
PHYSICAL REVIEW C 102, 064619 (2020)

Kinetic-energy dissipation and fluctuations in strongly damped heavy-ion collisions
within the stochastic mean-field approach

Sakir Ayik 1,* and Kazuyuki Sekizawa 2,3,†

1Physics Department, Tennessee Technological University, Cookeville, Tennessee 38505, USA
2Center for Transdisciplinary Research, Institute for Research Promotion, Niigata University, Niigata 950-2181, Japan

3Division of Nuclear Physics, Center for Computational Sciences, University of Tsukuba, Ibaraki 305-8577, Japan

(Received 24 September 2020; accepted 17 November 2020; published 22 December 2020)

Background: Microscopic mean-field approaches have been successful in describing the most probable reaction
outcomes in low-energy heavy-ion reactions. However, those approaches are known to severely underestimate
dispersions of observables around the average values that has limited their applicability. Recently it has been
shown that a quantal transport approach based on the stochastic mean-field (SMF) theory significantly improves
the description, while its application has been limited so far to fragment mass and charge dispersions.
Purpose: In this work, we extend the quantal transport approach based on the SMF theory for relative kinetic
energy dissipation and angular momentum transfer in low-energy heavy-ion reactions.
Methods: Based on the SMF concept, analytical expressions are derived for the radial and tangential friction and
associated diffusion coefficients. Those quantal transport coefficients are calculated microscopically in terms of
single-particle orbitals within the time-dependent Hartree-Fock (TDHF) approach.
Results: As the first application of the proposed formalism, we consider the radial linear momentum dispersion,
neglecting the coupling between radial and angular momenta. We analyze the total kinetic energy (TKE)
distribution of binary reaction products in the 136Xe + 208Pb reaction at Ec.m. = 526 MeV and compare with
experimental data. From time evolution of single-particle orbitals in TDHF, the radial diffusion coefficient is
computed on a microscopic basis, while a phenomenological treatment is introduced for the radial friction
coefficient. By solving the quantal diffusion equation for the radial linear momentum, the dispersion of the
radial linear momentum is obtained, from which one can construct the TKE distribution. We find that the
calculations provide a good description of the TKE distribution for strongly damped events with large energy
losses, TKEL � 150 MeV. However, the calculations underestimate the TKE distribution for smaller energy
losses. Further studies are needed to improve the technical details of calculations.
Conclusions: It has been shown that the quantal transport approach based on the SMF theory provides a
promising basis for the microscopic description of the TKE distribution as well as the isotopic distributions
in damped collisions of heavy ions at around the Coulomb barrier.
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I. INTRODUCTION

The nuclear dissipation plays a major role in nuclear
dynamics such as heavy-ion collisions as well as nu-
clear fission. In order to understand the nuclear dissipation
mechanism, a large amount of investigations have been car-
ried out both experimentally and theoretically over many
years [1–4]. In low-energy heavy-ion collisions at around
the Coulomb barrier, the one-body dissipation-fluctuation
mechanism originating from nucleon exchange is essential.
The time-dependent Hartree-Fock (TDHF) approach provides
a microscopic basis for describing dissipative collisions at
low energies. It incorporates with the one-body dissipation
mechanism and successfully describes the most probable dy-
namical path of reaction dynamics [5–11]. However, it is well
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known that the mean-field treatment of the TDHF approach
severely underestimates dynamical fluctuations around the
most probable path. Recent applications of the so-called time-
dependent random phase approximation (TDRPA), which is
based on the generalized variational principle of Balian and
Vénéroni [12–14], provides a possible prescription for cal-
culating dispersions of one-body observables in low-energy
heavy-ion reactions. The latter approach has been applied
to calculate mass and charge dispersions in heavy-ion col-
lisions [15–18]. Although there was an attempt to quantify
kinetic energy fluctuations in dissipative collisions in the
past [19], its practical applications are still scarce. This work
is the first step toward the fully microscopic description of
dissipation and fluctuations of the relative motion of colliding
nuclei based on an alternative approach, the stochastic mean-
field (SMF) theory [20,21].

It is crucially important to develop a microscopic basis
for describing fluctuations in the kinetic energy dissipation
for providing a reliable prediction for producing unknown
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unstable nuclei. In recent years, deep-inelastic collisions
such as multinucleon transfer and quasifission processes
have engaged substantial interests, regarding the possibility
of efficient production of unknown neutron-rich heavy nu-
clei. Production of transactinide nuclei in the superheavy
region in deep-inelastic or quasifission type processes in
damped collisions of two heavy nuclei has been explored.
Besides, multinucleon transfer reactions at energies around
the Coulomb barrier are expected to be useful to produce
neutron-rich heavy nuclei along the neutron magic number
N = 126. (See, e.g., Refs. [22,23], for recent reviews.) To
provide a reliable prediction for production of yet-unknown
unstable nuclei, it is of paramount importance to properly
describe not only dispersions of mass and charge of reaction
products, as was greatly improved by the recent developments
of the SMF approach [24–31], but also the distribution of
dissipated relative kinetic energy during the collision. The
latter is directly connected with excitation energies of reaction
products, which should not be too large to maximize the pro-
duction yield. Regarding the ongoing worldwide experimental
effort aiming at producing unknown neutron-rich heavy nu-
clei [23,33–40], it is an imperative task to develop a fully
microscopic framework for dissipation and fluctuations of the
relative motion of colliding nuclei associated with nucleon
exchange.

In this work, we develop a quantal transport formalism for
dissipation and fluctuations of the relative kinetic energy and
the relative angular momentum transfer based on the SMF
approach. Analytical expressions for the radial and tangen-
tial friction and associated diffusion coefficients are derived
on the microscopic basis. As a first step toward the fully
microscopic description of energy and angular momentum
dissipation in low-energy heavy-ion reactions, in the present
work, we consider dissipation of the relative radial linear mo-
mentum, neglecting its coupling with the angular momentum
transfer. The kinetic energy dissipation in the collision of
136Xe + 208Pb at Ec.m. = 526 MeV is analyzed with the newly
developed approach and the total kinetic energy (TKE) distri-
bution is compared with the available experimental data [33].

The article is organized as follows. In Sec. II, we present
derivation of the Langevin equations for the relative radial
momentum and the orbital angular momentum. In Sec. III,
quantal expressions of diffusion coefficients for the radial and
angular momenta, and the joint probability distribution func-
tion for these quantities are given. In Sec. IV, the numerical
results of the TKE distribution for the 136Xe + 208Pb reaction
at Ec.m. = 526 MeV are presented and compared with the
experimental data. A summary and conclusions are given in
Sec. V.

II. FLUCTUATION OF THE RELATIVE MOMENTA
WITHIN THE SMF APPROACH

A. Remarks on the SMF approach

The SMF approach goes beyond the standard TDHF de-
scription and provides a microscopic basis for describing
the fluctuations around the most probable path [20,21]. In
the SMF approach, instead of a single deterministic event

FIG. 1. Density profile in the reaction plane at a certain instant
in the 136Xe + 208Pb reaction at Ec.m. = 526 MeV with initial orbital
angular momentum of l = 200h̄. The beam direction is parallel to
the −x direction and the impact parameter vector is parallel to +y
direction. The orientation angle of the dinuclear system is indicated
by θ (=52.2◦ at this instant). The red dot represents the center of
mass position of the system. The position vectors of projectile-like
and target-like fragments in the center-of-mass frame are indicated
by R+ and R−, respectively, where the relative distance at this instant
is R = |R+ − R−| = 13.7 fm. The dashed line indicates the position
of the window plane placed at the minimum density location.

in TDHF, an ensemble of mean-field events is considered,
which is associated with a distribution law. The single-particle
density matrix of an event λ is given by

ρλ(r, r′, t ) =
∑

i j

φ∗
j (r, t ; λ)ρλ

jiφi(r′, t ; λ), (1)

where the wave functions in each event λ obey the TDHF
equation under own self-consistent mean field of the event.
According to the basic postulate of the SMF approach, el-
ements of the density matrix ρλ

ji at the initial state have
uncorrelated Gaussian distribution with the average values
ρλ

ji = n jδ ji and the variances determined according to

δρλ
jiδρ

λ
i′ j′ = 1

2 [n j (1 − ni ) + ni(1 − n j )]δ j j′δii′ , (2)

where δρλ
ji = ρλ

ji − n jδ ji and n j denotes the average occupa-
tion numbers of the single particle states. Here and hereafter,
the bar over quantities represents the ensemble average over
the stochastically generated events. At zero temperature the
occupation numbers are zero or one, while at finite tem-
peratures they are specified according to the Fermi-Dirac
distribution. The distribution law (2) ensures that an ensemble
average of observables recovers the quantal expressions for
the mean and the variance at the initial state.

In the special case, where colliding nuclei maintain
a dinuclear structure (cf. Fig. 1, showing a typical density
distribution in the 136Xe + 208Pb reaction to be analyzed in
Sec. IV), it is possible to analyze reaction dynamics in terms
of a few macroscopic variables, such as relative linear and
angular momenta, and mass and charge asymmetries of the
dinuclear system. In this case, the SMF approach gives rise
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to a set of coupled Langevin equations for the macroscopic
variables, which provides a quantal diffusion description of
complex reaction dynamics in terms of a few relevant macro-
scopic variables. With the quantal diffusion equations, one
can calculate not only the mean values of observables, which
coincide with the TDHF results, but also distributions of the
observables. For details of the SMF approach we refer readers
to Refs. [20,21,25,26]. We also refer to recent applications of
the SMF approach for the multinucleon transfer mechanism in
the dissipation heavy-ion collisions in Refs. [24–31] and for
kinetic energy fluctuations in spontaneous fission [32].

B. Rate of change of the relative linear momentum

In this section, let us recall basic equations that characterize
the relative motion of colliding nuclei. We define the relative
distance, R(t ), the reduced mass, μ(t ), and the relative linear
momentum, P(t ), in terms of the TDHF solutions with the
help of the window dynamics, see Fig. 1. Figure 1 illustrates
the elongation axis (the solid line) and the window plane (the
dashed line) at a certain instant in the 136Xe + 208Pb reaction at
Ec.m. = 526 MeV with the initial orbital angular momentum
l = 200h̄. The orientation angle is indicated by θ in the reac-
tion plane. The elongation axis of the dinuclear system can be
determined by diagonalizing the mass quadruple tensor at any
instant. The window plane is perpendicular to the elongation
axis and passes through the minimum density location on the
elongation axis. For description of the details of the window
dynamics we refer to Appendix A in Ref. [26].

In Fig. 1, the position vectors pointing the mean center-of-
mass position of projectile- and target-like fragments in the
center-of-mass frame are indicated by R+ and R−, respec-
tively. In terms of the local density ρλ and the current density
jλ in the event λ, the masses, the center-of-mass positions, and
the linear momenta of the projectile- and target-like fragments
are, respectively, given by

M±
λ (t ) = m

∫
dr �(±x′) ρλ(r, t ), (3)

R±
λ (t ) = m

∫
dr �(±x′) rρλ(r, t )/M±

λ (t ), (4)

P±
λ (t ) = m

∫
dr �(±x′) jλ(r, t ), (5)

where jλ denotes the current density in the event λ,

jλ(r, t ) = h̄

2mi

∑
i j

[φ∗
j (r, t ; λ)∇φi(r, t ; λ)

−φi(r, t ; λ)∇φ∗
j (r, t ; λ)]ρλ

ji. (6)

In Eqs. (3)–(5) we neglect the fluctuations in the window
geometry and specify the mean window position by a theta
function �(±x′), where x′(t ) = [x − x0(t )] cos θ (t ) + [y −
y0(t )] sin θ (t ) measures distance from the window, θ (t ) is the
initially smaller angle between the elongation axis and the
beam direction, and (x0(t ), y0(t )) is the position of the center
of the window.

With the quantities introduced above, we can define
the relative coordinate, Rλ = R+

λ − R−
λ , the reduced mass,

μλ = M+
λ M−

λ /(M+
λ + M−

λ ), and the relative linear momen-
tum,

Pλ = μλṘλ = M−
λ P+

λ − M+
λ P−

λ

M+
λ + M−

λ

= μλ[ṘλêR + Rλθ̇λêθ ]. (7)

Here, Ṙλ = Ṙ
+
λ − Ṙ

−
λ denotes the relative velocity vector,

where the velocities of the projectile- and target-like frag-
ments can be defined by Ṙ

±
λ = P±

λ /M±
λ . In the second line

of Eq. (7), the relative velocity is decomposed into the radial
and tangential components with the unit vectors in respective
directions,

êR = cos θ êx + sin θ êy, (8)

êθ = − sin θ êx + cos θ êy. (9)

Neglecting the rate of change of the reduced mass, one finds
the following expression for the rate of change of the relative
momentum:

dPλ

dt
= μλ

[(
R̈λ − Rλθ̇

2
λ

)
êR + (Rλθ̈λ + 2Ṙλθ̇λ)êθ

]
=

(
dKλ

dt
− L2

λ

μλR3
λ

)
êR +

(
1

Rλ

dLλ

dt

)
êθ , (10)

where we have introduced the radial component of the relative
linear momentum Kλ and the relative orbital angular momen-
tum Lλ defined as

Kλ ≡ êR · Pλ, (11)

Lλ ≡ μλR2
λθ̇ . (12)

The first and the second terms of Eq. (10) denote the rate of
changes of the radial and the tangential components, respec-
tively.

C. Stochastic equations for the relative momenta

In the SMF approach, we can express the rate of change of
the projectile- and target-like fragments in an event λ as

dP±
λ

dt
= ±m

∫
drδ(x′)ẋ′ jλ(r, t ) + m

∫
dr�(±x′)

∂ jλ(r, t )

∂t
.

(13)
Employing the TDHF equation for the single-particle orbitals
in the event λ, it is possible to write down the rate of change
of the radial and the tangential components of the linear mo-
mentum of the fragments in the following form:

êα · dP±
λ

dt
= ±

∫
dr δ(x′)ẋ′m êα · jλ(r, t ) −

∫
dr �(±x′)∇

·
∑

i j

(
Aα

ji − Bα
ji

)
ρλ

ji + [Potential terms] (14)

with

Aα
ji = h̄2

4m
[φi(r, t ; λ)∇(êα · ∇φ∗

j (r, t ; λ)) + c.c.], (15)

Bα
ji = h̄2

4m
[(∇φi(r, t ; λ))êα · ∇φ∗

j (r, t ; λ) + c.c.], (16)
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where êα indicates the unit vector in the radial (α = R) or
the tangential (α = θ ) direction. The ‘[Potential terms]’ in
Eq. (14) represents terms associated with mean-field po-
tentials other than the kinetic term in the single-particle
Hamiltonian in the event λ.

From Eq. (14), we can derive a Langevin equation for the
rate of change of the relative linear momentum,

dPλ

dt
=

∫
dr g(x′) ẋ′m jλ(r, t ) + [Potential terms] + f λ(t ),

(17)
where the first and the second terms represent the forces
arising from the motion of the window plane and the poten-
tial terms, respectively. The quantity f λ(t ) is the fluctuating
dynamical force due to nucleon exchange between projectile-
and target-like fragments. Its radial (α = R) and tangential
(α = θ ) components are given by

f λ
α (t ) =

∑
i j

Y α
ji (t )ρλ

ji, (18)

where we have introduced a shorthand notation,

Y α
ji (t ) ≡

∫
dr g(x′) êR · (

Aα
ji(t ) − Bα

ji(t )
)
. (19)

In obtaining this result we employed a partial integration in
Eq. (14) and used the following relations:

∂

∂x
�(x′) = δ(x′) cos θ, (20)

∂

∂y
�(x′) = δ(x′) sin θ. (21)

In Eq. (17) the δ function has been replaced with a smoothing
function δ(x′) → g(x′) expressed as a Gaussian,

g(x′) = 1√
2πκ

exp

[
− 1

2

(
x′

κ

)2]
(22)

with a dispersion κ = 1.0 fm which is on the same order as
the lattice spacing in the numerical calculations. By projecting
Eq. (17) along the radial and the tangential directions, together
with Eq. (10), we obtain two coupled Langevin equations for
the radial and angular momenta [41,42]:

dKλ

dt
− L2

λ

μλR3
λ

=
∫

dr g(x′) ẋ′m êR · jλ(r, t ) + f λ
R (t )

+[Potential terms], (23)

1

Rλ

dLλ

dt
=

∫
dr g(x′) ẋ′m êθ · jλ(r, t ) + f λ

θ (t )

+[Potential terms]. (24)

In the right-hand side of these expressions, the first and
the third terms represent the force due to the motion of
the window plane and the conservative force due to nuclear
and electrical potential energies, respectively. The fluctuat-
ing forces, f λ

R (t ) and f λ
θ (t ), represent the dynamical forces

arising from nucleon exchange between projectile- and target-
like fragments. These dynamical forces provide the dominant
mechanism for the dissipation and fluctuations of the relative
momentum in damped collisions of heavy ions, such as deep-
inelastic and quasifission processes.

The ensemble average of these equations of motion are
equivalent to the TDHF description for the radial and angular
components of the relative linear momentum. Consequently,
we use the mean values of TKE and the orbital angular
momentum obtained from the TDHF approach. We employ
the Langevin equations, Eqs. (23) and (24), for describing
fluctuations around their mean values. There are two differ-
ent sources for fluctuations of the dynamical forces f λ

R (t )
and f λ

θ (t ) induced by nucleon exchange: (i) fluctuations due
to different set of wave functions in each event λ, and
(ii) fluctuations introduced by the stochastic part δρλ

ji of
the density matrix at the initial sate. The former part of
fluctuations can be approximately described in terms of the
fluctuating components of the radial and angular momentum
as f λ

R (t ) → f diss
R (Kλ) and f λ

θ (t ) → f diss
θ (Lλ). Here, f diss

R (Kλ)
and f diss

θ (Lλ) are the mean values of the radial and tangential
components of the dissipative part of the dynamical forces
expressed in terms of fluctuating radial and angular momenta,
respectively. We assume that the amplitude of the fluctuations
are sufficiently small, so that we can linearize the Langevin
equations, Eqs. (23) and (24), around the mean values to give

∂

∂t
δKλ − 2L

μR3
δLλ =

(
∂ f diss

R

∂K

)
δKλ + δ f λ

R , (25)

∂

∂t
δLλ =

(
∂ f diss

θ

∂L

)
δLλ + R δ f λ

θ , (26)

where δKλ = Kλ − Kλ and δLλ = Lλ − Lλ are the fluctuating
components of the radial and angular momenta, respectively.
The fluctuating forces originating from the potential energy
terms are expected to have a small effect on the fluctuations
of the relative momentum. In these expressions, we neglect
these forces as well as the force due to the motion of the
window given by the first terms in the right-hand side of
Eqs. (23) and (24). Also, we neglect the fluctuations in the
reduced mass and the relative distance between the centers
of the fragments. The quantities, μ(t ), R(t ), and L(t ), are,
respectively, the mean values of the reduced mass, the relative
distance, and the relative orbital angular momentum of the
colliding system, which are determined by the TDHF equa-
tion. The derivatives of dissipative forces on the right-hand
side of Eqs. (25) and (26) are related to the reduced radial and
tangential friction coefficients:

∂ f diss
R

∂K
= −γR(t ), (27)

∂ f diss
θ

∂L
= −γθ (t ). (28)

An analysis of the radial friction force and the reduced friction
coefficients are presented in Appendix B.

Multiplying both sides of Eqs. (25) and (26) by δKλ

and δLλ, respectively, and taking the ensemble average, we
obtain a set of coupled differential equations for the vari-
ances [43–45]

dσ 2
KK

dt
− 4L

μR3
σ 2

KL = −2γRσ 2
KK + 2DKK , (29)
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dσ 2
LL

dt
= −2γθσ

2
LL + 2R2DLL, (30)

dσ 2
KL

dt
− 2L

μR3
σ 2

LL = −2(γR + γθ )σ 2
KL + R(DKL + DLK ),

(31)

where the variances are defined as σ 2
KK (t ) = δKλ(t )δKλ(t ),

σ 2
LL(t ) = δLλ(t )δLλ(t ), and σ 2

KL(t ) = δKλ(t )δLλ(t ). Here,
Dαβ (t ) denotes the momentum diffusion coefficients (α, β =
K, L),1 which are expressed on a microscopic basis in terms
of single-particle orbitals within the TDHF approach.

III. TOTAL KINETIC ENERGY DISTRIBUTION WITHIN
THE SMF APPROACH

A. Momentum diffusion coefficients

The momentum diffusion coefficients for the radial and an-
gular momenta are defined as the time integral over the history
of the autocorrelation functions of the stochastic forces,

Dαβ (t ) =
∫ t

0
dt ′ δ f λ

α (t )δ f λ
β (t ′). (32)

The stochastic parts of the radial and tangential forces are
given by

δ f λ
α (t ) =

∑
i j

Y α
ji (t )δρλ

ji. (33)

Using the basic postulate of the SMF approach, we can analyt-
ically take the ensemble average, and the correlation functions
of the random force on radial and tangential directions read

δ f λ
α (t )δ f λ

β (t ′) = Re

[ ∑
p∈P,h∈T

Y α
hp(t )Y β∗

hp (t ′)

+
∑

p∈T,h∈P

Y α
hp(t )Y β∗

hp (t ′)

]
. (34)

In this expression, the summations in the first term run over
the particle states originating from the projectile p ∈ P and
the hole states originating from the target h ∈ T, while in
the second term the summations run in the opposite way. By
adding and subtracting the hole-hole terms, the first term in
this expression can be written as∑

p∈P,h∈T

Y α
hp(t )Y β∗

hp (t ′) =
∑

h∈T,a∈P

Y α
ha(t )Y β∗

ha (t ′)

−
∑

h∈T,h′∈P

Y α
hh′ (t )Y β∗

hh′ (t ′). (35)

In the first term, the summation a ∈ P runs over the complete
set of states originating from the projectile. We introduce a
similar subtraction in the second term of Eq. (34). As shown

1Note that we use the same notation (α, β) to indicate the radial
and tangential directions (R, θ ) and the radial and angular momenta
(K, L).

in Appendix A, using the closure relation in a diabatic ap-
proximation of the TDHF orbitals, it is possible to eliminate
the complete set of the projectile (target) states in the first
(second) term. As a result, the radial, the tangential and the
mixed diffusion coefficients are given by the following com-
pact expression:

Dαβ (t ) =
∫ t

0
dτ

∫
dr g̃(x′)

[
GT(τ )JT

αβ (r, t̄ )

+ GP(τ )JP
αβ (r, t̄ )

]
−

∫ t

0
dτ Re

[ ∑
h∈T,h′∈P

Y α
hh′ (t )Y β∗

hh′ (t − τ )

+
∑

h∈P,h′∈T

Y α
hh′ (t )Y β∗

hh′ (t − τ )

]
. (36)

In the first line, the quantity JT
αβ (r, t̄ ) is given by

JT
αβ (r, t̄ ) = h̄

m

∑
h∈T

[
muh

α (r, t̄ )
][

muh
β (r, t̄ )

]
× |Im[φ∗

h (r, t̄ )êR · ∇φh(r, t̄ )]|, (37)

where t̄ = (t + t ′)/2 = t − τ/2. This expression represents
the magnitude of the nucleon flux that carries the product
of the momentum components muh

α (r, t̄ ) and muh
β (r, t̄ ) from

the target-like fragment in the perpendicular (α, β = R) and
tangential (α, β = θ ) directions to the window plane. The
quantity JP

αβ (r, t − τ/2) is given by a similar expression and
it represents the magnitude of the nucleon flux from the
projectile-like fragment. The radial and tangential compo-
nents of the nucleon flow velocities are determined by

uh
α (r, t̄ ) = h̄

m

Im
[
φα∗

h (r, t̄ )êα · ∇φα
h (r, t̄ )

]
|φh(r, t̄ )|2 . (38)

We observe that there is a close analogy between the quan-
tal expression of the diffusion coefficients and the classical
ones in a random walk problem. The first term in the quantal
expression (36) gives the sum of the nucleon flux across the
window from the target-like to the projectile-like fragments
and vise versa, which is integrated over the memory. Each
nucleon transfer across the window in both directions carries
the product of the momentum components which increases the
rate of change of the momentum dispersion. This is analogous
to the random walk problem, in which the diffusion coefficient
is given by the sum of the rate for forward and backward steps.
The second term in the quantal expression (36) stands for
the Pauli blocking effects in the nucleon transfer mechanism,
which does not have a classical counterpart. The quantities
in the Pauli blocking factors are determined by hole-hole
elements of the matrices Y α

hh′ (t ) and Y β∗
hh′ (t ) which are defined

in Eq. (19) with Eqs. (15) and (16).

B. Total kinetic energy distribution

It is possible to determine the joint probability distribution
function of the radial linear momentum K and the orbital
angular momentum L for each initial orbital angular momen-
tum l , Pl (K, L), employing the coupled Langevin equations,
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Eqs. (25) and (26). It is well known that these coupled
Langevin equations are equivalent to the Fokker-Planck de-
scription for the joint probability distribution Pl (K, L) [46].
When the radial and tangential friction forces have linear de-
pendence on the radial and the angular momenta, the solution
of the joint probability distribution can be expressed as a
correlated Gaussian function:

Pl (K, L) = exp[−Cl (K, L)]

2πσKK (l )σLL(l )
√

1 − η2
l

, (39)

where

Cl (K, L) = 1

2
(
1 − η2

l

)[(
K − Kl

σKK (l )

)2

+
(

L − Ll

σLL(l )

)2

−2ηl

(
K − Kl

σKK (l )

)(
L − Ll

σLL(l )

)]
. (40)

Here, the correlation factor is defined as ηl =
σ 2

KL(l )/σKK (l )σLL(l ). Kl ≡ Kλ(l ) and Ll ≡ Lλ(l ) denote
the mean values of the radial and the angular momenta
for each value of the initial orbital angular momentum l ,
respectively, which are determined by solving the TDHF
equation.

The mean values of the radial and angular momenta, Kl and
Ll , are obtained by solving the TDHF equation. In practice,
we follow the reaction dynamics up to a certain instant, say
t = tf , at which binary products are well separated spatially.
Denoting the relative distance at this instant as Rf = R(tf ), the
asymptotic value of TKE of the outgoing fragments is given
by E∞

kin(K, L) = K2/2μ + L2/2μR2
f + Z1Z2e2/Rf . For a given

initial angular momentum l , we define the TKE distribution
Gl (E ) as

Gl (E ) =
∫

dKdL δ
(
E − E∞

kin(K, L)
)
Pl (K, L). (41)

Note that K and L in the above expression correspond to the
radial and the angular momenta at the instant t = tf , respec-
tively, and E stands here for the asymptotic TKE. It is to
mention that μ and Z1,2 are, in general, l dependent quantities,
and the fluctuations in the mass and charge asymmetries may
affect the TKE fluctuations. However, we neglect the effects
of mass and charge fluctuations on the TKE distribution and
retain the mean values of the mass and charge asymmetry for
each angular momentum.

In practice, the mixed diffusion coefficients, DKL(t ) and
DLK (t ), are expected to be much smaller than the radial and
the angular momentum diffusion coefficients, DKK (t ) and
DLL(t ). Hence, in the present work, we neglect the mixed dis-
persion term σKL(t ) in Eq. (29) and the coupling between the
radial and angular momenta. In such a case, the expression can
be greatly simplified by taking the asymptotic limit, R → ∞,
leading to

Gl (E ) =
∫

dK∞ δ
(
E − E∞

kin(K∞)
)
Pl (K

∞), (42)

where E∞
kin(K ) = K2/2μ and Pl (K ) is the probability distri-

bution of the radial momentum. Notice that by taking the
limit R → ∞ the centrifugal part of the kinetic energy and

the Coulomb energy entirely transformed into the radial TKE,
and K∞ in Eq. (42) corresponds to the asymptotic value of
the radial momentum for R → ∞. After taking the integral
over the angular momentum variable, the asymptotic radial
momentum distribution becomes a simple Gaussian,

Pl (K ) = 1√
2πσKK (l )

exp

[
−1

2

(
K − K∞

l

σKK (l )

)2]
, (43)

where the mean value of the asymptotic radial momentum is
related to the mean asymptotic TKE from TDHF, E∞

kin(l ), by

K∞
l = (2μE∞

kin(l ))
1/2

. After a trivial integration, we obtain the
asymptotic TKE distribution,

Gl (E ) = 1√
8πE σ̃KK (l )

exp

[
−1

2

(√
E − √

E∞
kin(l )

σ̃KK (l )

)2]
,

(44)

where σ̃KK (l ) ≡ σKK (l )/
√

2μ. To obtain the radial dispersion
σKK (t ), we solve the quantal diffusion equation for the radial
component,

dσ 2
KK

dt
= −2γRσ 2

KK + 2DKK . (45)

We note that the unit of the TKE distribution Gl is MeV−1,
hence the fraction of events with final TKE in the energy range
�E in MeV is given by Gl�E .

IV. RESULTS FOR XE + PB COLLISIONS

In this section, as the first application of the proposed
formalism given in the preceding sections, we present calcula-
tions of the TKE distribution for the 136Xe + 208Pb reaction at
Ec.m. = 526 MeV, for which extensive experimental data re-
ported by Kozulin et al. [33] are available. TDHF calculations
were carried out for a range of initial orbital angular momenta
l . The results of TDHF calculations for a set of observables in
the 136Xe + 208Pb reaction at Ec.m. = 526 MeV are presented
in Table I. We mention here that for the 136Xe + 208Pb sys-
tem the average numbers of transferred nucleons are small,
reflecting a small charge asymmetry and possible shell effects
in the reactants. Nucleons are, however, actively exchanged
during the collision, which is the source of dissipation and
fluctuations of observables, such as mass, charge, TKE, and
scattering angles, in low-energy heavy-ion reactions. For this
reaction, mean TKEL reaches around 175 MeV for small
angular momenta, while contact time is rather short (�2 zs).
Because of the short contact time the composite system does
not rotate much in the reaction plane. We note that frag-
ments are emitted outside the experimental angular coverage
(25◦–70◦ in the laboratory frame) in events below l < 100h̄ in
TDHF calculations.

In order to evaluate the TKE distribution, we have further
extended own three-dimensional parallel TDHF code, which
was applied for various systems [17,47–53] and was recently
incorporated with the SMF approach [31]. For the computa-
tional details we refer readers to our recent article, Ref. [31].
To obtain the TKE distribution (44), we need to evaluate the
asymptotic value of the radial momentum dispersion σKK (l )
for each value of the initial angular momentum l by solving
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TABLE I. A list of numerical results of the TDHF calculations for the 136Xe + 208Pb reaction at Ec.m. = 526 MeV. From left to right
columns, it shows: the initial orbital angular momentum, l , in h̄, the final average relative orbital angular momentum, Lf , in h̄, neutron and
proton numbers of projectile-like (target-like) fragment, N1 and Z1 (N2 and Z2), mean total kinetic energy loss (TKEL) in MeV, contact time,
tcontact , in fm/c, scattering angles in center-of-mass frame, θc.m., and those in laboratory frame for projectile-like (target-like) fragment, ϑ lab

1

(ϑ lab
2 ), in degrees. The contact time is defined as duration in which the minimum density between two colliding nuclei exceeds half the

saturation density, ρsat/2 = 0.08 fm−3.

l Lf TKEL tcontact θc.m. ϑ lab
1 ϑ lab

2

(h̄) (h̄) N1 Z1 N2 Z2 (MeV) (fm/c) (deg) (deg) (deg)

0 0 82.3 55.1 125.0 80.9 173.1 661.4 180.0 180.0 0.0
50 39 82.4 55.1 124.9 80.8 177.0 646.0 150.1 96.4 13.5
100 78 82.0 54.5 125.4 81.5 175.6 611.8 123.1 72.9 25.4
110 85 81.9 54.3 125.5 81.6 175.1 593.2 118.2 69.5 27.5
120 95 81.8 54.3 125.6 81.7 175.0 591.4 113.3 66.2 29.6
130 104 81.7 54.3 125.7 81.7 175.3 586.6 108.6 63.0 31.6
140 114 81.9 54.4 125.5 81.5 175.0 571.0 104.0 60.0 33.6
150 124 82.4 54.7 125.0 81.2 174.3 555.2 99.7 57.1 35.6
160 134 83.1 55.2 124.3 80.7 171.9 538.6 95.9 54.6 37.4
170 142 83.7 55.6 123.7 80.3 169.4 529.4 92.5 52.5 39.0
180 149 83.9 55.8 123.5 80.2 168.5 517.6 89.7 50.7 40.3
190 158 83.6 55.6 123.9 80.3 167.4 474.0 87.1 49.3 41.3
200 166 83.0 55.4 124.5 80.6 166.0 462.4 85.2 48.4 42.0
210 173 82.7 55.2 124.9 80.7 161.0 440.2 84.1 47.9 42.6
220 179 82.3 55.0 125.3 80.9 154.9 409.4 83.3 47.8 43.1
230 185 81.8 54.8 125.8 81.2 149.1 378.4 82.5 47.6 43.5
240 194 81.5 54.6 126.2 81.3 140.7 343.6 81.7 47.4 44.1
250 203 81.3 54.5 126.4 81.5 129.8 303.2 81.0 47.4 44.8
260 214 81.2 54.4 126.6 81.5 117.1 257.2 80.5 47.5 45.5
270 225 81.2 54.4 126.6 81.5 103.5 226.0 80.0 47.5 46.2
280 240 81.4 54.5 126.5 81.5 86.0 192.4 79.5 47.6 47.2
290 258 81.5 54.5 126.4 81.5 66.8 146.8 79.0 47.8 48.2
300 277 81.5 54.4 126.4 81.6 48.9 100.8 78.5 47.9 49.0
310 295 81.6 54.3 126.4 81.7 32.7 44.2 78.1 48.0 49.8
320 311 81.7 54.2 126.2 81.8 16.9 0.0 77.9 48.2 50.4
330 325 81.9 54.1 126.1 81.9 8.0 0.0 77.4 48.1 51.0
340 337 81.9 54.0 126.1 82.0 4.7 0.0 76.4 47.5 51.6
350 347 81.9 54.0 126.1 82.0 3.3 0.0 75.2 46.7 52.3

Eq. (45). The radial momentum diffusion coefficient DKK (t )
is directly computed from occupied single-particle orbitals
within the TDHF approach with the quantal expression given
in Eq. (36). On the other hand, it is not trivial how to determine
the radial friction coefficient directory from TDHF. Neverthe-
less, using the analogy to the random walk problem, we have
extracted from TDHF an approximate expression for the radial
friction force and the radial friction coefficients. Details of this
analysis are given in Appendix B.

In Figs. 2–4, we show examples of the computational
results for the collisions of 136Xe + 208Pb at Ec.m. = 526 MeV
for four typical initial angular momenta, l [=100 (solid line),
200 (dash-dotted line), 250 (dashed line), and 300 (dotted line)
in units of h̄], as functions of time. Figure 2 shows the reduced
radial friction coefficients γR(t, l ) given by Eq. (B9), which
were extracted from TDHF employing the method explained
in detail in Appendix B. We observe that the radial friction
coefficient develops when two nuclei collide at around t =
200–400 fm/c. The magnitude of the friction coefficient in-
creases with decreasing the initial orbital angular momentum
l , for which contact times are longer, indicating that larger

amount of the relative kinetic energy is converted into internal
excitations at smaller orbital angular momenta, as expected. In
Fig. 3, we show the quantal momentum diffusion coefficient
DKK (t ) given by Eq. (36), which is calculated microscopically
based on occupied single-particle orbitals within the TDHF
approach. Again, the magnitude of the diffusion coefficient
increases with decreasing the initial orbital angular momen-
tum l . From the results, we find that the diffusion coefficient
has a relatively long tail as compared to the friction coefficient
shown in Fig. 2. It is related to the fact that the quantal
diffusion coefficient is governed by nucleon exchange which
lasts even after the turning point through a neck structure of
the dinuclear system (cf. contact times shown in Table I).

Having the radial friction and momentum diffusion coef-
ficients, γR(t ) and DKK (t ), at hand, we solve the differential
equation (45) and the results are shown in Fig. 4. From the
figure, we see that the variances of the radial momentum
σKK show somewhat complicated behavior as a function of
time. The variance grows in time and saturates when two
nuclei reseparate. We notice that the asymptotic value of
σKK is largest for l = 100h̄ and decreases with increasing
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FIG. 2. Reduced radial friction coefficients γR in the
136Xe + 208Pb reaction at Ec.m. = 526 MeV with initial orbital
angular momenta of l = 100, 200, 250, and 300 (in units of h̄) are
shown as functions of time.

l values from 100h̄ to 200h̄, then increases for l = 250h̄,
and then decreases again for l = 300h̄. One can also find
this behavior in Table II, in which the asymptotic values of
the radial momentum and TKE dispersions for a range of
initial angular momenta are presented. We consider that in the
present analysis the radial momentum dispersion is overpre-
dicted for relatively large initial orbital angular momentum
region (l = (200–300)h̄), which are probably due to the ap-
proximate treatments of the radial friction coefficient. Since
the primary purpose of the present work is to put the first step
toward the microscopic description of the TKE distribution,
developing a formalism based on the SMF approach, we leave
further improvements of the description as future works.

Employing the expression of Eq. (44) we can obtain the
TKE distribution and the results are shown in Fig. 5. Figure 5
illustrates the TKE distribution for the range of initial angular
momenta l = (100–350)h̄ in the l-TKE plane. We note that
with the TKE distribution, Gl , we can evaluate the mean value
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FIG. 3. Radial-momentum diffusion coefficients in the
136Xe + 208Pb reaction at Ec.m. = 526 MeV with initial orbital
angular momenta of l = 100, 200, 250, and 300 (in units of h̄) are
shown as functions of time.
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FIG. 4. Variances of the radial momentum in the 136Xe + 208Pb
reaction at Ec.m. = 526 MeV with initial orbital angular momenta of
l = 100, 200, 250, and 300 (in units of h̄) are shown as functions of
time.

TABLE II. A list of numerical results of the SMF calculations
for the 136Xe + 208Pb reaction at Ec.m. = 526 MeV for a range of
initial orbital angular momenta l . From left to right columns, it
shows the asymptotic values of: the radial momentum dispersion,
σKK , in MeV/c, the modified radial momentum dispersion, σ̃KK =
σKK/

√
2μ, in MeV1/2, and the dispersion of total kinetic energy

(TKE), σTKE ≈ 2σ̃KK

√
E∞

kin, in MeV.

l (h̄) σKK (MeV/c) σ̃KK (MeV1/2) σTKE (MeV)

0 553.7 1.406 52.84
50 497.2 1.263 47.18
100 392.7 0.999 37.38
110 367.3 0.934 35.01
120 342.4 0.871 32.64
130 319.4 0.813 30.44
140 298.3 0.759 28.43
150 277.9 0.706 26.48
160 268.7 0.681 25.65
170 266.0 0.674 25.45
180 261.0 0.661 25.00
190 265.4 0.672 25.47
200 282.9 0.718 27.23
210 302.8 0.769 29.37
220 317.0 0.805 31.03
230 329.7 0.838 32.55
240 344.2 0.876 34.38
250 357.5 0.910 36.22
260 366.6 0.933 37.75
270 365.5 0.930 38.25
280 352.0 0.896 37.58
290 330.3 0.840 36.02
300 295.4 0.752 32.84
310 233.6 0.595 26.41
320 152.0 0.387 17.46
330 85.8 0.218 9.94
340 34.5 0.088 4.01
350 36.2 0.092 4.21
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FIG. 5. The total kinetic energy (TKE) distribution, Gl defined
by Eq. (44), is shown in the l-TKE plane, where l represents the
initial orbital angular momentum of the reaction, calculated for the
136Xe + 208Pb reaction at Ec.m. = 526 MeV.

of TKE as

TKE(l ) =
∫

dE E Gl (E ) ≈ E∞
kin(l ) + σ̃ 2

KK (l ). (46)

From Table II, we see that the asymptotic value of the largest
dispersion occurs for l = 0. In this case, we find σ̃ 2

KK =
σ 2

KK/2μ ≈ 1.98 MeV, which is much smaller than E∞
kin(l ) ≈

353 MeV, confirming the correspondence with the mean TKE
from TDHF. We can also calculate the variance of TKE for
each value of angular momentum as

σ 2
TKE(l ) =

∫
dE

(
E − E∞

kin(l )
)2

Gl (E ) ≈ 4σ̃ 2
KK (l )E∞

kin(l ).

(47)

Dispersion of TKE grows linearly with the square root of the
mean value, σTKE ≈ 2σ̃KK

√
E∞

kin. For example for the initial
angular momentum l = 0, dispersion is as large as σTKE ≈
53 MeV. This indicates the total excitation energy of the
primary fragments have quite large dispersion values. Large
values of dispersions of the excitation energies may have an
important effect on de-excitation processes of the primary
fragments.

Finally, to make a comparison with the experimental
data [33], we evaluate the yield of the reaction outcomes as a
function of total kinetic energy loss (TKEL, i.e., Ec.m. − E∞

kin)
by summing up contributions from each initial orbital angular
momentum,

Y
(
Ec.m. − E∞

kin

) = Y0

350∑
l=100

(2l + 1)Gl
(
E∞

kin

)
. (48)

The normalization constant Y0 is adjusted to the data at a
suitable point. The experimental setup in the work of Kozulin
et al. [33] has an energy resolution of 25 MeV. To com-
pare with the data, this experimental uncertainty should be
accounted for by, e.g., a folding procedure of the calculated
kinetic energy distribution. The folding procedure will in-
troduce approximately a uniform shift in the kinetic energy
distribution. Therefore, we consider that it does not change the
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FIG. 6. The integrated total kinetic energy loss (TKEL) distri-
bution for the 136Xe + 208Pb reaction at Ec.m. = 526 MeV. Magenta
crosses (open circles) with error bars represent the experimental
data with (without) quasielastic contribution reported in Ref. [33].
A Gaussian fit of the quasielastic contribution is shown by the green
dashed line. The results of SMF calculations are shown by the blue
solid line, where the normalization constant is set to Y0 = 3.5.

shape of the calculated curve and the folding effect is absorbed
by the normalization constant Y0.

Figure 6 shows a comparison of the calculations with
experimental data for the collisions of 136Xe + 208Pb at
Ec.m. = 526 MeV. The measured TKEL distribution for two-
body events (without sequential fission events) is shown by
crosses with error bars. Open circles with error bars represent
the experimental data from which the quasielastic component
(a Gaussian fit to the data, shown by a dashed line) has been
removed [33]. The calculated TKEL distribution according to
Eq. (48) is shown by a solid line. From the figure we find that
the calculations provide good description for strongly damped
events with large energy losses, TKEL � 150 MeV. However,
it underestimates the count curve over the lower energy-loss
segment. This behavior is a result of apparent large disper-
sions of the TKE distribution over the range l = 200h̄–300h̄,
which may be due to the over prediction of the radial momen-
tum diffusion coefficients and/or the approximate description
of the radial friction for the large angular momentum region.
Although further improvements of the formalism are manda-
tory, we consider that the quantal diffusion approach based
on the SMF theory provides a promising microscopic basis
for quantifying kinetic energy dissipation and fluctuations in
low-energy heavy-ion reactions.

V. SUMMARY

The stochastic mean-field (SMF) approach goes beyond
the standard mean-field approximation, describing dynamical
fluctuations of the collective motion in heavy-ion collisions
at low energies. In the time-dependent Hartree-Fock (TDHF)
approach, dynamical evolution of the colliding system is de-
scribed by a single Slater determinant which is determined by
a given set of initial conditions. In the SMF approach, on the
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other hand, an ensemble of the mean-field (TDHF) events for
stochastically generated initial conditions is considered. The
initial conditions for each event are specified by the quantal
and thermal fluctuations, and each event evolves according to
the self-consistent mean-field Hamiltonian of that event. As a
result, the SMF approach provides not only the mean values,
but the entire distribution functions of the observables.

For low-energy heavy-ion reactions in which the colliding
system maintains a dinuclear structure, instead of generating
an ensemble of stochastic mean-field events, the evolution
of the system can be described in terms of a few repre-
sentative macroscopic variables, such as the relative linear
momentum, the orbital angular momentum, the mass and
charge asymmetries of the colliding system. In such a case,
we can deduce effective equations of motion for the macro-
scopic variables by adiabatic or geometric projection of the
stochastically generated mean-field events on a macroscopic
subspace, in a manner similar to the Mori formalism [54].
For deep-inelastic or quasifission processes in which dinuclear
structure is maintained, the geometric projection with the
help of the window dynamics is more suitable to deduce the
effective equations for the macroscopic variables. Being con-
sistent with the Mori formalism, the effective equations for the
macroscopic variables take the form of generalized Langevin
equations which offer quantal diffusion description of the
dynamical evolution of the colliding system. The Langevin
equations are characterized by transport coefficients, i.e., dif-
fusion and drift coefficients. It is possible to deduce analytical
expressions for transport coefficients by carrying out suitable
averages over the ensemble generated by the SMF approach.
Employing the closure relation in the diabatic approximations
of the TDHF wave functions, we can express the diffusion
coefficients in terms of the occupied single-particle orbitals in
TDHF. Therefore, it provides a very practical and powerful
framework for the microscopic description of fluctuations of
collective variables. This result is consistent with the quantal
fluctuation-dissipation theorem of the non-equilibrium statis-
tical mechanics [41,42]. The theorem states that the diffusion
coefficients which provide the source of fluctuations can be
expressed in terms of the mean-field properties.

In previous studies we employed the quantal diffusion
approach to investigate multinucleon transfer mechanism in
low-energy heavy-ion collisions. In the present work, we have
developed a formalism for describing the total kinetic energy
(TKE) distributions of binary reaction products. We have de-
duced an effective transport equation for the relative linear
momentum based on the SMF approach by the projection
technique with the help of window dynamics. The radial and
the tangential components of this equation provide quantal
diffusion description of the radial linear momentum and the
angular momentum of the relative motion, respectively.

As the first application of the present formalism, we have
analyzed the total kinetic energy loss (TKEL) distribution
for the 136Xe + 208Pb reaction at Ec.m. = 526 MeV. For the
analysis of the TKEL distribution, in addition to the radial
momentum diffusion coefficient, it is necessary to determine
the radial friction coefficient for different initial angular mo-
menta. The one-body dissipation mechanism is contained in
the mean-field description of the TDHF approach, but it is

not trivial how to deduce the expression for the radial fric-
tion force and the radial friction coefficient from the TDHF
description. We inferred an approximate expression for the
radial friction force by using the analogy to the Langevin
description of the random walk problem. We find that the
dispersion of the TKE distribution reach rather large val-
ues which may have important effects in the de-excitation
mechanism of the primary fragments. We have calculated the
TKEL distribution by summing over the range of the initial
angular momenta which is consistent with the experimental
angular coverage. We have found that the calculations provide
a reasonable description of the experimental data of the TKEL
distribution for strongly damped events with large energy
losses (TKEL � 150 MeV), but underestimate the data for
lower values of TKEL (i.e., reactions at large initial orbital
angular momenta). The underestimation of the TKEL distri-
bution for large values of the orbital angular momentum may
be partly due to the approximate description of the radial
friction coefficient and/or the neglected coupling between the
radial and tangential components of the linear momentum.
This work put an important step forward for the microscopic
description of low-energy heavy-ion reactions, including dis-
tributions of various observables, and further improvements
of the proposed formalism are in order.
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APPENDIX A: MOMENTUM DIFFUSION COEFFICIENT

In this Appendix, we derive the quantal expression of the
momentum diffusion coefficient given by Eq. (36). Employing
a partial integration in the expression Y α

ha(t ) in Eq. (19), we
have

Y α
ha(t ) = h̄2

m

∫
dr1[g(x′

1)[êα · ∇1êR · ∇1φ
∗
h (r1, t )]

+1

2
êα · ∇1g(x′

1)êR · ∇1φ
∗
h (r1, t )

+1

2
êR · ∇1g(x′

1)êα · ∇1φ
∗
h (r1, t )

+1

4
[êα · ∇1êR · ∇1g(x′

1)]φ∗
h (r1, t )]φa(r1, t ), (A1)
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and its complex conjugation,

Y α∗
ha (t ) = h̄2

m

∫
dr1[g(x′

1)[êα · ∇1êR · ∇1φh(r1, t )]

+1

2
êα · ∇1g(x′

1)êR · ∇1φh(r1, t )

+1

2
êR · ∇1g(x′

1)êα · ∇1φh(r1, t )

+1

4
[êα · ∇1êR · ∇1g(x′

1)]φh(r1, t )]φ∗
a (r1, t ). (A2)

With the diabatic property of the TDHF wave functions, we
can shift the wave functions back and forth during short time
intervals τ = t − t ′ to have an approximate relation,

φa(r, t ′) ≈ φa(r − uτ, t ), (A3)

where uτ denotes a small displacement during the short time
interval with flow velocity u. Using the closure relation,∑

a

φ∗
a (r1, t )φa(r2 − uτ, t ) = δ(r1 − r2 + uτ ), (A4)

we obtain∑
h∈T,a∈P

Y α
ha(t )Y β∗

ha (t ′) =
∑
h∈T

∫∫
dr1dr2 δ(r1 − r2 + uhτ )

× W α
h (r1, t )W β∗

h (r2, t ). (A5)

First, we consider the case for α = β = R. The radial part
W R

h (r1, t ) reads

W R
h (r1, t ) = h̄2

m
[g(x′

1)[(êR · ∇1)(êR · ∇1)φh(r1, t )]

+1

2
êR · ∇1g(x′

1)êR · ∇1φh(r1, t )

+1

2
êR · ∇1g(x′

1)êR · ∇1φh(r1, t )

+1

4
[(êR · ∇1)(êR · ∇1)g(x′

1)]φh(r1, t )]. (A6)

Using the expression for g(x′) given by Eq. (22), we find

W K
h (r1, t ) = h̄2

m
g(x′

1)

[
[(êR·∇1)2φh(r1, t )]− x′

1

κ2
[êR·∇1φh(r1, t )]

+ 1

4κ4

[
x′2

1 − κ2]φh(r1, t )

]
(A7)

and its complex conjugation,

W K∗
h (r2, t ) = h̄2

m
g(x′

2)

[
[(êR · ∇2)2φ∗

h (r2, t )]

− x′
2

κ2
[êR · ∇2φ

∗
h (r2, t )]

+ 1

4κ4

[
x′2

2 − κ2]φ∗
h (r2, t )

]
. (A8)

Let us introduce the following coordinate transformations:

R = (r1 + r2)/2, r = r1 − r2, (A9)

and its inverse,

r1 = R + r/2, r = R − r/2. (A10)

Because of the δ function, we can immediately carry out the
integration over r in Eq. (A5) and make the substitution for
r = −uhτ , and introduce diabatic shifts in the wave functions

φh(r1, t ) = φh(R + r/2, t ) = φh(R − uhτ/2, t )

≈ φh(R, t̄ ), (A11)

φh(r2, t ) = φh(R − r/2, t ) = φh(R + uhτ/2, t )

≈ φh(R, t̄ ) (A12)

with t̄ ≡ (t + t ′)/2. We can express product of the Gaussian
factors as g(x′

1)g(x′
2) = g̃(X ′)G̃(x′), where

g̃(X ′) = 1√
πκ

exp

[
−

(
X ′

κ

)2]
, (A13)

G̃(X ′) = 1√
4πκ

exp

[
−

(
X ′

2κ

)2]
(A14)

with x′ = êR · r = −êR · ûhτ = uh
Rτ and X ′ = êR · R, where

uh
R(R, t̄ ) denotes the component of the flow velocity of the

hole states perpendicular to the window, which may, in gen-
eral, depend on the mean position R = (r1 + r2)/2 and the
mean time t̄ = (t + t ′)/2. In the product W α

h (r1, t )W β∗
h (r2, t ′),

there are linear, second, third, and fourth order terms in x1

and x2 in the integrand of Eq. (A5). The integrand contains a
product of two sharp Gaussians, g̃(X ′) and G̃(x′), which pro-
vides the memory kernel in the integrand. Taking the averages
over the memory kernel and over the sharp Gaussian g̃(X ′), all
terms in the integrand of Eq. (A5) which are proportional to
the powers of x1 and x2 vanish. We obtain the similar results
for other components of Eq. (A5) with α, β = R, θ , and we
find∑

h∈T,a∈P

Y α
ha(t )Y β∗

ha (t ′) =
(

h̄2

m

)2 ∑
h∈T

∫
dR g̃(X ′)

Gh
T(τ )∣∣uh

R(R, t̄ )
∣∣

× [(êα · ∇ )(êR · ∇ )φh(R, t̄ )]

× [(êβ · ∇ )(êR · ∇ )φh(R, t̄ )]∗,(A15)

where the memory kernel is defined as

Gh
T(τ ) = 1√

4π

1

τ h
T

exp

[
−

(
τ

2τ h
T

)2]
(A16)

with the memory time, τ h
T = κ/|uh

R|. We can write the wave
functions as φh(r, t ) = |φh(r, t )| exp(iQh) [46]. Since the
phase factor behaves like the velocity potential, neglecting
derivative of the amplitude of the wave function, we have the
approximate result

(êR · ∇ )φh ≈ iφh êR · ∇Qh = iφh(R, t̄ )
m

h̄
uh

R(R, t̄ ).(A17)

In a similar manner, we can express the second derivative of
the wave function as

(êθ · ∇ )(êR · ∇ )φh ≈ i[(êθ · ∇ )φh(R, t̄ )]uh
R(R, t̄ )

≈ −φh(R, t̄ )
m2

h̄2 uh
θ (R, t̄ )uh

R(R, t̄ ). (A18)
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We can write the radial (α = R) and the tangential (α = θ )
flow velocities in the flowing form

uh
α (R, t̄ ) = h̄

m

Im[φ∗
h (R, t̄ )êα · ∇φh(R, t̄ )]

|φh(R, t̄ )|2 . (A19)

Incorporating this expression, Eq. (A15) becomes∑
h∈T,a∈P

Y α
haY

β∗
ha =

∑
h∈T

∫
dR g̃(X ′)GT(τ )JT

αβ (R, t̄ ). (A20)

Here, JT
αβ (R, t̄ ) is given in Eq. (37), and GT(τ ) denotes the av-

erage memory kernel given by Eq. (A16), which is evaluated
with the average value of the flow velocity of the hole states
originating from the target. The second term on the right side
of Eq. (34) is evaluated in a similar manner, and we obtain
the expression given by Eq. (36) for the momentum diffusion
coefficients.

APPENDIX B: RADIAL FRICTION COEFFICIENT

In this Appendix, we discuss an analysis of the radial
friction coefficient based on the mean-field solution of TDHF.
The TDHF description contains the one-body dissipation of
relative kinetic energy and the transfer of the relative an-
gular momentum into the intrinsic degrees of freedom. The
dominant mechanism for the one-body dissipation is nucleon
exchange between projectile-like and target-like fragments.
However, a microscopic derivation of the so-called window
formula for the reduced friction coefficients from the TDHF
approach is not trivial. Here, we consider the analogy with
the random walk problem to deduce the reduced friction co-
efficients from the mean description of TDHF. By taking the
ensemble average in Eq. (17), the mean evolution of the rate
of change of the relative momentum is given by

∂

∂t
P =

∫
dr g(x′) ẋ′m j(r, t ) + [Potential terms] + f (t ),

(B1)
where j(r, t ) = h̄

m

∑
h Im[φ∗

h (r, t )∇φh(r, t )]. This equation is
equivalent to the TDHF description of the relative momentum.
The first and the second terms on the right hand side are the
conservative forces on the relative motion due the motion of
the window and the potential terms. In the last term f (t ) rep-
resents the dynamical force due to nucleon exchange between
the projectile- and target-like fragments with the radial and the
tangential components,

fα (t ) =
∫

dr g(x′)
∑

h

êR · (
Aα

hh − Bα
hh

)
. (B2)

Using the approximate result of Eq. (A17) in Appendix A,
we can express the component of the dynamical force due to
nucleon exchange as

fα (t ) = − h̄

m

∫
dr g(x′)

∑
h

muh
α (r, t )

× Im[φ∗
h (r, t )êR · ∇φh(r, t )], (B3)

where the summation runs over the hole states originating
from both projectile and target nuclei. The dynamical force
involves both the conservative and dissipative forces. In order

to infer the dissipative part of the dynamical force, we use the
analogy to the Langevin description of the random walk prob-
lem. As seen in Eq. (36), the direct terms of the momentum
diffusion coefficients are determined by the sum of nucleon
fluxes that carry the product of momentum components from
projectile to target and vice versa. In analogy to the descrip-
tion of the random walk, the components of the dissipative
force are determined by the net momentum flux across the
window as follows:

f diss
α (t ) = − h̄

m

∫
dr g(x′)

∑
h∈P

muh
α (r, t )

×|Im[φ∗
h (r, t )êR · ∇φh(r, t )]|

+ h̄

m

∫
dr g(x′)

∑
h∈T

muh
α (r, t )

×|Im[φ∗
h (r, t )êR · ∇φh(r, t )]|. (B4)

Here, we express the net momentum flux as the difference of
the momentum flux carried by the hole orbitals originating
from the projectile and the momentum flux carried by the
hole orbitals originating from the target. This approximate
description may over estimate the net momentum flux, in
particular in collisions at large impact parameters, and may re-
quire improvements. The quantity |Im[φ∗

h (r, t )êR · ∇φh(r, t )]|
represents the magnitude of the nucleon flux from one frag-
ment to the other.

In this work, we consider the radial friction force and
the reduced radial friction coefficient. In order to derive the
expressions for the radial friction coefficient γR(t, l ) for colli-
sions with a range of initial angular momenta l , we assume the
phenomenological expression for the radial dissipative force,

f diss
R (t, l ) = −γR(t, l )Kl (t ), (B5)

where Kl = êR · Pl is the radial component of the relative
linear momentum. From this relation, in principle, it should be
possible to deduce the radial friction coefficient for each value
of the initial angular momentum l . In Fig. 7, we show the
radial friction force in (a) and the radial momentum in (b)
for the central collisions (l = 0) as a function of time. The
radial momentum vanishes at the turning point which occurs
at t = 313 fm/c [see Fig. 7(b), solid line]. We expect that the
radial friction force also vanishes at the turning point. How-
ever, we notice that the friction force vanishes at a slightly
later time, t = 360 fm/c. The time shift may originate from
the approximate expression of the friction force, Eq. (B4),
which overestimates the net momentum flux across the win-
dow, and the shift becomes larger for increasing the orbital
angular momentum.

In order to extract the radial friction coefficients for all
values of the initial angular momentum l , we employ an
approximate method as described below. In Fig. 7(b), we
introduce a smoothing of the radial momentum so that the fric-
tion force and the radial momentum vanish at the same instant.
The smoothed (averaged over a time interval of 220 fm/c)
radial momentum, say K̄l=0(t ), is shown by the dashed line
in Fig. 7(b), and the vertical line indicates the instant at
which both the friction force and the radial momentum be-
come vanishingly small. Then, we define the reduced friction
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FIG. 7. The radial friction force f diss
l=0 (a) and the radial momen-

tum Kl=0 (b) are shown as a function of time for the central collision
(l = 0). In (b), the original value of the radial momentum obtained
from TDHF is shown by the solid line, while a smoothed curve is
represented by the dashed line. The vertical line indicates the time at
which f diss

l=0 and the smoothed Kl=0 vanish.

coefficient for l = 0 as

γR(t, l = 0) = − f diss
R (t, l = 0)

K̄l=0(t )
. (B6)

Note that the phenomenological relation (B5) has been used.
In Fig. 8(a), we show the extracted friction coefficient

according to Eq. (B6) in the central collision (l = 0) as a
function of time (solid line). We find that dissipation occurs
mainly during the incoming phase until the turning point at
around t = 360 fm/c (indicated by a vertical line), and only
a small fraction of dissipation takes place during the outgo-
ing phase after the turning point until the separation of the
fragments. We should thus ignore an unphysical negative tail
after t = 460 fm/c. Figure 8(b) shows the friction coefficient
γR in the central collision (l = 0) as a function of the relative
distance R(t ). In this work, we parametrize the friction coef-
ficient during the incoming phase by an exponential function
as

γ inc
R [R(t )] = c1 exp[−c2(R(t ) − c3)] (B7)

with c1 = 9.97 c/fm, c2 = 1.04 fm−1, and c3 = 6.86 fm. The
friction force reaches the maximum value at the minimum
distance Rmin. In the outgoing phase, from the minimum dis-
tance Rmin to reseparation, we adopt another form with an
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/fm
)
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FIG. 8. The extracted reduced radial friction coefficient,
γR(t, l = 0) = − f diss

l=0 (t )/K̄l=0(t ), is shown by the solid line for
the central collision (l = 0), where K̄l=0(t ) is the smoothed radial
momentum shown in Fig. 7(b) by the dashed line. In (a), it is
shown as a function of time, while the same quantity is shown as a
function of the relative distance in (b). The dashed line represents
the parametrized function given by Eqs. (B7) and (B8).

exponential damping factor as

γ out
R [R(t )] = γ inc

R [R(t )] c4 exp[−c5(R(t ) − Rmin)], (B8)

where c4 = 1.96 and c5 = 0.95. Note that c4 > 1 has been
used, because the minimum distance is reached at t =
313 fm/c, while the obtained friction coefficient has a peak
at slightly later time. We joint the two expressions for the
incoming and outgoing phases smoothly around the turning
point. Assuming that the friction coefficients scale with the
relative distance for all initial angular momentum in a similar
manner as for the central collision, we express the reduced
radial friction coefficient for nonzero l values as

γR(t, l ) = Nl γR[Rl (t )]. (B9)

Here, γR(R) is the friction coefficients given by Eqs. (B7)
and (B8) extracted from the l = 0 case as a function of the
relative distance. The normalization factor Nl is determined
by matching the dissipated energy with the mean TKEL
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FIG. 9. The normalization coefficient Nl in Eq. (B9) is shown as
a function of the initial orbital angular momentum l .

calculated by TDHF for each initial angular momentum, i.e.,

Ediss
l =

∫
dt γR(t, l )

K2
l (t )

μ(t )
= E∞

kin(l ). (B10)

In Fig. 9, we show the magnitude of the normalization
constant Cl as a function of the initial orbital angular
momentum l . Figure 2 in the main text presents the reduced
radial friction coefficients determined in the manner outlined
above as a function of time for typical initial orbital angular
momenta.

In Fig. 10, we compare the original radial friction force
as given by Eq. (B4) in panel (a) and the reconstructed radial
friction force using the approximate treatment of Eq. (B9) in
panel (b) as functions of the radial momentum for a range of
initial angular momenta l . It is visible that the original radial
friction forces shown in (a) does not vanish at the turning
point at which the radial momentum changes its sign. On the
other hand, the reconstructed friction forces as functions of
the radial momentum shown in (b) give rise to the expected
behavior and provide a support for the reduced friction coeffi-
cients that we obtained using the approximate procedure.

APPENDIX C: COMPARISON WITH DD-TDHF

In this Appendix, we provide a supplemental analysis of
the radial friction coefficient for head-on collision (l = 0)
based on an alternative approach, called dissipative-dynamics
TDHF (DD-TDHF). The idea of DD-TDHF was first pro-
posed in 1980 by Koonin [55], which was later tested for
realistic applications by Lacroix in 2002 [56] and further
applied by Washiyama et al. [57–59]. (See Ref. [60] for a
short review.) Here, let us succinctly recall the basic idea of
DD-TDHF.

In DD-TDHF, we consider a mapping of TDHF dynamics
onto a set of classical equations of motion:

dR

dt
= P

μ
, (C1)

dP

dt
= −dVDD

dR
− d

dR

(
P2

2μ

)
− γRP, (C2)
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FIG. 10. The dissipative force F diss
l is shown as a function of

the radial linear momentum Kl for the 136Xe + 208Pb reaction at
Ec.m. = 526 MeV with a range of l values. Colors represent the
value of the initial orbital angular momenta. (a) The dissipative force
obtained with Eq. (B4) based on the single-particle orbitals in TDHF.
(b) The reconstructed dissipative force according to the phenomeno-
logical expression, F diss

l = −γRKl , where γR here is expressed as the
fitted function given by Eqs. (B7) and (B8).

where VDD(R) and γR(R) denote the nucleus-nucleus potential
and the reduced radial friction coefficient, respectively, as a
function of the relative distance R. A standard TDHF simula-
tion provides time evolution of the relative distance R(t ), the
relative linear momentum P(t ), and the reduced mass μ(t ).
Assuming that a slight change of collision energy does not
affect the two unknown quantities, i.e., VDD(R) and γR(R), one
can solve the above equations for them. Namely, one finds

dVDD(R)

dR
= ṘIIṖI − ṘIṖII

ṘI − ṘII
− 1

2

dμ

dR
ṘIṘII, (C3)

γR(R) = ṖII − ṖI

ṘI − ṘII
+ 1

2

dμ

dR
(ṘI + ṘII ), (C4)

where the subscript I (II) indicates that those quantities are
associated with the TDHF trajectory I (II) at the collision
energy EI (EII = EI + �E ). In the analysis given below we set
�E = 0.01EI. Note that all quantities on the right hand side
of Eqs. (C3) and (C4) should be evaluated at the same relative
distance, R = RI = RII. The nucleus-nucleus potential VDD(R)
can be obtained by a numerical integration of dVDD/dR. We
refer to Refs. [57–59] for details of numerical procedures.
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FIG. 11. (a) The nucleus-nucleus potential V (R) is shown as
a function of the relative distance R. The result obtained by the
DD-TDHF method is shown by a dashed line. For comparison,
the nucleus-nucleus potential obtained with the frozen-HF method
and the point Coulomb potential are also shown by open circles
connected with dotted lines and a dotted line, respectively. (b) The
reduced radial friction coefficient γR(R) for the incoming phase with
l = 0 is shown as a function of the relative distance R. The result
obtained with the SMF approach is shown by a solid line, while that
of DD-TDHF is shown by a dashed line.

In Fig. 11, the results obtained with the DD-TDHF
method are presented. In Fig. 11(a), the extracted nucleus-
nucleus potential VDD(R) is shown as a function of the relative
distance (dashed line), in comparison with that obtained
with the frozen-HF method [61]. In the latter approach, the
nucleus-nucleus potential is evaluated simply by VFHF(R) =

E [ρP + ρT](R) − E [ρP] − E [ρT], where E [ρ] is the nuclear
EDF and ρP(T) denotes the ground-state density of the pro-
jectile (target) nucleus. It is to be reminded that the Pauli
exclusion principle among orbitals belonging to different nu-
clei is neglected in the frozen-HF potential, which can be
taken into account by a density-constrained minimization
technique [61]. Although we should thus expect an increase
of the potential at short distances (R � 14.5 fm), we present
VFHF to have an estimate of the Coulomb barrier position.
As can be seen from Fig. 11(a), we observe good agreement
between VDD and VFHF at large distances (R � 15 fm), as they
should be. On the other hand, as the relative distance de-
creases, we observe a monotonic increase of VDD, in contrast
to the significant reduction in VFHF. This is a characteristic
behavior observed for heavy systems, which is related to the
fusion hindrance phenomenon (see Ref. [59] for a detailed
discussion).

In Fig. 11(b), we show the reduced radial friction coeffi-
cient γR(R) for l = 0 as a function of the relative distance.
The result based on the SMF approach is shown by a solid
line, while the result of the DD-TDHF method is shown by a
dashed line. Since the mapping onto the classical equations of
motion breaks down around the turning point, we compare
the results for the incoming phase only. From the figure,
we find that the magnitude of the radial friction coefficient
obtained with the SMF approach is larger than the DD-TDHF
result roughly by factor of 4. We note that the radial friction
coefficient in the SMF approach is consistent with the average
TKEL in TDHF according to Eq. (B10).

In the SMF approach the friction coefficient has a micro-
scopic origin associated with nucleon exchanges. On the other
hand, in DD-TDHF the friction coefficient is extracted based
solely on the macroscopic relative motion of the colliding
nuclei. Based on the mapping of the classical equations of mo-
tion, the slowdown of the relative motion after collision (due
to incompressible character of nuclear density and dinuclear
shape formation) is mainly converted to the increase of the
nucleus-nucleus potential [59]. However, the observed differ-
ence between SMF and DD-TDHF approaches may indicate
that energy dissipation still takes place after the dinuclear
system formation, because of the active nucleon exchanges
between the reactants. It would be interesting to reexamine
the origin of fusion hindrance in heavy systems based on the
SMF approach.
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