

0 5 10 15 20 25
R (fm)

10
-2

10
0

10
2

10
4

monopole couplings (no Coul.)

FIG. 13. Diagonal real form factors (nuclear monopole) for
the ground state (solid black line) and the only excited bound
state (dashed blue line) considered in the 29F + 120Sn reaction at
Elab = 84 MeV. The thin dashed and dotted lines correspond to the
imaginary parts. The inset shows the real part (absolute value) in
logarithmic scale.
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FIG. 14. Form factors (real part only) for the 29F +120Sn reaction
at Elab = 84 MeV. (a) Quadrupole couplings involving the bound
states, i.e., 0+ ⇔ 2+ (solid black line) and 2+ ⇔ 2+ (dashed blue
line). (b) Monopole (solid black line), dipole (dashed blue line), and
quadrupole (dot-dashed red line) couplings connecting the ground
state with continuum pseudostates at ε ≈ 1 MeV.

angles. The dot-dashed green line is the result considering
the two bound states and the 1− continuum. It is clear that
the inclusion of dipole coupling leads to a strong reduction
of the elastic-scattering cross section and cancels the Fresnel
peak, in total analogy with the behavior observed for other
two-neutron halo nuclei at energies slightly above the
Coulomb barrier [45,46,87], and at variance with the no-halo
case (e.g., Ref. [88] for a comparison between 4He and 6He).
Lastly, the thick black line is the results when all 0+, 1−,
and 2+ states are included. While this contains a fair number
of continuum-continuum couplings, the final result is not
very different from the calculations including only the dipole
states. This is another signal that dipole couplings dominate
the reaction mechanism.

Our CDCC calculations provide also the inelastic, breakup,
and total reaction cross sections. In this particular case, we
get σinel(2+) = 60.5 mb, which is just a small fraction of
the total reaction cross section, σreac = 2.37 b. For the total
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FIG. 15. Angular distribution of the elastic-scattering cross sec-
tion (relative to Rutherford) for the 29F +120Sn reaction at Elab =
84 MeV. The thick solid line corresponds to the full CDCC calcu-
lations, while the others contain a restricted set of 29F states. See the
text for details.

breakup cross section, we obtain σBU = 440 mb. It is worth
noting that this cross section corresponds to the so-called
elastic breakup only, i.e., 29F breaks into its 27F +n + n
constituents without exciting either the core or the target
nucleus. The experimental counterpart for that quantity will
require exclusive measurements.

VI. SUMMARY AND CONCLUSIONS

We reported three-body (27F +n + n) calculations for the
29F nucleus taking into account recent experimental infor-
mation on the unbound 28F system. We fixed a new 27F +n
effective potential, which is consistent with parity inversion
and gives rise to a p3/2 ground-state resonance (0.199 MeV)
and an excited d3/2 resonance (0.966 MeV). As in our pre-
vious work, we neglected the spin of the core and solved
the three-body problem within the HH expansion method,
describing the radial functions using the analytical THO basis.
We provide a more exhaustive analysis with respect to our
results in Ref. [47], including additional details regarding
the theoretical formalism, the ground-state properties and the
B(E1) distribution, the search for additional bound states,
Glauber-model calculations for high-energy reactions, and
four-body CDCC calculations at low energy.

With the updated model, and after fixing the two-neutron
separation energy of 29F to the experimental value of
1.44 MeV by using a small three-body force, our ground state
consists of two valence neutrons occupying mostly (p3/2)2

intruder configurations (57.5%). Glauber-model calculations
of the total reaction cross section on a carbon target using
our ground-state density are in good agreement with the avail-
able data. The present model yields a relative increase of the
matter radius of �R = Rm − R(27F) = 0.20 fm (which goes
up to 0.25 fm if the lower limit of S2n is considered). The
large mixing with the (d3/2)2 configuration (29.0%) favors
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dineutron correlations in the ground state and reinforces the
interpretation of 29F as the heaviest two-neutron halo nucleus
to date. These results are in reasonable agreement with recent
estimations from interaction cross-section measurements and
shell-model calculations. Our model produces also a bound
excited state at ≈0.10 MeV below the three-body threshold
and consistent with a quadrupole excitation of the valence
neutrons.

Our calculations for the continuum in a pseudostate repre-
sentation yield a large E1 strength at low energies, as expected
for a halo nucleus. The computed B(E1) distribution exhibits
a clear peak around 0.85 MeV above the 27F +n + n thresh-
old. This maximum is consistent with a dipole resonance.
The integrated strength up to 6 MeV is 1.59 e2 fm2, which
is similar to the total B(E1) reported for other two-neutron
halo nuclei. We found that this strength is reduced by ≈40%
if one considers a standard shell-model order for the spectrum
of the 28F subsystem. Therefore, a measurement of the B(E1)
distribution for 29F could provide a definitive confirmation
of its halo structure. We also computed, using the Winther
and Alder theory, the RCE cross section at 235 MeV/u on
a lead target to be ≈550 mb (up to 6 MeV). A Glauber-model
estimation for the nuclear contribution yields ≈300 mb, which
is comparable to the Coulomb contribution. These results may
guide future Coulomb dissociation experiments via invariant
mass spectroscopy.

Since the near-barrier dynamics of halo nuclei are known
to be strongly driven by the coupling to breakup channels,
we performed also the first four-body CDCC calculations
with 29F as a projectile. We considered the reaction on
120Sn at Elab = 84 MeV, i.e., slightly above the Coulomb
barrier. Dipole couplings involving the low-lying continuum
in 29F were found to play a key role, leading to a complete
cancellation of the Fresnel peak in the elastic cross section.

This resembles what has already been observed for other
“more standard” two-neutron halos. Thus, low-energy reac-
tions may provide a complementary way to probe the halo
structure in 29F and to assess our prediction of a large E1
strength.

It is worth noting that the present calculations do not con-
sider the finite spin of the core or possible core excitations,
which may affect the structure of 29F. This could be con-
strained by a more detailed study of the level structure in 28F.
Our three-body wave functions, including bound and unbound
states, could also be employed to study other processes involv-
ing this nucleus, e.g., knockout or transfer. Work along these
lines will require further investigations.
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APPENDIX A: WAVE-FUNCTION TRANSFORMATIONS

Within the hyperspherical formalism presented in Sec. II,
the wave function in the Jacobi-Y system (see Fig. 1) can be
obtained from that in the Jacobi-T set as

ψ
jμ

Y (ρ,�′) = ρ−5/2
∑
β ′

(∑
β

Nβ,β ′χ
j
β (ρ)

)
Y jμ

β ′ (�′) = ρ−5/2
∑
β ′

η
j
β ′ (ρ)Y jμ

β ′ (�′), (A1)

where Nβ,β ′ ≡ 〈Y, β ′|T, β〉 are the angular basis overlaps between the T and Y Jacobi representations. These overlaps are
analytical and can be easily obtained from the Raynal-Revai coefficients [69] [see, e.g., Eqs. (13) and (14) of Ref. [49]]. Note
that the transformation preserves K and l , so the angular functions Y jμ

β ′ in the previous expression follow the coupling order

Y jμ
β ′ (�′) = {[

ϒ
l ′x l ′y
Kl (�) ⊗ φS′

x

]
j′ab

⊗ κ ′
I

}
jμ. (A2)

For a core + n + n system, S′
x = I ′ = s = 1/2 is the spin of a single neutron.

We are interested in expressing the wave function in terms of a single-particle angular momentum of the neutrons with respect
to the core. First, we can express the wave function (A1) in Jacobi-Y coordinates as

ψ
jμ

Y = 1

xy

∑
γ

w j
γ (x′, y′)|Y, γ 〉, (A3)

where γ is a set of quantum numbers without the hypermomentum K , so that β ′ ≡ {K, γ }, the radial functions are

w j
γ (x′, y′) = ρ−1/2

∑
K

η
j
K,γ (ρ)ϕ

l ′x l ′y
K (α′), (A4)

and ρ =
√

x′2 + y′2 , α′ = arctan (x′/y′). The ket in Eq. (A3) represents

|Y, γ 〉 = |[(l ′
xl ′

y)l, s] j′ab, s〉 j, (A5)
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where the orbital angular momenta in the x′ and y′ coordinates are coupled to l before adding up the spins. We can decouple
these quantum numbers in order to explicitly separate all the x′ and y′ dependence. After working out the algebra, this leads to

|[(l ′
xl ′

y)l, s] j′ab, s〉 j = (−)l−l ′x−l ′y l̂ ĵ′ab

∑
j1

(−) j′ab−l ′y− j1 ĵ1W (l ′
yl ′

x j′abs; l j1)
∑

j2

ĵ2W ( j1l ′
y js; j′ab j2)|(l ′

xs) j1, (l ′
ys) j2〉 j . (A6)

In this expression, j1 and j2 are associated to the x′ and y′ coordinate, respectively, and j1 + j2 = j. By inserting Eq. (A6) in
Eq. (A3), and replacing the sums in j′ab and l by the corresponding ones for j1 and j2, we get

ψ
jμ

Y = 1

xy

∑
γ ′

f j
γ ′ (x′, y′)|Y, γ ′〉, (A7)

where the radial functions are given by

f j
γ ′ (x′, y′) = ĵ1 ĵ2

∑
j′ab

(−) jab−ly− j1 ĵ′abW ( j1l ′
y js; j′ab j2)

∑
l

(−)l−l ′x−l ′y l̂W (l ′
yl ′

x j′abs; l j1)η j
γ (x′, y′), (A8)

and γ ′ represents the new set of quantum numbers including the shell-model-like angular momenta j1 and j2, i.e.,

|Y, γ ′〉 = |(l ′
xs) j1, (l ′

ys) j2〉 j . (A9)

Once the wave function has been transformed and follows Eq. (A7), it is straightforward to extract the configurations corre-
sponding to the valence neutrons in a given single-particle orbital.

APPENDIX B: FOUR-BODY COUPLING FORM FACTORS

To generate the coupling potentials needed in the four-body CDCC calculations [Eq. (32)], we consider a sum over the three
projectile constituents. Let us define {Rq} as the position vectors of each particle to the target nucleus. In general, these vectors
can be expressed in terms of R and the Jacobi coordinates {x, y} (see Fig. 11). For simplicity, each contribution can be computed
after rotating the projectile wave function to a Jacobi set in which Rq depends only on R and y, and we use the label q to represent
those coordinates. Assuming central potentials, we consider a multipole expansion:

Vq(Rq) =
∑

Q

(2Q + 1)Vq
Q(R, yq)PQ(zq), (B1)

where Q denotes the multipole order, PQ(zq) is a Legendre polynomial, and zq ≡ ŷq · R̂ is the cosine of the angle between yq and
R. The coefficients in this expansion are given by

Vq
Q(R, yq) =

∫ +1

−1
dzqVq(Rq)PQ(zq). (B2)

Using these definitions and the HH expansion of the states, it is possible to write the coupling potentials (32) as

V J
Ln j,L′n′ j′ (R) =

∑
Q

(−)J− j L̂L̂′(2Q + 1)

(
L Q L′
0 0 0

)
W (LL′ j j′; QJ )F Q

n j,n′ j′ (R). (B3)

Here, all the dependence on the projectile states is factorized in a set of radial form factors F Q
n j,n′ j′ given by [83]

F Q
n j,n′ j′ (R) = (−1)Q+2 j− j′ ĵ ĵ′

∑
ββ ′

3∑
q=1

∑
βqβ ′

q

Nββq Nβqβ ′
q
(−1)lxq+Sxq+j′abq

− jabq −Iqδlql ′qδSxq S′
xq

l̂yq l̂ ′
yq

l̂ql̂ ′
q ĵabq ĵ′abq

×
(

lyq Q l ′
yq

0 0 0

)
W

(
lql ′

qlyq ly′
q
; Qlxq

)
W

(
jabq j′abq

lql ′
q; QSxq

)
W

(
j j′ jabq j′abq

; QIq
)∑

ii′
C

iβq j
n C

i′β ′
q j′

n′ Iiβq,i′β ′
q
, (B4)

where Iiβq,i′β ′
q

represents the double integrals (in ρ and αq) of Vq
Q(R, yq ) between hyperradial and hyperangular basis functions.

Note that the coefficients Nβq,β ′
q

provide the transformations between different sets of Jacobi coordinates and have been
introduced in Appendix A.
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