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Weakly bound halo breakup of neutron-7Li and nucleon-7Be on a lead target
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A comparative analysis of the breakup cross-sections, using continuum discretized coupled-channel approach,
is presented for the weakly bound p-wave neutron-7Li and nucleon-7Be projectiles on the 208Pb target, by
investigating the role of interaction effects between the core (7Li, 7Be) with the target. The extra charge in
the 8B has the effect to increase the Coulomb contribution in the breakup reaction channel. By fixing both
projectile ground-state binding energies at 0.137 MeV (8B experimental one), with incident energies at the
Coulomb barrier and above, we found that the charge difference accounts for over 30% of the neutron- 7Be
breakup cross sections, substantially larger than the corresponding one for proton- 7Be. The large enhancement
of the neutron-halo breakup cross-section with respect to the proton-halo case shown in this work is associated to
dynamical effects coming from the excitation of the projectile internal continuum due to the nucleon-target and
core-target interactions, together with the widely accepted static effects coming from the long wave-function tail
of the weakly bound neutron. The interplay between these dynamical and static effects in the energy spectrum
of the 8B fragments is visible, revealed by the peak of the energy distribution pushed to higher relative energies.
This follows from the two-body final state interactions between the charged fragments distorted by the three-body
reaction environment.
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I. INTRODUCTION

Nucleon-halo breakups have been extensively investigated
over the past few decades, as one can follow through some
text books and available reviews [1–9], from where most
relevant references can be accessed. Among them, several
works can be pointed out closely related to proton- and neu-
tron (n)-halo breakups, as Refs. [10–34]. However, besides
the progress on this matter, a clear understanding of their
similarities and/or differences remains one of the outstanding
issues. The challenge of such comparative study arises from
the fact that it involves many detailed properties, such as
different ground-state configurations, binding energies, core
masses and charges, among others. To focus on the relevant
degrees of freedom, a proton (p) may be replaced by a neutron
(n), keeping the same ground-state binding energy to obtain a
“neutron-halo.” In this case, one does not have to worry about
different core masses and charges, as well as different ground-
state configurations and energies, thus freezing an important
number of these properties. Such procedure was adopted in
Refs. [20,29,34], where the proton in the 8B → 7Be +p sys-
tem was replaced by a neutron (7Be +n), building a fictitious
“8Be” nucleus, keeping the same ground-state configuration
and binding energy. Also, in Ref. [21], a proton in the 16O+p
system was replaced by a neutron (16O+n), for the same
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purpose of understanding the proton-and neutron-halo
breakups. These studies, among many others, have established
that the ground-state binding energy, namely the neutron or
proton separation energy, as well as the proton charge are
the main factors dictating the quantitative difference in the
two breakup processes. When both the proton- and neutron-
halo nuclei are considered as having, respectively, equal
one-proton and one-neutron separation energies, the neutron-
halo breakup cross sections are substantially larger than the
proton-halo ones. This was understood as due to the periph-
eral extension of the neutron-halo ground-state function, with
static effects becoming more relevant than the proton-halo
case due to such peripherality of breakup processes.

The first motivation, to replace a proton by a neutron
in such comparative studies, is to explore the role of the
Coulomb interaction in the three-body dynamics, charac-
terized by the coupling between the initial state with the
nucleon-core continuum. Particularly in Coulomb-dominated
reactions, as in the case of a lead target, the extra charge in the
core/halo are expected to be relevant in the reaction process.
However, not only such dynamical effects are yet to be com-
prehensively established, but also it is not clear whether the
same core nucleus produces similar effects in the proton-and
neutron-halo breakup. To the best of our knowledge, there is
no comparative study along this line.

The second motivation is that the separation between
Coulomb and nuclear cross sections was proved to be unam-
biguously difficult to be undertaken within a single reaction
[27], reinforcing the necessity to perform comparative studies
with other projectiles with the same mass but with different
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charges (in the core or in the halo). Moreover, the interplay of
the static and dynamical effects, coming from the three-body
reaction mechanism, remains to be clarified. Such investiga-
tion, albeit qualitative, would pave the way towards a better
understanding of the similarities and/or differences in the
proton- and neutron-halo breakup, and in addition the role of
the core and its charge in the process.

In this work, we study the breakups of 8B and 8Li nuclei
on a lead target, in an effort to contribute towards a bet-
ter understanding of the proton- and neutron-halo breakup
dynamics. These are two mirror nuclei, having similar ground-
state configurations and atomic masses. When modeled as
two-body proton and neutron halos (8B → 7Be +p, 8Li →
7Li +n), the two 7Be and 7Li core nuclei are as well mirror
nuclei, and their charges differ by one unit. To better study
the static and dynamical effects, we analyze three different
reactions, namely, 7Be +p+208Pb, 7Li +n+208Pb, and the fic-
titious 7Be +n+208Pb. The third reaction is included in our
analysis by considering that both 7Be +n and 7Li +n would
have the same ground-state and continuum wave functions,
leading to similar static effect on the breakup cross sections.
Then, the difference in their dynamics will be due to the
charge of the extra proton in the 7Be with respect to 7Li.
Therefore, the 7Be +n and 7Li +n breakup cross sections on
the same target will provide a better picture on how the dy-
namical effect due to the 7Li-target interaction changes when
the proton in the 7Be +p system is replaced by a neutron. In
particular, with the same ground-state binding energy, we in-
tend to investigate whether the longer tail of the corresponding
wave function alone could justify the substantial enhancement
of the neutron-halo breakup cross section, compared to the
proton-halo breakup.

However, these reactions with heavy target are Coulomb-
dominated, having the Coulomb breakup controlled by dipole
transitions, which according to the first-order approximation
theory [35–38], is directly proportional to the electric dipole
response function, dependent on the effective charge. For the
first-order multipole transition, the 7Be +n system has the
large effective charge, while decreases for 7Be +p and 7Li +n
systems. This implies that considering the same ground-state
binding energy, the electric dipole response function of the
7Be +n will be larger than that of the 7Li +n, even though
they are expected to have similar bound and continuum wave
functions, and hence the total and Coulomb breakup cross
sections of the former system will be enhanced with respect to
those of the latter system, due to the charge of the extra proton
in the 7Be. Our aim is to determine how important these cross
sections are. As the three reactions have different Coulomb
barriers height, VB (49.36 MeV, 38.91 MeV and 28.65 MeV,
respectively, for 8B + 208Pb, “8Be ” + 208Pb, and 8Li + 208Pb
reactions, obtained with the São Paulo potential (SPP) [39]),
with important breakup features occurring around the barrier,
we consider the center-of-mass (c.m.) incident energy Ec.m. at
the barrier and slightly above, with Ec.m./VB = 1.0 and 1.5.
To check the dependence of the results on the ground-state
binding energy, for each reaction, two different calculations
will be performed for separation energies of ε0 = 0.137 MeV
and for ε0 = 2.033 MeV, which are the ground-state binding
energies of 7Be +p and 7Li +n systems, respectively. Our

theoretical approach to obtain the different breakup cross sec-
tions is the continuum discretized coupled-channels (CDCC)
method [40].

In the next Sec. II, we present the model approach, in which
some details on our numerical procedure are in Sec. II C. The
main results are presented in Sec. III, together with the corre-
sponding analysis. Finally, our conclusions are in Sec. IV.

II. MODEL FRAMEWORK

The interaction of a nucleon-core projectile with a target,
in which μcn and μpt are the projectile core-nucleon and
projectile-target reduced masses, respectively, is given by the
three-body Hamiltonian

H3B = − h̄2

2μpt
∇2

R + Upt(r, R) +
[
− h̄2

2μcn
∇2

r + Vcn(r)

]
, (1)

where the projectile core-nucleon Hamiltonian, with the cor-
responding core-nucleon interaction Vcn, is within square
brackets. Upt(r, R) is the optical model potential, with R and
r being, respectively, the projectile-target (pt) and projectile-
core-nucleon (cn), c.m. vectors. As our present study is
concerned with a nucleon-core projectile with eight nucleon,
we also define the core-target (ct) and nucleon-target (nt)
vector positions, respectively, by Rct ≡ R + 1

8 r and Rnt ≡
R − 7

8 r, such that the projectile-target optical potential can
be expressed by the respective nuclear and Coulomb contri-
butions of the nucleon-target and core-target, given by

Upt(r, R) = [
V nucl

ct (Rct ) + iWct(Rct )
] + V C

ct (Rnt)

+[
V nucl

nt (Rnt) + iWnt(Rnt)
] + V C

nt (Rnt), (2)

where Wct(nt) refer to the ct(nt) imaginary terms, which ac-
counts for the projectile flux absorption by the target. The
real and imaginary nuclear terms, as well as the central nu-
clear part of the core-nucleon interaction, Vcn, are generally
expressed by Woods-Saxon form-factors, as

VWS(r) =
{

V0 + Vso
j · I

r

d

dr

}[
1 + exp

(
r − R0

a0

)]−1

, (3)

where the spin-orbit (j · I) contribution Vso is assumed nonzero
only for the core-nucleon system. All the other parameter
definitions, as the interaction range R0 and diffuseness a0 for
the respective two-body interactions will be clarified within
details of our results.

The Coulomb interactions between the charged terms (V C
ct ,

V C
nt and V C

cn, in which the last two are zero when the valence
nucleon is the neutron), with respective electric charges Z1e
and Z2e, can be formally written in terms of the step function
[�(x) = 1(x > 0), 1

2 (x = 0), 0(x < 0)]:

V C (r) = Z1Z2e2

[(
3 − r2

R2
C

)
�(RC − r)

2RC
+ �(r − RC )

r

]
, (4)

where RC (Coulomb radius) defines the internal region.

A. CDCC approach brief description

Within the CDCC approach [40], the eigenstates of
the internal core-nucleon Hamiltonian [inside the total
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Hamiltonian Eq. (1), in which we have the relative core-
nucleon momentum given by k], are expressed as a sum
of radial u

Jp

k�
(r), angular and spin functions, where we also

have the core and proton/neutron internal wave functions
(with the core assumed structureless for the sake of simplic-
ity), with the corresponding set of quantum numbers α ≡
(�, s, j, I, Jp) describing the projectile state, where � is asso-
ciated with the coordinate r, with s and I the nucleon and core
[7Be(7Li)] spins, respectively, and j = � + s and Jp = j + I.

In the asymptotic region, the radial wave functions u
Jp

k�
are

normalized according to

u
Jp

k�
(r)

r→∞→ F�(η, kr) cos δ� j (k) + G�(η, kr) sin δ� j (k), (5)

where δ� j (k) are the nuclear phase shifts and F�, G� the
Coulomb functions [41], given in terms of the Sommerfeld
parameter η = μcn

h̄2
ZcZne2

k and Coulomb phases σ �
η (k).

To describe the breakup process of the projectile, one needs
to consider the exact scattering wave functions in the final
state of the projectile, expanded in terms of the eigenstates
of the internal core-nucleon. With respect to the bound-state
wave function, we need the corresponding replacement of the
quantum numbers α by α0, where α0 ≡ (�0, s, j0, I, J̃0), with
J̃0 = j0 + I , j0 = �0 + s being the quantum numbers iden-
tifying the projectile ground-state. The radial ground-state
uJ̃0

k0�0
(r) is represented asymptotically by Whitaker functions

[41],

uJ̃0
k0�0

(r)
r→∞→ C0W−η,�0+ 1

2
(2k0r), (6)

where k0 = i
√

2μcn|εα0 |/h̄2 (εα0 ≡ −ε0 is the ground-state
energy) and C0 is the asymptotic normalization.

Let 	JM
Kβ

(r, R) be the three-body (c + n + t ) eigenfunc-
tion of Eq. (1), where β ≡ (α0, α), with the c.m. final linear
momentum Kα is related to the initial one Kα0 by energy
conservation, i.e., h̄2K2

α/(2μpt ) + εα = h̄2K2
α0

/(2μpt ) + εα0 ,
where the entrance channel energy is E ≡ h̄2K2

α0
/(2μpt). The

exact three-body wave function, 	JM
Kβ

(r, R), is then approxi-
mated as follows:

	JM
Kβi

(r, R) =
∑

L

Nb∑
i=0

χLJ
αi

(R)

R
GLJ

αi
(r,�R ), (7)

where βi is representing the set of quantum numbers given
by (α0, αi ), αi ≡ (i, �, s, j, I, Jp), and Nb is the number of
bins (i = 0 corresponds to the ground state). χLJ

βi
(R) are

the expansion coefficients, given by the three-body radial
wave functions describing the core-fragment c.m. motion
relative to the target, with linear momenta Kβi , where L is
the R-associated orbital angular momentum quantum number
(with �R the corresponding solid angle). The total angular
momentum quantum number with the respective z projec-
tion are given by (J, M ), where J = L + Jp. The functions
GLJ

αi
(r,�R ) provide the coupling of the direct product of the

projectile wave function 
αi (r) with the corresponding target
angular part, given by

GLJ
αi

(r,�R) = [iL
αi (r) ⊗ YL(�R )]JM, (8)

where, by using the CDCC binning approach [40,42], 
αi (r)
contains the square integrable bin wave functions φ

Jp

ki�
(r) (i =

1, 2, . . . , Nb), which are expressed by [6]

φ
Jp

ki�
(r) =

√
2

πWαi

∫ ki

ki−1

gαi (k) u
Jp

k�
(r)dk, (9)

where gαi (k) is the weight function, with Wαi = ∫ ki

ki−1
gαi (k) dk

the normalization coefficient, such that 〈φJp

ki�
|φJp

ki�
〉 = 1. The

bin momenta ki are obtained by truncating the linear momen-
tum to kmax, within the interval [0, kmax] discretized into bins
of width �ki = ki − ki−1, with each bin energy being

εαi = h̄2

2μcnWαi

∫ ki

ki−1

k2
∣∣gαi (k)

∣∣2
dk. (10)

So, after the projectile eigenstates are expanded in terms of the
above φ

Jp

ki�
(r), and considering the Eq. (7), the corresponding

Hamiltonian eigenvalue equation is represented by the follow-
ing coupled differential equation for the coefficients χLJ

βi
(R):

[
− h̄2

2μpt

(
d2

dR2
− L(L + 1)

R2

)
+ U LJ

βiβi
(R)

]
χLJ

βi
(R)

+
∑
βi 	=β ′

i

U LL′J
βiβ

′
i

(R)χL′J
β ′

i
(R) = [

E − εβi

]
χLJ

βi
(R), (11)

where E is the incident energy. These equations are numeri-
cally solved, with the usual asymptotic conditions,

χLJ
βi

(R)
R→∞→ i

2

[
H−

L (Kβi R)δβiβ
′
i
− H+

L (Kβi R)SJ
βiβ

′
i
(Kβi )

]
,

where H±
L (Kαi R) are the Coulomb-Hankel functions [41],

and SJ
βiβ

′
i
(Kβi ) the breakup S-matrix. In Eq. (11), U LJ

βiβi
(R) =

U LJ
α0α0

(R) + U LJ
αiαi

(R) and U LL′J
βiβ

′
i

(R) = U LL′J
α0αi

(R) + U LL′J
αiα

′
i

(R) are
diagonal and off-diagonal coupling matrix elements, which
couple different states of the projectile after its interaction
with the target nucleus. The potential Upt(r, R) given by
Eq. (2), once integrated on r and angles, can be written as

U LL′J
βiβ

′
i

(R) = 〈GL
βi

(r,�R)
∣∣Upt(r, R)

∣∣GL′
β ′

i
(r,�R)

〉
. (12)

Once Eq. (11) is solved, the differential and integrated expres-
sions for the breakup cross section can be directly obtained
from the corresponding breakup matrix, Sαiα

′
i
≡ Sαiα

′
i
(Kαi )

[27], such that

σ (E ) ≡
∫

d�
dσ (E )

d�

≡
∑

L

σL(E ) ≡ π

K2
α0

∑
JαiLα′

iL
′

2J + 1

2J̃0 + 1
|Sαiα

′
i
|2. (13)

In the above, we are also identifying the partial angular
momentum contribution, σL(E ), obtained from the rearrange-
ment of the summations [27]. From Eq. (13), we can also
extract dσ/dε, the differential cross-section for the relative
core-nucleon energy distribution ε.
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B. Projectile electric response functions

In the asymptotic region, where only Coulomb forces are
available, Upt(r, R) → V C (r, R), can be expanded as

Upt(r, R)
R→∞→ 4πZt e

∑
λ

√
2λ + 1

Rλ+1

[Mε
λ(r) ⊗ Yλ(�R)

]
λ0,

(14)

where Zt e is the target charge, λ the multipole order, with
Mε

λ(r) ≡ ZλrλY μ
λ (�r ) (Zλ is the effective charge) being the

projectile electric operator, given by

Mε
λ(r) = e

[
Zn

(
Ac

Ap

)λ

+ Zc

(
−An

Ap

)λ]
rλYλ(�r). (15)

This equation singles out the core charge relevance in the
neutron-halo Coulomb breakup, where Zn = 0. The Coulomb
breakup in the asymptotic region is known to be directly
related to the projectile internal structure. For the transition
from the ground to continuum, the projectile electric response
function is expressed by

dB(Eλ)

dε
= μcn

h̄2k

∑
Jp

Ĵ2
p |〈(�s) jIJp|Yλ(�r)|(�0s) j0IJ̃0〉

×
∣∣∣∣
∫ ∞

0
dru

Jp

k�
(r)rλuJ̃0

k0�0
(r)

∣∣∣∣
2

, (16)

where the pure continuum wave functions u
Jp

k�
(r) could be re-

placed by the continuum bin wave functions φ
Jp

ki�
(r). However,

in our case, there is no need to do that since the radial integral∫ ∞
0 dru

Jp

k�
(r)rλuJ̃0

k0�0
(r) has no convergence issues. Neverthe-

less, this replacement could be useful for transitions between
continuum states. Following Refs. [35–38,43], one can show
that the Coulomb dipole breakup cross section is related to the
projectile dipole electric function Eq. (16), given by

dσ E1
C

dε
= 32π2

9

(
Zt e

h̄v

)2

zmK0(zm)K1(zm)
dB(E1)

dε
, (17)

where K0(1)(z) are the second kind modified Bessel functions
of order 0(1) [41], with zm, related to the minimum impact
parameter bmin, defined as

zm ≡ ε − ε0

h̄v
bmin = ε − ε0

h̄v

[
ZpZt e2

2E tan(θc/2)

]
, (18)

where θc is the maximum cutoff scattering angle up to which
the Coulomb breakup is dominant.

C. Numerical details and parameters

The physical inputs required for the numerical solution of
the coupled differential Eqs. (11) are described in the follow-
ing, together with the core-nucleon potential parameters, as
well as the parameters of the projectile-target optical poten-
tials. The experimental ground-state (p-wave) energies of the
projectiles 8B and 8Li are, respectively, ε0 = 0.137 MeV and
2.033 MeV [44], with quantum numbers � = 1 and jπ = 2+.
These states are obtained by coupling the proton (neutron) in
the 0p 3

2
orbit with the 3

2
−

ground state of the core nucleus 7Be

TABLE I. Core-nucleon potential depths with respective bind-
ing energies used for the 7Be +p, 7Be +n and 7Li +n systems.
For the spin-orbit part, we have considered a common value Vso =
−19.59 MeV fm2. The range and diffuseness parameters (nuclear
and spin-orbit), are also assumed the same, respectively, Rso = R0 =
2.391 fm, with aso = a0 = 0.52 fm. For 7Be +p we also take RC =
2.391 fm.

System ε0(MeV) −V0(MeV)

7Be +p 0.137 44.65
2.033 49.80

7Be +n 0.137 38.23
2.033 44.25

7Li +n 0.137 38.23
2.033 44.25

(7Li). In addition to the ground state, the 8Li also exhibits an
excited bound state ( jπ = 1−), with energy εex = 0.98 MeV
[44]. The projectile bound and continuum wave functions are
obtained from the solution of the corresponding Schrödinger
equation, using core-nucleon Woods-Saxon potentials, whose
parameters are summarized in Table I. All partial waves
are contributing to the core-nucleon interactions through the
angular momentum dependence of the potential spin-orbit
coupling term, expressed by the Eq. (3), in which a common
value Vso = −19.59 MeVfm2 was assumed.

The parameters for the 7Be +p system were taken from
Ref. [45]. The same nuclear parameters were used for the
7Li +n system, where the depth of the central part was ad-
justed to fit the ground state as well as excited bound-state en-
ergies. The same approach was adopted to the 7Be+n system.

In Table II, we summarize the parameters of the core-target
and nucleon-target optical potentials. The 7Be-target optical
potential parameters are from Ref. [46], with those for 7Li-
target are from the global parametrization of Ref. [47]. Those
for the nucleon-target are from the global parametrization
of Ref. [48]. In the considered incident energy range, the

TABLE II. Potential parameters for 7Be [46], 7Li [47], and nu-
cleon [48] on 208Pb, with real part in the upper block and imaginary
part in the lower one. V0 and WV,S are the central-nuclear, volume (V)
and surface (S) strengths, with R0,V,S and a0,V,S the respective radius
and diffuseness parameters, with RC is the Coulomb radii.

Real −V0 R0 a0 RC

part System (MeV) (fm) (fm) (fm)

7Be + 208Pb 114.2 10.08 0.853 9.41
7Li + 208Pb 114.2 7.595 0.853 9.41
p + 208Pb 43.03 7.37 0.647 7.27
n + 208Pb 29.48 7.37 0.647 –

Imag. −WV RV aV −WS RS aS

part System (MeV) (fm) (fm) (MeV) (fm) (fm)
7Be + 208Pb 12.40 13.63 0.807 – – –
7Li + 208Pb 9.349 10.27 0.809 – – –(p
n
) + 208Pb 4.591 7.32 0.647 6.838 7.38 0.627
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TABLE III. Numerical limiting parameters, used for the radial
integrations (maxima rmax, Rmax, with the respective step sizes �r
and �R), for the angular momenta (�max, Lmax), multipole (λmax), and
for bin energy (εmax).

rmax �r Rmax �R Lmax �max λmax εmax

(fm) (fm) (fm) (fm) (h̄) (h̄) (−) (MeV)

120 0.1 1000 0.05 10000 5 5 10 0.05

7Li-target optical potential parameters did not exhibit any
meaningful dependence on the incident energy, hence the
same parameters were used for both incident energies. Al-
though we have used different nucleon-target optical potential
parameters corresponding to each incident energy, consider-
ing the above mentioned global parametrizations, to be short
only the ones corresponding to Ec.m./VB = 1.5 are explicit in
this table. To minimize the difference in proton and neutron
breakups due to their different potentials, the proton-target
parameters were also used for neutron-target system, with the
required modification in the corresponding depths, V0. The
various integration parameters used in this work are listed in
Table III. They were selected based on convergence require-
ments. The numerical calculations were carried out with the
computer code FRESCO [6].

In Fig. 1, to demonstrate that the CDCC method is quite
appropriate to describe the systems under investigation, we
perform the best fit to elastic scattering cross sections ex-
perimental data as functions of the c.m. angle. The data
results are obtained from Refs. [33,49], for the 8B + 208Pb
and 8Li + 208Pb, respectively. For that, we consider the given
potential parameters (ignoring the spin-orbit terms of the
proton-target and neutron-target potentials). The effect of
breakup processes on both results shown in Fig. 1 could be
further investigated by comparing with the cases in which
only the projectile ground-states are considered. However, this
could be of interest in a different study, as elastic scattering is
not the focus of the present work.

III. RESULTS AND DISCUSSION

A. Electric dipole response and Coulomb dissociation

We start with a brief discussion on the structure of the
projectiles. For that, the ground-state radial wave functions

FIG. 1. Elastic scattering cross sections (units of Rutherford σR),
for the 8B + 208Pb (a) and 8Li + 208Pb (b) reactions, shown as func-
tion of the c.m. angle. Experimental data in panels (a) and (b) are,
respectively, from Refs. [33,49].

and the integrand of the radial integral in Eq. (16) for all
the three systems are presented in Fig. 2. The case where
the pure scattering wave function u

Jp

k�
(r) is replaced by the

bin wave function φ
Jp

ki�
(r) is also shown. The scattering wave

functions were calculated a Ec.m. = 8 MeV, with � = 2, j = 2.
Figures 2(a) and 2(b) show the ground-state wave functions
for ε0 = 2.033 MeV and ε0 = 0.137 MeV binding energies,
respectively. Only for the sake of comparison, the integrands
uJ̃0

k0�0
(r)rλu

Jp

k�
(r) and uJ̃0

k0�0
(r)rλϕαi (r) are shown in Figs. 2(c)

and 2(d), respectively. The wave function ϕαi (r) is defined
in the caption of this figure as a sum of bin wave func-
tions. As expected, it is noticed in this figure that the 7Be +n
and 7Li +n bound-state wave functions are similar. They are
quite extended in the peripheral region when compared with
the 7Be +p wave functions, especially for the lower binding
energy. If we were to consider their respective ground-state
binding energies, then it is clear from Figs. 2(a) and 2(b)
that the 7Be +p wave function has a relatively longer tail
compared to that of the 7Li +n system. Considering the two
integrands, one observes in Figs. 2(c) and 2(d) that they are
much deeper in the interior region (r � 10 fm) for the 7Be +n
and 7Li +n neutron-halo systems than for 7Be +p proton-halo
system, due to the absence of the Coulomb repulsion in the
former cases. In Fig. 2(d), where bin wave functions are used,
we notice, unlike in Fig. 2(c), that the superposition of fifty
bin wave functions with slightly different bin energies soften
the oscillations for distances above 15 fm. This result is sug-
gesting a faster convergence of the radial integral when bin
wave functions are considered. We have also verified that the∫ ∞

0 ϕαi (r)rλϕαi (r)dr converges rapidly. This approach could
be useful to investigate the importance of transitions between
continuum states. However, such study is beyond the present
proposal.

We also compare the dipole electric response functions,
Eq. (16), for the transition the from the p-wave halo ground
state to the continuum s and d states, for the three systems.
The results, obtained by using RADCAPA code[43], are pre-
sented in Fig. 3. They are directly related to the Coulomb
dipole breakup cross section by Eq. (17). Again, the same
two ground-state binding energies (0.137 and 2.033 MeV) are
considered for the three systems.

The electric dipole response function of the 7Be +p system
is much below the ones for 7Be +n and 7Li +n, although at
higher excitation energies (ε = 8 MeV), the 7Be +p response
function slightly overcomes that of 7Li +n, as Fig. 3 shows.
Notice that even though the 7Be charge does not play any
role on the 7Be +n bound and scattering wave functions, at
the first-order transition, the effective charge Zλ of this system
is larger than that of the 7Li +n system. When λ = 1, from
Eq. (15), we obtain Zλ(7Be + n) = −0.5e, Zλ(7Li + n) =
−0.375e and Zλ(7Be + p) = 0.375e. Therefore, the larger
value of the 7Be +n response function compared to the 7Li +n
one can be mainly understood as due to the effect of the
effective charge Zλ. However, we observe that the 7Be +n
electric response function is larger than the 7Be +p one, and
this comes from the difference in their effective charges and
in the radial integrals, while the 7Li +n electric response func-
tion is larger than the one for the 7Be +p system only due to
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FIG. 2. Ground-state radial p waves, for the “8Be”, 8B, and 8Li binding energies 2.033 and 0.137 MeV, as indicated by the legends, are
shown in panels (a) and (b). In panel (c), it is shown the radial integrand of the dipole matrix element (λ = 1) of the ground-state wave
function, with the scattering state j = 2 and � = 2, by considering Ec.m. = 8 MeV for “8Be”, 8B, and 8Li. Panel (d) corresponds to panel (c),
after replacing the scattering state by the bin wave function ϕαi (r) = ∑50

i=1 φ̂αi (r), with the maximum bin energy εmax = 8 MeV. In panels
(c) and (d), the bound-state energies are 2.033 MeV for 7Be +n and 7Li +n, being 0.137 MeV for 7Be +p.

the radial integral, given that their effective charges are similar
in magnitude.

The Coulomb barrier penetrability in the 7Be +p sys-
tem damps the continuum wave function at low energies
in the region where bound proton wave function is rele-
vant (see Figs. 2(c) and 2(d)) with respect to the 7Li +n
one, which explains the strong suppression of the dipole re-
sponse at low energies seen in Fig. 3. Such effect tends to
be less relevant as energy increases and above 7 MeV the
7Be +p dipole response overcomes the 7Li +n one, as the
d-wave contribution becomes enhanced by Coulomb scat-
tering. Owing to the larger importance of dipole transition
in Coulomb breakup, and given that the reactions at hand
are naturally Coulomb-dominated, we expect the Coulomb
and total breakup cross sections to follow the trend of the
dipole electric response functions. Hence, we anticipate that
the conclusions above will remain valid for the breakup cross
sections.

As to expose the dependence of the Coulomb breakup cross
section on the projectile electric dipole response function,
given by Eq. (17), we calculate the 8B + 208Pb first-order
Coulomb breakup cross section, by using this equation, com-
paring the results with experimental data of Ref. [50]. For this
purpose, Fig. 4 is presented, with the Coulomb dissociation
of 8B on 208Pb at 83 MeV/nucleon, in which the 7Be +p re-
sponse function is obtained for the transition from the ground
to s and d states. As shown, the model results are in excellent
agreement with data.

B. Differential elastic breakup cross-sections

To investigate the effects of the charge of the extra proton
in 7Be nucleus compared to 7Li, and that of the proton in
the 7Be + p system, we first consider the differential breakup
cross section. It is well known that in breakup calculations,
convergence of the results is a very crucial issue. There-
fore, the breakup dynamics of the three 7Be +n, 7Li +n, and
7Be +p systems can be as well compared on the ground of the
convergence of their breakup cross sections. To this end, in
Fig. 5 we study the convergence of the angular distribution
breakup cross sections, with respect to bin energies εmax,
for the incident energy above the Coulomb barrier, Ec.m. =
1.50VB; although the convergence was also checked in terms
of the other numerical integration parameters, such as �max.
The results obtained for ε0 = 2.033 MeV are displayed in
the upper panels [Figs. 5(a), 5(c) and 5(e)], with those for
ε0 = 0.137 MeV in the lower panels [Figs. 5(b), 5(d) and
5(f)]. By inspecting this figure, one notices that an excellent
convergence is achieved at εmax = 10 MeV. Therefore, one
can argue that, regarding the maximum bin energy required
for convergence, there is no meaningful difference between
these reactions in the total breakup cross sections angular dis-
tributions. A noticeable point, for ε0=2.033 MeV [Figs. 5(a),
5(c) and 5(e)], is that the convergence rate is faster for 7Be + n
and 7Be + p systems, which correspond to the larger core
charge. A careful look at these results reveals dislocations of
the maxima toward larger angles (with peaks located around
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FIG. 3. Electric dipole response functions, as given by Eq. (16),
for transition from the p-wave halo ground state to continuum s and d
states for 7Be +n, 7Li +n, and 7Be +p systems, for the ground-state
energies ε0 = 0.137 MeV (a) and 2.033 MeV (b).

30◦, 40◦, and 50◦, for 7Be + n, 7Li + n, and 7Be + p systems,
respectively), indicating that the extra 7Be charge tends to
confine the breakup cross section to lower angles, whereas the
proton charge tends to spread it over a larger angular interval.
This tendency also holds for the lower binding energy. The
wide spread of the 7Be + p breakup cross section signals a
breakup delay caused by the proton tunneling through the
core-proton Coulomb barrier, being absent in the other two
projectiles, which can be viewed as another main difference
between proton- and neutron-halo breakups, apart from the
longer neutron-halo ground-state wave function. As this effect
is more pronounced for larger binding energies (when the
breakup is close to the target, within the nuclear-force range),
this spread can be associated with a significant effect of the
nuclear breakup. Therefore, in light of the results in Fig. 5
(εb = 2.033 MeV), one would expect the 7Be + n breakup to
account for the smallest nuclear breakup cross section due
to the 7Be charge, and the 7Be + p breakup to the largest
nuclear breakup cross section, due to the proton charge. As
the binding energy decreases, the breakup process occurs at
large distances, where the Coulomb breakup is dominant due
to long-range nature of Coulomb forces and short-range na-
ture of nuclear forces. This explains the confinement of all
three breakup cross section peaks at small angles (θ � 10◦),
enforcing the conclusion that the spread of the breakup cross
section in the upper panels is actually a nuclear breakup effect.

FIG. 4. Cross section for the Coulomb dissociation of 8B on
208Pb at 83 MeV/nucleon (with v = 0.4065c and θc = 4.3◦, corre-
sponding to bmin = 12.5 fm), as given by Eqs. (17) and (18). The
behavior, given as a function of the core-nucleon relative energy ε, is
compared with data from Ref. [50]. The 7Be +p response function is
calculated for the transition from the ground state to s and d states.

For the respective magnitudes of the three breakup cross
section peaks, the 7Be+p one is verify to be roughly about
one order smaller than the corresponding ones for 7Be +n
and 7Li+n systems, which could be anticipated from Figs. 2
and 3. Also, despite the similarities of the ground and con-
tinuum wave functions of 7Be +n and 7Li +n (displayed in
Fig. 2), the breakup cross section of the latter system is
larger than the former one. Therefore, since the static effect
due to the ground-state wave function is about the same in
both the cases, the difference should come from a three-body
dynamical effect, expressed by the virtual excitation of the
nucleon-core continuum states, associated with a large electric
response function for the 7Be + n system compared to that of
the 7Li + n system (as shown in Fig. 3). It follows that the rel-
evant differences on the breakup cross sections of 7Be + n and
7Be + p cannot be attributed only to the large extension of the
ground-state wave function of the 7Be + n. These results are
clearly emphasizing the dynamical effect of the core nucleus
charge on the breakup process.

The different core-nucleon continuum partial-wave contri-
butions to the differential breakup cross sections, with respect
to the relative energy distributions of the fragments, are shown
in Fig. 6, up to d waves, to further assess the importance of
the core charge and proton charge in the three-body breakup
dynamics, as well as to verify how the transition to continuum
states are affected. As in Fig. 5, both binding energies are
considered for the same incident energy above the Coulomb
barrier. The nucleon-core final state interaction (FSI) reveals
being a dominant mechanism to build the excitation energy
spectrum. The order in which the partial-waves contribute to
the total cross section appear to remain unchanged for all
three systems. The s and p3/2 wave contributions are largely
dominant at lower excitation energies and become substantial
for the lower binding energy. In Fig. 6(e), the p3/2-wave con-
tribution overcomes the s-wave contribution at ε � 1 MeV.
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FIG. 5. The angular distributions of the total differential breakup cross sections, obtained from Eq. (13), are shown in terms of the c.m.
angle of the core with the incident direction, are given at Ec.m./VB = 1.50, in terms of the maximum bin energies εmax (indicated inside the
lower frames), for ε0 = 2.033 MeV (upper frames) and 0.137 MeV (lower frames). Note that in panels (b) and (d), dσ/d� is given in units of
b/sr, whereas in the other cases it is given in mb/sr.

Although there is a qualitative similarity between the results
in Figs. 6(a)–6(f), they reveal the final state interaction due to
the proton-core Coulomb, where the maximum of each partial

wave is pushed to larger values of the relative energy, which
suggest that in the 8B projectile the proton in the halo due to
the Coulomb interaction gains relative momentum. The large

FIG. 6. Total relative angular momentum partial wave contributions to the total breakup differential cross section dσ/dε, given as functions
of the core-nucleon relative energy distributions ε, obtained at Ec.m./VB = 1.50, for the binding energies ε0 = 2.033 MeV (upper frames) and
0.137 MeV (lower frames). The partial waves are being identified inside the lower frames. Note that in panels (b) and (d), dσ/dε is given in
units of b/MeV, whereas in the other cases it is given in mb/MeV.
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FIG. 7. Projectile- 208Pb relative angular distribution of the total
breakup cross sections, for 7Be +n, 7Li +n, and 7Be +p projectiles
at Ec.m./VB = 1.0 [panels (a) and (b)] and 1.5 [panels (c) and (d)],
for ε0 = 2.033 MeV [panels (a) and (c)], and 0.137 MeV [panels (b)
and (d)].

enhancement of the partial waves in particular the s and p3/2

in the neutron-halo case when the neutron-core potential is
tuned to provide a weakly bound p-wave bound state also
enhances the s-wave scattering length, showing such large
grow in partial wave the cross-section shown in Figs. 6(b)
and 6(d). In the proton-halo case, the relative Coulomb barrier
between the fragments, pushes the peaks to higher relative
energies, while damping the magnitude of the cross-section
relative to the neutron-halo cases, owing the the penetration
factor in the Coulomb barrier brought in by the FSI between
the two charged fragments.

C. Angular momentum distribution
of elastic breakup cross-sections

The relevance of the core-target interaction to the three-
body reaction dynamics can be accessed by the projectile-
target orbital angular momentum distributions of the total,
Coulomb and nuclear breakup cross sections, through the
results shown in Figs. 7 and 8, which can better display
the breakup cross section behavior in the interior (nuclear
dominated) and peripheral (Coulomb dominated) regions.
However, separating the total breakup cross section into its
Coulomb and nuclear components is not trivial, due to the
importance of Coulomb-nuclear interference, as discussed in
Ref. [27]. In the present work, we adopt an approximate pro-
cedure, where the Coulomb breakup cross-section is obtained
by switching off the nuclear interaction of the fragments with
the target in the coupling matrix elements, only returning its
diagonal part to account for the nuclear absorption in the
diagonal channel. Likewise, the nuclear breakup cross section
is obtained by switching off the off-diagonal Coulomb inter-
action. This approach, although approximate, has been widely
adopted, since introduced in early works [10,51], to obtain the

FIG. 8. In correspondence with the four panels shown in
Fig. 7, this figure presents the corresponding Coulomb [upper (a)–
(d) frames] and Nuclear [lower (a′)–(d′) frames] breakup cross
sections.

Coulomb and nuclear breakup cross sections. The approach
proposed in Ref. [27] can be a better alternative, although its
numerical implementation is not so straightforward. We then
refer to “total” breakup cross section, the one that is obtained
with both Coulomb and nuclear interactions simultaneously
included in the coupling matrix elements.

For the three core-nucleon projectiles we are considering,
in Fig. 7 we present the corresponding angular momentum
distributions of the total breakup cross sections σ tot

L . The
results are shown for two incident energies (relative to the
Coulomb barrier), with both two binding energies under con-
sideration (2.033 and 0.137 MeV). In Figs. 7(a) and 7(b), for
incident energy at the barrier, where the Coulomb repulsion
is stronger, we notice that σL of both 7Be + n and 7Li + n
systems are similar at very lower angular momenta, whereas
that of 7Be + p is much lower. In the peripheral region (larger
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angular momenta), where Coulomb breakup is dominant, we
notice that the 7Be +n breakup cross section is more extended
than the 7Li +n one. When considering the two lower panels,
Figs. 7(b) and 7(d), for ε0 = 0.137 MeV, a fair similarity
between the results are verified, even though the two panels
correspond to different incident energies. The fact is that for
lower binding energy, the breakup becomes more peripheral,
favoring the Coulomb breakup at the expense of the nuclear
breakup. Because both 7Be +n and 7Li +n systems have sim-
ilar static effects (same ground-state wave function), among
other factors, the difference in their breakup cross-sections
(in the peripheral region) comes from the contribution of the
Coulomb potentials from the charge of the extra proton, in 7Be
nucleus, which is expected to increase the Coulomb breakup
cross section.

The distinctive manifestation of the three-body dynamics
in the inner interaction region, namely, where the nuclear
potentials are active, is illustrated in Fig. 7(c), for Ec.m./VB =
1.5. Here two factors are responsible for the contribution of
the nuclear breakup be enhanced in comparison to the other
panel results: slightly weak Coulomb repulsion and large
breakup probability due to the vicinity of the target (i.e.,
within the range of nuclear forces). This panel shows that
the σ tot

L of 7Be +n system is pushed more towards larger L,
being suppressed for L � 30h̄. In a similar behavior, σ tot

L for
the 7Be +p system is suppressed for L � 20h̄. To understand
this, we recall that we have a Coulomb-dominated reaction
at hand, regardless the ground-state binding energy (as will
be shown), and the Coulomb breakup is dominated by dipole
transition. In an event where the projectile effective charge
interacts with the target charge, one obtains for 7Be +n,
7Li +n, and 7Be +p systems that |ZλZT | = +41e2,+30.75e2,
and +30.75e2. Therefore, in this case, 7Be +n system ac-
counts for the strongest Coulomb repulsion, hence weakest
nuclear contribution. This agrees with our assessment in
Sec. III B, that the extra 7Be proton is to confine the breakup
cross section at lower angles. The difference observed in
the breakup cross sections for 7Li +n and 7Be +p systems
can be, among other factors, ascribed to their different static
effect.

To display the relative relevance of the nuclear (inner
region) and Coulomb (peripheral region) breakup cross sec-
tion angular distribution, shown in Fig. 7, we separate in
two blocks of Fig. 8 the corresponding contributions of
the projectile-target orbital angular momentum distributions.
The Coulomb/nuclear L distributions of the breakup cross-
section are obtained by the upper/lower four blocks, when
the nuclear/Coulomb interactions of the fragments with the
target is switched off in the coupling matrix elements, as we
have previously explained. One observes in this figure the
particular similarity of Figs. 8(a), 8(b) and 8(d) (for σ Coul

L )
with the corresponding Figs. 7(a), 7(b) and 7(d), whereas the
σ nucl

L shown in Fig. 8(c) is similar to the interior region part of
Fig. 7(c).

It is a known fact that, for loosely bound systems, nuclear
forces stretch beyond the Rn = r0(A1/3

p + A1/3
t ) fm. To check

this and better understand the peaks of the different nuclear
cross sections, at specific values of L shown in Figs. 8(a′)–
8(d′), we first determine the corresponding grazing angular

TABLE IV. Grazing angular momenta Lgr, as defined in Eq. (19),
with VB = 38.91, 28.65, and 49.36 MeV for the reactions with pro-
jectiles 8Be, 8Be, and 8Be, respectively, for the given ε0 binding
energies.

Systems 7Be + n 7Li + n 7Be +p

ε0(MeV) 2.033 0.137 2.033 0.137 2.033 0.137

Ec.m. = VB 35 36 30 31 40 41
Ec.m. = 1.5VB 43 44 37 38 49 50

momentum,

Lgr =
√

(2μpt/h̄2)(Ec.m. − ε0) Rn, (19)

which are summarized in Table IV, for r0 = 1.2 fm.
Considering these values and by looking closely to the cor-

responding panels of Fig. 8, one first notices that the nuclear
breakup cross sections are largely extended beyond the graz-
ing angular momenta. For example, in Fig. 8(a′), the 7Li +n
and 7Be +n cross sections are stretched up to L = 40h̄ and
L = 60h̄, respectively, while the respective grazing angular
momenta are Lgr = 30h̄ and Lgr = 35h̄. The longer tails of
nuclear breakup cross sections beyond the grazing angular
momenta, prove that nuclear forces are stretched beyond Rn in
all three cases. Such property is due to the extended tail of the
bound-state wave function of the weakly bound halo nucleon
in the projectile. Looking again closely at the corresponding
panels of Fig. 8, one observes that for the neutron-halo sys-
tems, the different cross section peaks are located around the
grazing angular momenta.

D. Integrated Total, Coulomb, and Nuclear
elastic breakup cross-sections

To get more insight into the conclusions that we are so far
drawing, providing additional relevant elements for a qual-
itative analysis, we consider the integrated total, Coulomb,
and nuclear breakup cross sections, which are presented in
Table V. As anticipated by the analysis of results presented
in Fig. 5, for Ec.m./VB = 1.5, the nuclear breakup is relatively
more important in the 7Be + p system (particularly for larger
binding energies), in comparison to the other two systems, as
can be checked in the table. This is attributed to the breakup
delay caused by the proton tunneling through the proton-7Be
Coulomb barrier, which is a distinctive effect not present in
7Li + n and 7Be + n systems.

Table V also shows a substantial enhancement of the
7Be + n and 7Li + n total and Coulomb breakup cross sec-
tions over their 7Be + p counterparts. When the binding
energy increases (ε0 = 2.033 MeV), the neutron-rich total
and Coulomb breakup cross sections are substantially reduced
compared to their proton-rich counterparts. For instance, by
considering the incident energy at the barrier, the 7Be +p total
cross section is reduced by a factor of about 46, while the ones
for 7Be +n and 7Li +n are, respectively, reduced by a factors
of about 238 and 394.

We recall that the only difference between the 7Be + n and
7Li + n projectile systems is the extra proton charge in the 7Be

064623-10



WEAKLY BOUND HALO BREAKUP OF NEUTRON-7Li … PHYSICAL REVIEW C 102, 064623 (2020)

TABLE V. Coulomb and nuclear integrated breakup cross sec-
tions (in mb units) for the 7Be +p, 7Be +n and 7Li +n reactions on
a lead target at incident energies Ec.m. = VB and 1.50 VB, for ε0 =
0.137 MeV and ε0 = 2.033 MeV binding energies. The last line, for
each incident energy, δBeLi

x ≡ σ
7Be+n
x − σ

7Li+n
x (x ≡ tot, C, nucl) is

furnishing the quantitative effect in the cross sections, provided by a
one-unit-charge difference in the projectile core nuclei.

ε0 = 0.137 MeV ε0 = 2.033 MeV

Ec.m. Systems σtot σC σnucl σtot σC σnucl

7Be +p 524.8 735.5 29.3 11.38 25.40 1.70
VB

7Be +n 11990 13070 205.0 50.42 84.57 3.07
7Li +n 7393 8777 218.2 18.75 26.66 2.48
δBeLi

x 4597 4293 −13.2 31.67 57.91 0.59
7Be +p 732.1 820.8 65.52 21.64 26.07 7.07

1.5VB
7Be +n 10630 12390 186.6 34.94 154.50 4.50
7Li +n 7274 8613 303.0 25.34 64.74 6.12
δBeLi

x 3356 3777 −116.4 9.6 89.76 −1.62

core nucleus. To estimate the quantitative effect of this extra
charge on the different breakup cross sections, we define the
difference δBeLi

x = σ
7Be+n
x − σ

7Li+n
x (x ≡ tot, C, nucl), where

σ
7Be+n
x and σ

7Li+n
x are the integrated breakup cross sections

corresponding to 7Be + n and 7Li + n systems, respectively.
Notice that the nonzero δBeLi

x can only be attributed to the
extra proton charge in 7Be with respect to 7Li. While these
core nuclei charges differ by just one unit, the verified dif-
ference in their breakup cross sections is quite remarkable
for ε0 = 0.137 MeV. Essentially, this table is clarifying that
the dynamical effect of the extra proton’s charge in the 7Be
core nucleus will enhance substantially the total and Coulomb
breakup cross sections, while it lowers the nuclear breakup
cross section. As we have already argued, this effect is mani-
fested through the dipole electric response function, as shown
in Fig. 3.

The effect of the extra charge in the projectile core nucleus
can further be estimated by also considering the ratio δR

x (%) =
δBeLi

x /σ
7Be+n
x , which is presented in the following Table VI.

It is shown that the dynamical effect of this extra charge,
accounts for more than 30% of the 7Li + n total and Coulomb
breakup cross sections for ε0 = 0.137 MeV, and much more
for εb = 2.033 MeV. These results serve to further expose the
importance of the charge of the core nucleus in the breakup
process.

TABLE VI. Ratios δR
x = δBeLi

x /σ
7Be+n
x obtained from the differ-

ences δBeLi
x and the corresponding integrated breakup cross sections

σ
7Be+n
x defined in Table V.

Ec.m./VB ε0 = 0.137 MeV ε0 = 2.033 MeV

δR
tot δR

C δR
nucl δR

tot δR
C δR

nucl

1.0 38% 33% −6% 63% 68% 19%
1.5 32% 30% −62% 27% 58% −36%

IV. CONCLUSIONS

We have presented a detailed comparative analysis of the
breakup cross section of three equal-mass projectiles 8B,
8Li, and “8Be” on a lead target, by considering each projec-
tiles under two possible weakly bound (ε0 = 0.137 MeV and
2.033 MeV) configurations, as 7Be +p, 7Li +n, and 7Be +n,
for incident energies at the Coulomb barrier and above. The
projectile binding energies ε0 = 0.137 MeV and 2.033 MeV,
correspond to the well-known 7Be +p and 7Li +n systems,
whereas the fictitious 7Be +n bound state was assumed with
these energies to provide support to our comparative analysis.
Our main goal was to investigate whether some previous con-
clusions drawn in the study of one-nucleon (neutron or proton)
weakly bound projectiles on a heavy target are exclusively
static effects due to the ground-state binding energy and the
charge of the valence nucleon [20,29]. Thus, we investigated
both the manifestation of the static and three-body dynam-
ical effects in these reactions. To expose the consequences
of the three-body dynamics, we compared the 7Be +n and
7Li +n breakup cross sections. To minimize the effect of
the ground-state binding energy in our calculations, in the
three examples we have assumed the same fixed values ε0

corresponding to the experimental 7Be +p and 7Li +n binding
energies, such that two different calculations were performed
for each reaction. Starting with the internal structures of these
systems, we obtained that although the ground and continuum
wave functions of the 7Be +n and 7Li +n systems are similar,
their dipole electric response functions are quite different,
with that of the 7Be +n system being enhanced due to the
dipole effective charge, which is larger in the latter system
than in former. Consequently, as the reactions are Coulomb-
dominated, with the Coulomb breakup cross section directly
proportional to the dipole electric response function, larger
total and Coulomb breakup cross sections are obtained for
7Be +n than for 7Li +n. Therefore, this point out that the
contribution of the charge of the extra proton in the 7Be +n
core nucleus is relevant for the three-body reaction dynamics.
In fact, it is deduced that the contribution of the extra charge
to the three-body reaction dynamics represents about 30% of
the total and Coulomb breakup cross sections. However, this
effect is negative on the nuclear breakup cross section: it ac-
counts for −62% for the incident energy above the Coulomb
barrier, when ε0 = 0.137 MeV; and about −36%, when ε0 =
2.033 MeV. These results showed that both static and three-
body dynamical effects are behind the relevance of the 7Be +n
breakup cross sections over the corresponding breakups for
7Be +p. For the incident energy above the Coulomb barrier,
it is obtained that the proton tunneling through the proton-
core Coulomb barrier, delays the 7Be +p breakup process,
resulting in a wide spread of the corresponding breakup cross
section over a large angular interval, which increases the nu-
clear breakup contribution. The core charge in the 7Be +n
system confines the breakup cross section at lower angles
(large distances), which results in the increase of the Coulomb
breakup cross section. However, the results indicated that
when a proton is replaced by a neutron in the study of proton-
and neutron-halo breakups, not only this has an effect on the
ground-state wave function, but also affects the interaction of
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the same core nucleus with the target. Therefore, our conclu-
sion is that a large tail of the neutron-halo ground-state wave
function is not the only reason why, when considered identi-
cal ground-state binding energies, neutron-halo breakup cross
sections are larger than proton-halo breakup cross sections, as
it is widely understood.

The angular dependence of the breakup cross section ex-
hibits the strong interplay between static and three-body
dynamical effects, changing the relative importance of the
nuclear breakup against the Coulomb one, as already mention
in Ref. [52]. The Coulomb interaction between the proton
and the core shows its effects in an enhancement of the
forward cross section for the small proton separation energy
(ε0 = 0.137 MeV) in 8B. By increasing this energy to ε0 =
2.033 MeV (as in 7Li +n) the nuclear breakup becomes more
relevant, but its importance depends on the target absorption.
The peak of the spectrum distribution is moved to higher rela-
tive energies, while damping its magnitude with respect to the
neutron-halo case, owing to the Coulomb barrier penetration
factor brought in by the FSI between charged fragments. This
feature of the two-body dynamics immersed in the three-body
system in the proton-halo breakup, evidences once more the
interplay between static and dynamical effects, being unique
for the proton-halo system and not present in the neutron-halo
breakup.

The results and analysis presented here provide further
understanding on the proton-and neutron-halo breakups when
considering heavy target. As for light targets, where the
nuclear breakup is dominant, or medium ones, when the con-
tribution from the nuclear breakup is not negligible compared
to the Coulomb breakup, it would be important to perform
similar analysis. In this case, one would expect that the man-
ifestation of the three-body dynamics from the contribution
associated with the charge of the extra proton in the 7Be
core nucleus to be much less important. Within the same per-
spective, one could also study the dependence of the breakup
process on the mass of the core nucleus. In this regard, the
analysis of 7Be +n, 8Be +n, and 10Be +n breakups on heavy
targets would be interesting, as all three systems have the same
charge, but different effective charges.
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