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In this work, we have developed an extended statistical model to study nuclear multifragmentation reactions
at intermediate energies, and we link the associated observables to the properties of supernova matter. The
canonical thermodynamical model, used for this study, is modified by including inputs from the relativistic
mean-field energy functionals. Even though the length scale of the supernova matter is very large compared to
that of the multifragmentation reaction, we find an isospin observable, the average (Z/N) of the fragments, which
is almost independent of the size of system, and can be directly compared to the estimation of fractionation
in infinite nuclear matter. The isospin ratio (Z/N) of the heaviest cluster produced in nuclear fragmentation
and of the corresponding pasta structure occurring in supernova matter are significantly lower than the spin-
odal estimation in uncharged nuclear matter, due to the presence of lighter isospin symmetric clusters that
dominate the mass fraction in full equilibrium at finite temperature. The screening effect of electrons is also

studied.

DOLI: 10.1103/PhysRevC.102.064620

I. INTRODUCTION

When a massive star has exhausted all its nuclear fuel, it
undergoes a huge explosion known as core-collapse super-
nova. Stellar matter in supernovae experience most extreme
pressure and temperature conditions. During the supernova
collapse the matter can reach temperatures (0.5-30) MeV
and density ~(10719-3) pgy, Where pg &~ 0.15 fm™3 is the
saturation density of symmetric matter [1]. Such matter in-
cludes different phases and the phase transitions between
them. In particular, in the outer layers of the exploding star,
the thermodynamic conditions are such that strong (but not
weak) equilibrium is established and matter is clusterized. To
describe subsaturation supernova and early proto-neutron star
matter, in the recent years, a number of improved equation
of state (EoS) models has been proposed that include the
full nuclear distribution [2—14], but only a few of them have
been used to produce tables which are publicly available [15].
Exploring the effect of the different microscopic ingredients
and their uncertainties is not always simple in these models,
because the impact of the energy functional can be hardly
decoupled from the many-body description of the clusters,
which is not the same in the different models. Some relevant
properties of subsaturation warm supernova matter can be
studied with simpler mean-field-based models including the
full nuclear distribution only for the most abundant very light
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clusters [16-20] and the effect of the heavy clusters in the so-
called single nucleus approximation [21]. In this picture, also
known as “coexisting phase approximation,” the composition
of subsaturation matter is given by the coexistence of a dilute
phase essentially composed of free nucleons, and a dense
phase, given by a single heavy cluster or “pasta structure”;
the finite size of the latter is determined by the competition
between the surface and Coulomb energy. These studies have
outlined the fact that, to reach a reasonably model indepen-
dent description of supernova matter, inputs are needed from
experimental data, and this especially concerns the surface
energy [22] and the in-medium modifications of the binding
energy in the medium [23,24]. This is, at least in principle,
possible since similar thermodynamic conditions as in super-
nova matter can also be obtained in nuclear collisions studied
in terrestrial nuclear experiments, especially the intermediate
energy heavy ion collisions [4,20,23,25-27].

For this reason, it can be useful to have a unique statis-
tical model which is able to describe both dilute supernova
matter and fragmentation experiments within a same formal-
ism [28]. There are, in general, two types of models that
describe intermediate energy heavy ion collisions: (1) Dynam-
ical models, such as, Boltzmann—Uehling—Uhlenbeck (BUU)
model [29,30], antisymmetrized molecular dynamics (AMD)
model [31], isospin-dependent quantum molecular dynamics
(IQMD) model [32] and (2) statistical models, for example,
canonical thermodynamical model (CTM) [33-36], statisti-
cal multifragmentation model (SMM) [37], microcanonical
model [38], grand canonical model [34-36,39]. Though in
principle it is possible to use the dynamical models also for su-
pernova matter [40—42], statistical models clearly provide an
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easier application to the two different environments, provided
equilibrated sources are carefully selected in the experimental
data.

The two main difficulties in transposing the results of
fragmentation experiments analyzed via statistical models to
supernova matter are (1) the fact that the former are strongly
affected by conservation laws [36], and (2) the presence of
the neutralizing electron background in supernova matter,
which modifies the Coulomb properties of the system [23].
These points can only be dealt theoretically, by considering
the different environments in the unified statistical models,
and compute the associated bias. The inclusion of an electron
background is straightforward and can be done within the so-
called Wigner-Seitz approximation. To account for finite size
effects, in this work, we will use the canonical thermodynami-
cal model (CTM) which includes the conservation laws effects
linked to the finite number of particles in the experimental
data. The CTM model has been modified by including the
nuclear interactions from microscopic theory. In doing so, we
built a new nuclear energy-density functional for finite nuclei
to calculate the free energy of the clusters. The bulk con-
tribution of this new functional is obtained using relativistic
mean-field (RMF) approach [43-50]. The surface part of the
energy-density functional is optimized using the experimental
masses of spherical nuclei. With this extended CTM model,
we can study the fragment yields and isotopic distributions
of hot nuclear fragments produced in multifragmentation re-
actions. By increasing the size of the system towards the
thermodynamic limit, we can check which observables are
only marginally affected by finite size effects and can be used
to give quantitative predictions for astrophysical observables,
as well as to pin down the EoS dependence. This latter is an-
alyzed employing two different parametrizations of the RMF
model having large difference in the symmetry energy at satu-
ration density. Finally, to transpose the results to supernova
matter, the CTM model has been additionally modified by
including electrons in the system. To this aim, we consider
clusters as embedded in Wigner-Seitz cell to calculate the
energy difference due to the presence of electrons in the
system.

For this first application, we analyze the average isospin
observable (Z/N) of the clusters produced in finite charged
systems ( heavy ion collisions) as well as in infinite neutral-
ized systems (supernova matter). This observable is chosen
because it fulfills the requirements mentioned above, that is
(1) it has negligible finite size effects, (2) it depends con-
siderably on the symmetry energy. Moreover, this observable
can be directly compared with the spinodal instability direc-
tion of infinite nuclear matter, which was often used in the
literature to estimate the properties of the crust-core tran-
sition in neutron stars [51-55]. This comparison will allow
highlighting the differences between spinodal decomposition
occurring in metastable homogeneous matter, with respect
to statistical equilibrium distributions that are believed to be
explored both in fragmentation experiments and supernova
matter. In particular, the charge content of the heavy clusters
which are present at equilibrium in the surface of hot proto-
neutron stars is important to determine their thermal evolution
[56-58].

This paper is organized as follows: In Sec. II, we give a
brief summary of the CTM formalism and the RMF approach
for calculation of nuclear density functional. In Sec. III, we
present the main results and also try to shed light on the
isospin properties of the clusters produced in the low density
warm nuclear matter. Finally, the conclusions are drawn in
Sec. IV.

II. THEORETICAL FRAMEWORK
A. Canonical thermodynamical model

The canonical thermodynamical model was introduced by
Das Gupta and Mekjian more than 20 years ago [59], and
it is described in details in many subsequent publications
[33]. Here, we only report the basic equations needed for the
present study.

The partition function in the canonical approach for a sys-
tem of Ay nucleons with Ny neutrons and Z, protons inside a
volume V at a given temperature T can be written as

NNz

>0 m
Y N,Z

I’ZNgzl
{nvz

QNO,ZO =

Here, wy 7 represents the partition function of the compos-
ite with N neutrons and Z protons, and the sum is over all
possible break-up channels, satisfying the conservation equa-
tions Ny = Y Nnyz and Zy = Y Zny 7z, where Ny(Zp) is the
total neutron (proton) number in the system, and ny; is the
multiplicity of the (N, Z) composite. The canonical partition
function Qu, 7z can be easily calculated using a recursion
relation [33]:

1
Ono,zo = A ZZ(UN,ZQNOfN,Z[ﬁZ- 2)
0 Nz

Using the recursion relation, the average number of com-
posites is given by

ONy—N.Zy-7

3

nNz =
N.Z N,Z Ozt
To compute Qy, z,, we consider all nuclei (N, Z) within the
boundaries of neutron and proton drip lines. The partition
function of a composite having N neutrons and Z protons is a
product of two parts: one is due to the translational motion and
the other is the intrinsic partition function of the composite:

v .
wyz = h_§<zan)3/2A3/2 X 2z, )

where A = N + Z is the mass number of the composite and V
is the volume available for translational motion. Note that V
will be less than the total volume V, because a fraction of the
volume is excluded by the presence of the other composites.
We use Vy =V — Vp, where the excluded volume Vj is given
by

A
Vo = S 5
0 %”N’Z po(N. Z) ®)

and py is the cluster density. This latter is in principle expected
to be isospin dependent [see Eq. (8) below], which induces
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a self-consistency in the resolution of Eq. (4). In the present
work, following the standard version of the model [33], the
approximation is made in Eq. (5) po(N, Z) & psa, Where pgy
is the saturation density of symmetric nuclear matter taken
as pg = 0.148 fm ™3 for the models considered in this paper.
This leads to the simple expression Vy = Ag/psat, thus avoid-
ing the self-consistency. For nuclei in isolation, the internal
partition function is given by z}\‘,‘tz = exp[—BF (N, Z)], where
F is the free energy of the compbsite, to be specified below.

B. Energy calculation for the composites

The intrinsic free energy of the composites at freeze-out
can be approximated as the sum of a bulk and a surface term:

F =Fbu]k(A’IaT)+F;}urf(A7I9 T)a (6)

with I = (N — Z)/A. Isolating the ground-state energy in the
bulk term leads to:

Fbulk = e(PO(I)» I)A + Ecoul(Aa Z)
+E*A, T)—TS(A, T). @)

In this equation, the first two terms on the right-hand side
represent the bulk nuclear and coulomb contributions to the
ground-state energy, while the third and fourth term represent
the bulk part of the excitation energy and entropy, respectively.

Finite size effects are introduced via the surface free energy
Fort(A, I, T) = o, TYA?3, with oge(I, T) the isospin
dependent finite temperature surface tension. The different
parameters entering Egs. (6) and (7) are detailed below.

The nuclear bulk term e(pg, I) represents the energy per
nucleon of bulk nuclear matter at 7 = 0, isospin asymme-
try I = (po, — pop)/po = (N — Z)/A, and total density po =
Pon + pop, Where po(I) is the saturation density of asymmet-
ric nuclear matter corresponding to asymmetry /. This latter
depends on the empirical nuclear parameters, Leym, Keym, and
Ko as [60]

2
3Loym [ } ®)

1) = 1-—
/00( ) /Osat|: Ksat + Ksym 12

The energy per nucleon of bulk nuclear matter e(p, I),
as well as the associated empirical parameters pgy,
Ko = 9:052at826/8p2|psan Lsym = 3psatdesym/d10|psm and
Koym = 9p2,d*esym/dp?|,,., have been calculated in the
framework of the RMF approach, as detailed in Sec. IIC. In
these expressions, the symmetry energy is introduced with
the usual definition:

p 3%
2 9ol |y

esym(p )= )
Considering spherical symmetry, the bulk Coulomb energy

term is approximated as
Eo(A.Z) = > ez (10)

coul\/1, - 570A1/3’

where ry = (3/ (47 po(I)))"/3.

In principle, the bulk excitation energy and entropy should
also be consistently calculated from the same energy func-
tional used for the ground-state quantities, within a finite

temperature RMF calculation. However, in the mean-field
theory, finite temperature does not affect the energy-density
functional but only the occupation of single particle energies.
As a consequence, the bulk excitation energy and entropy
do not depend on the equation of state through its empiri-
cal parameters, but only on the effective mass and the mass
splitting. On this issue, microscopic approaches such as BHF
and DBHF consistently point towards a positive mass splitting
(m} > m;) in neutron rich matter [61,62] However, the ampli-
tude of the splitting and its density and isospin dependence are
poorely known, and can be hardly constrained by terrestrial
experiments and astrophysical observations [63]. No mass
splitting is assumed in the functionals used in the present
work, and the two functionals have the same effective mass.
Because of the poor knowledge about the isospin dependence
of the effective mass, and to highlight the effect of the em-
pirical parameters, for this first application we have therefore
neglected the functional dependence of E* and S and used
the same low temperature Sommerfeld expansion of the free
Fermi gas approximation which was employed in previous
applications of the CTM [33]:

_ An? 2. _ An?
- 461: ’ - 2€F ’

where ep is the Fermi energy at symmetric nuclear matter
saturation. We expect that this approximation does not affect
the qualitative results of this paper, which is essentially aimed
at exploring the role of light clusters in the thermodynamic
equilibrium. A fully consistent treatment will be however
needed for a direct comparison of the different functionals
with experimental data, and it is left for future work. An alter-
native interesting possibility will be to use phenomenological
parametrizations for the level densities [64], which contain in
an effective way beyond-mean-field corrections to the entropy
term of finite nuclei.

For the calculation of the surface free energy at arbi-
trary proton fractions, we use the expression suggested from
Thomas-Fermi calculations [65] which was later used in many
calculations on neutron star and supernova modeling within
the compressible liquid-drop model [21,66—68]. The temper-
ature dependence is accounted for, by using the expression
proposed in Ref. [33]. Curvature terms are neglected, and the
complete parameterized form of the surface tension is

20t 4 p [TE—TZT/“ 12
@+ or Gy LT

The parameter oy physically corresponds to the surface
tension at zero temperature and zero isospin asymmetry, while
b governs the isospin dependence for moderate asymmetries.
Concerning the p parameter, it governs the behavior at ex-
treme asymmetries. This latter parameter cannot be fixed from
observables of terrestrial nuclei and is characteristic of the
symmetry energy properties of the different functionals [22].

The determination of those parameters for the different
functionals will be explained in Sec. III.

In principle, also the critical temperature 7, entering
Eq. (12) is functional dependent [55]. However, the differ-
ence between the different functionals does not produce any

E* N (1)

2
Osurf = 471500 |:
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measurable effect at the temperatures we will be interested in.
We have therefore fixed 7, = 18 MeV.

C. Bulk matter functional

The RMF approach, a relativistic description of nuclear
matter within a field theoretical framework, has been em-
ployed to obtain the bulk energy of the composites. In the
conventional RMF theory [50] nucleons are treated as el-
ementary particles and interactions between the nucleons
are mediated by the exchange of scalar-isoscalar o, vector-
isoscalar w, and vector-isovector p mesons. These o, w, and
p mesons are described here by ¢, V¥, and b* fields, respec-
tively. In this theory, several self- and cross-interaction terms
of the mesons are also used to yield the saturation properties
correctly and vary the density dependence of symmetry en-
ergy. The Lagrangian density for the extended RMF model
can be written as

EZ Z£i+£o+£w+ﬁp+£wp’

i=p,n
where the nucleon Lagrangian reads
L; = Yily,iD" — M*1y;,
with
iD* = ig" — g,VF — gz—pr "
M* =M — g,¢.

The mesonic Lagrangians are given by
L, = +2(,09%6 — M6 — 2xd® — —2g*
7 2\ ¢ 3 12 ’
1 v 1 2 N 1 4 nN2
L, = _ZQWQ + zvauV + IégU(VMV ), (13)

1 1
L, = _ZB/w B+ Emibu - b,
where Q =09,V,-9,V,, B, =9d,b,—0b, —
go(b, x'b,), and 7 are the Pauli matrices. The mesonic
Lagrangian is supplemented with the following nonlinear
term that mix the w and p mesons,

Lop = Mgigoby - bV, VE (14)

This nonlinear w—p mixing term in the RMF Lagrangian
allows us to vary the density dependence of symmetry energy,
hence to study the effects symmetry energy on cluster forma-
tion [69].

A set of field equations can be derived from the above
Lagrangian density by using the Euler-Lagrange equation.
These field equations are nonlinear coupled equations and
very hard to solve exactly. However, these equations can be
simplified and solved self-consistently by adopting mean-field
approximation, i.e., the meson-field operators are replaced by
their expectation values. The ground-state energy per baryon
of the system as a function of nucleon number density p
and isospin asymmetry / can be expressed in terms of model

TABLE I. EOS parameters calculated at saturation density for
NL3 and NL3wp6 models.

Lo EO KO QO Esym Lsym Ksym
Model (fm™) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV)
NL3 0.148 —16.25 271.6 2055 374 1185 100.9

NL3wp6 0.148 —16.25 271.6 2055 31.7 553 =75

parameters and mesonic mean fields as

(IR >
> F/ dpp* /P> + M*> + g, Vop
0

i=p,n

e(/)»l):[

8o 1 2 2,2 K 3 Ay
LA (v adl il
+ 5 003+2(( @) +ms¢)+3!¢ +4!¢

1 gt
- E((VVO)2 +m?V@ + B VO4)

1
- E[(Vb0)2 + mib%] -ANg gf) Vi bé:| /,0 -M,

15)

with nucleon effective mass M* = M — g;¢.

The parameters of the models are the couplings of the
mesons to the nucleons g, gy, and g,, the nucleon bare mass
M, the meson masses, the self-interacting coupling constants,
k, A, and &, and the coupling constants of the nonlinear mixing
term, A,. In the literature, these free parameters are deter-
mined by fits to experimental data, with the exception of A,
that is tuned to explore different density dependencies for the
symmetry energy. For our calculations, we use the parameter
sets NL3 and NL3wp6 [55,70]. These two parameter sets
only differ from one another by the strength of the coupling
parameter A,.

III. RESULTS AND DISCUSSION

For our study, we have employed two different versions of
the RMF model, namely, NL3 and NL3wp6. The values of
the isoscalar and isovector EoS parameters at the saturation
density for these two models are listed in Table I. These
two models have the same equation of state for symmetric
nuclear matter, but their symmetry energy behavior is strongly
different. Specifically, NL3 model has significantly stiffer
symmetry energy compared to the NL3wp6. Such choice of
the models allows us to examine the effects of symmetry
energy on various observables obtained within the extended
CTM calculation.

A. Ground-state properties

We first examine the difference between the ground-state
properties of nuclei, as implied by the choice of the two
different functionals, within the simple liquid drop treatment
presented in Sec. II B.

This different behavior modifies the saturation proper-
ties of nuclear matter, and therefore the internal density
of the fragments that are produced in the thermodynamic
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FIG. 1. Bulk symmetry energy per particle (left part) and ground-state surface tension (right part) as a function of the Z/N ratio of the

clusters for NL3 (solid blue) and NL3wp6 (dashed red) models.

equilibrium, as shown in the left part of Fig. 1. We can see
that for moderate isospin asymmetries the symmetry energy
is higher with the stiffer parameter set, while the opposite is
true at high isospin values close to the neutron dripline. We
can anticipate that in the case of the NL3 set, we will predict
in very asymmetric systems a non negligible probability for
exotic clusters, which correspond to an increased binding.

However, to understand the consequence of the symmetry
energy properties on the matter composition, one needs to
examine the behavior of the surface energy Eq. (12), which
also depends on the adopted energy functional. In this equa-
tion, the parameters oy and b are determined by fitting the
experimental binding energies of the spherical magic nuclei,
(40,20), (48,20), (48,28), (58,28), (88,38), (90,40), (114,50),
(132,50), and (208,82). As already mentioned, the p parameter
governs the behavior at extreme asymmetries and it cannot be
fixed from observables of terrestrial nuclei [22]. For a given
functional (see Sec. II C), we obtain the value of p by impos-
ing that at zero temperature the crust-core transition density
calculated from the crust modeling with this same parameter
set, using the technique of Ref. [22], is consistent with the
value obtained from the dynamical spinodal analysis given in
the literature [53,54]. For more details, see Ref. [22].

The resulting behavior of the surface tension for the two
functionals used in this work is displayed in the right part
of Fig. 1 as a function of the asymmetry, and the values of
the different parameters are reported in Table II. We can see
that the NL3 model corresponds to a lower surface tension
for all isospin values. For nuclei of moderate asymmetries,
the higher bulk energy of NL3 observed in the left part of

TABLE II. Surface parameters for the two chosen functionals
obtained from the fitting of the nuclear masses along with the the
crust-core transition density (see text).

Model p oo (MeV fm™2) b
NL3 2.82 1.1208 £ 0.0019 3.9416 + 0.2312
NL3wp6 2.65 1.1173 £ 0.0018 12.9670 + 0.5046

Fig. 1 is thus compensated by a lower surface energy. This
can be understood from the fact that the global (bulk and
surface) binding energy is constrained by the experimental
data. However, at high I values, the lower symmetry energy
of the stiffer functional NL3 corresponds to a surface energy
which is also reduced, leading to a global higher binding in
NL3 for very asymmetric nuclei. This is understood from the
well known correlation between the Ly, parameter and the
transition density [22]: The very low transition density of NL3
implies a faster reduction of the surface energy as a function
of the isospin.

An immediate consequence of these observations is the
shift in the dripline between the two functionals. In Fig. 2 we
present the neutron and proton driplines which are obtained
using these models. We can see that NL3 and NL3wp6 have
almost identical proton dripline, but different neutron dripline,
as expected from their different symmetry energy properties
discussed above. Specifically, the increased stability of neu-
tron rich clusters in NL3 leads to a shift in the neutron drip
line that can attain five units for the heavier isotopes. One
could expect that an even increased effect could be observed

100
— NL3

— — NL3wp6
80 b

60 - i
N | P

40 2 7

20 N

L L L 1 1 1
0 30 60 90 120 150

N

180

FIG. 2. Neutron and proton dripline for NL3 (solid blue) and
NL3wp6 (dashed red) models.
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FIG. 3. Difference between theoretical and experimental energy
per particle of some selected symmetric nuclei as a function of their
mass number.

if the possibility of a neutron skin was included in our simple
parametrization.

In spite of their very different properties concerning
dripline nuclei, the NL3 and NL3wp6 functionals can be
hardly discriminated from laboratory experiments. This is
shown in Fig. 3, where we show the difference between the-
oretical and experimental binding energy per nucleon for the
nuclei used in the fitting protocol. One can notice from the
figure that both models reproduce the experimental nuclear
masses at the same level of precision: the error in the binding
energy per nucleon is not more than 200 keV for the lighter
nuclei, and much smaller for A > 100 which will be the focus
of the successive analysis.

0.2 ‘ T

-
[}
s 01F
<

= O0F

m” -

£ -0.1F

S L
0.2
0.2

w2 OF
m° -
2 -0.1
m -
) \ \ \ \ \
055 06 07 08 09 1 1.1
Z/N

A comparable quality of reproduction is observed for the
nuclei which are not included in the fit. This can be appre-
ciated from Fig. 4, which displays the difference between
measured and calculated binding energies along the isotopic
chains, for the semimagic nuclei Ca, Ni, Sn, and Pb. We can
again observe that the two functionals perform equally well,
except a better reproduction of light neutron rich nuclei for the
softer symmetry energy case. This latter observation tends to
favor a soft symmetry energy behavior. However, the evidence
is not compelling because it is well known that liquid drop
formulas based on a leptodermous expansion as the one used
here, are not very realistic for light nuclei.

In particular, to improve the description for further ap-
plications to multifragmentation, where intermediate mass
fragments are copiously produced, we plan to add curvature
terms. Indeed it was recently shown [71] that the surface ten-
sion parametrization Eq. (12), with the inclusion of curvature
terms, leads to an extremely precise reproduction of complete
extended Thomas-Fermi calculations for all proton fractions.
We expect that such refinements, which are necessary for a
better prediction power of data, might reduce the correlation
between the bulk properties of matter and the experimental
observables.

B. Nuclear distributions at finite temperature

This improved model can in principle be applied both to
study multifragmentation reactions and the properties of hot
stellar matter at subsaturation densities. For this latter appli-
cation we should let both the particle number and the volume
to infinity such as to reach convergence of the observables
in the thermodynamic limit. Such a study additionally allows

0.2

6—o NL3 _
&—eo NL3wp6
0.2 | \ \
’ 0.6 0.7 0.8 0.9
Z/N

FIG. 4. Difference between theoretical and experimental energy per particle vs. proton to neutron ratio Z/N for different Z values (a) 20,

(b) 28, (c) 50, and (d) 82, for the for NL3 and NL3wp6 models.
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FIG. 5. (Z/N) of the clusters as a function of their size, with (lower panels) and without (upper panels) the Coulomb screening effect from
the electron background. Left (right) panels: NL3 (NL3w6). In all panels, T =4 MeV, Y, = 0.3, and p/py = 0.25. The horizontal lines give
the global Z/N of the system. The total number of nucleons considered in each simulation is also given.

estimating the bias which is done when extrapolating labora-
tory results to the supernova context. For this first application
of the model, we study the mass distributions and the frac-
tionation properties of the system as measured by the average
isotopic ratio of the fragments, and their dependence on the
different environments, namely, (1) nuclei produced in mul-
tifragmentation reactions, i.e., at finite temperature but finite
size and no lepton in the system, (2) hot nuclei along with the
electrons, which will represent the supernova environnement
in the thermodynamic limit.
The isotopic ratio is defined for each mass number A as

<£><A> _ Xy S man
N D N NA-N

; (16)

where the sum runs from the proton to the neutron dripline,
and ny 7z is given by Eq. (3). For all cases we consider a fixed
thermodynamic condition typical for supernova matter stud-
ies, namely a temperature T = 4 MeV, proton fraction Y, =
0.3 and density p/pp = 0.25. Changing this thermodynamic
condition obviously changes our quantitative results, but not
the qualitative observations on the fractionation properties in
multifragmentation and stellar matter.

In Fig. 5 we present the variable (Z/N) of the fragments
as a function of their mass number for case (1), namely,
nuclei produced in multifragmentation reactions, and for case
(2), fragments in the presence of leptons to maintain the
global charge neutrality. For a uniform distribution of protons
and neutrons, we would expect (Z/N) =Y,/(1 —Y,) ~ 0.43.
The well-known fractionation phenomenon [72], that is the

fact that the heavy fragments representing the liquid fraction
of the system are more isospin symmetric than the global
system, is clearly observed. The excess neutrons are mostly
present in the form of free neutrons, with a free nucleon ratio
no.1/n1. of the order ~1073(~10~*) without (with) the elec-
tron background, almost independent of the functional. For all
considered cases, the isospin content of the fragments below
A = 50 is remarkably independent of the size of the source.
Moreover, it is only very marginally affected by the presence
of the electron background. This means that the results from
fragmentation experiments can be extrapolated to supernova
matter. The only difference stems from the endpoint of the
curves, that reflects the presence of a heavy residue. Such
residue is obviously limited by the finite size of the system in
multifragmentation experiments, while it corresponds to the
pasta structures in stellar matter.

The other common feature of the different calculations is
the presence of staggering effects, which are understood as
due to the fluctuating number of isobars existing between
the driplines, and entering in the sums of Eq. (16). These
fluctuations are very important for light nuclei, while the
effect fades away with increasing mass number. This effect is
more pronounced in the NL3wp6 model because of the lower
number of isobars between the driplines; see Fig. 2.

Concerning the effect of the functional, we can also see that
the stiffer model (NL3) leads to an increased fractionation ef-
fect, that is an increased difference between the minimum and
maximum isospin as a function of the size, while the softer
NL3wp6 model the isospin content is almost independent of
the fragment size.
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FIG. 6. Cluster multiplicity as a function of their size, with (lower panels) and without (upper panels) the Coulomb screening effect from
the electron background. Left (right) panels: NL3 (NL3wp6). In all panels, T = 4 MeV, Y, = 0.3, and p/py = 0.25. The total number of

nucleons considered in each simulation is also given.

A complementary information is given in Fig. 6, which
shows the abundancy of the different cluster sizes for the
two models. We can see that in case of nuclei produced
in multifragmentation reactions (upper panels), the distribu-
tions strongly depend in a non trivial way on the global
size of the system. Very interestingly, the symmetry energy
is seen to have an important effect on the global shape of
the distributions. In the previous section we have seen that
the symmetry properties of NL3 lead to a lower surface ten-
sion and an increased binding for neutron rich nuclei, and
correspondingly more extended driplines. As a consequence,
intermediate mass fragments are more copiously produced,
filling the dip that we can observe in the case of NL3wp6
between the very light fragments (“gas” component) and the
heavy residue (“liquid” component). This is especially evident
for the lowest system size (black lines in Fig. 6). The lower
part of Fig. 6 corresponds to the case of matter neutralized
by an electron background. In this case, the global pattern is
the one expected from previous studies in subsaturation stellar
matter [16-20], namely, the coexistence of a heavy component
(“pasta” structure) with a nuclear gas given by a distribution
of light constituents, exponentially decreasing with the cluster
size. We can see that the distribution of the gas is independent
of the total number of particles included in the calculation of
the partition sum up to A ~ 25. Conversely, the size of the
pasta structure is seen to linearly increase with the total system
size. For the present thermodynamic conditions, the expected
size of the pasta is of the order of A ~ 1000 [73], which ex-
plains why no convergence is observed on the high mass part
of the curve. Even if we cannot estimate the average pasta size,
we can see that a nice scaling is observed for the distributions,

such that we can give convergent predictions for the mass
fractions of the different components, as well as their average
isotopic ratios. These fractions are reported in Table III. The
gas component is defined as the exponential distribution, up to
the cluster size Anin at which the multiplicity distribution of
Fig. 6 shows a minimum. The sizes A > A, are considered
to give the heavy pasta component.

We can observe that in this relatively high density con-
dition, close to the core-crust transition in neutron stars, the
heavy fragments exhaust most of the mass fraction (Xpeayy) as
expected. The complementary mass fraction corresponding to
the gas however is not only constituted by free nucleons (Xy),
but a nonnegligible fraction of the mass (Xjign) is bound in
light clusters with 2 < A < Anin- This is especially true in the
case of NL3, where the light clusters constitute almost 30%
of the mass fraction of the gas. The presence of clusters of all
sizes in the full thermodynamic equilibrium considered here,
modifies drastically the isospin distribution with respect to the
expectation in a two-phase coexistence scenario. Similar to
a phase coexistence, the dilute (dense) phase given by free
particles (heaviest cluster) is more (less) neutron rich than the
global system, but the clusters of intermediate sizes exhibit
a complex patters, and an important number of protons is
bound in relatively small clusters with average mass number
(A) < 10 (see Table III), rather than in the pasta structure as
it would be the case in a simple two-component system. As
a consequence, the average proton to neutron ratio of the gas
component ({Z/N) g, in Table III) is three orders of magnitude
higher than the free proton to neutron ratio ng; /1.

Finally, we look into the average (Z/N)max. i.e., the max-
imum value of average (Z/N) of a fragment among all the
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TABLE III. Predictions from NL3 and NL3wo6 models of the matter composition at 7 = 4 MeV, ¥, = 0.3, and p/py = 0.25. Electron

screening is included. See text for more details.

Model Xheavy Xiight Xy (A) (Z/N )neavy (Z/N) gas (Z/N)iignt no,1/M10
NL3 0.908 0.028 0.064 8.178 0.475 0.119 0.413 1.5x 1074
NL3wp6 0.932 0.004 0.064 5.246 0.472 0.030 0.518 1.2 x 1074

fragments produced in the system. As it can be appreciated
from the comparison of Figs. 5 and 6 and is expected from
general fractionation arguments, the most symmetric clusters
correspond to the heaviest ones, and therefore (Z/N)max can
be assimilated to the pasta structure of the single nucleus
approximation. Indeed, even if the system size considered in
Fig. 5 is not sufficient to lead to convergent results for the size
of the pasta structure in supernova matter, its isospin content
is remarkably independent of the size.

In Fig. 7, we have plotted the average (Z/N)nax as a func-
tion of the number density p/po for proton fraction ¥, = 0.3
and 0.4, using the two different functionals. The curves with
different colors represent different environments for the nu-
clear system while the same temperature T = 4 MeV is kept
for all the cases. One can see that though the isospin content

< Z/N >
(=]
~J
T
|

0.5

04H—F—F—F—F—F—F—F——F—

09 n
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with electron background —
spinodal calculation

‘ \ \ \ \ \
04 0.15 0.2 0.25 0.3 0.35

0.5 (b)

P/p,

FIG. 7. (Z/N)max of the clusters as a function of density p/po
of the system for different cases. The temperature is fixed to
T =4 MeV and Y, =0.3 (upper panel) and Y, =0.4 (lower
panel). Results with the NL3 (NL3wp6) are given by full (dashed)
lines. Results are also compared with the thermodynamic spinodal
calculation.

of the dense fraction obviously scales with the global proton
fraction of the system, it is much less affected by the other
parameters. The influence of the density is negligible, and the
same is true for the effect of the functional. The only sizable
effect is the one induced by Coulomb screening in the case
of stellar matter, which leads as expected to slightly higher
values for the charge content of the cluster.

We have also compared our results with the ratio 8p,, /80,
giving the instability direction in a thermodynamic spinodal
instability calculation [55]. We can see that the spinodal insta-
bility corresponds to a much higher fractionation than the one
observed in the CTM model, and this is true for both models
and all thermodynamic conditions. This might be surprising
considering that the spinodal instability is thought to give
a good estimation of the properties of clusterized matter at
densities close to the transition to uniform matter, at least
concerning the expected cluster sizes and transition densities
[16,55,73]. A possible explanation could lie in the fact that the
equilibrium isospin content is here compared to the prediction
from the thermodynamical spinodal, which does not consider
Coulomb and surface effects [74,75]. However, this does not
seem a realistic explanation since it was shown for a large
number of models including NL3 that the thermodynamic in-
stability direction is very close to the one deduced from finite
size fluctuations (compare for example Fig. 3 of Ref. [74] with
Fig. 6 of Ref. [75]).

The explanation of this important discrepancy has rather
to be looked for in the presence of a large number of clusters
of different sizes in the full thermodynamic calculation of the
finite temperature equilibrium. These clusters do not consider-
ably reduce the mass fraction associated to the pasta structure,
but they increase the proton fraction of the gas, thus modifying
the fractionation properties.

IV. CONCLUSION

In this work, an improved version of the canonical ther-
modynamical model (CTM) of nuclear multifragmentation)
[33] was introduced, where the liquid-drop model-based clus-
ter functional is replaced by an improved functional, with
bulk properties fixed from microscopic RMF calculations
and surface properties optimized on experimentally measured
mass of spherical nuclei, as well as on the microscopically
evaluated crust-core transition density of neutron stars. This
improved CTM allows pinning down the influence of the
nuclear functional, and particularly the symmetry energy, on
nuclear multifragmentation observables. Moreover, pushing
the calculations to the thermodynamical limit and introducing
the effect of an electron background, we can determine the
observables which are less perturbed by finite size effects and
that can give reliable extrapolations to the properties of sub-
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saturation density warm stellar matter, such as it can be found
in supernova matter in the cooling of proto-neutron stars.

For this first application of the model, we have concen-
trated on the mass distributions and isotopic properties of
clusters produced in different environments. We have seen
that the behavior of the symmetry energy impacts in an im-
portant way the mass distributions of neutron rich sources,
which could be tested in multifragmentation experiments. The
average (Z/N) of the clusters, as a function of the cluster size,
is found to be nearly independent of the size of system for the
different environments considered in our study, and to show
a very weak dependence on the behavior of the symmetry
energy. The well-known fractionation phenomenon, with the
dense part of the system more isospin symmetric than the
global system, is observed. However, the degree of fractiona-
tion is strongly reduced with respect to the expectations from
a phase coexistence in a two-component system. We interpret
this finding as an effect of the complex composition of matter

at finite temperature, that cannot be reduced to a single heavy
nucleus (or “pasta” structure) and a nucleon gas. Finally, the
fraction of light clusters in supernova environnement as well
as their average size shows a clear dependence on the sym-
metry energy, the stiffer model leading to an increased light
cluster fraction and increased cluster size.

For a future work, it will be very interesting to quanti-
tatively compare the size and isospin ratio of the heaviest
cluster obtained including the full CTM cluster distribution,
with a pasta calculation using the same energy functional, and
compute the associated impurity factor which enters in the
cooling dynamics of proto-neutron stars [58].
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