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Imaginary-time mean-field method for collective tunneling
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Quantum tunneling in many-body systems is the subject of many experimental and theoretical studies in fields
ranging from cold atoms to nuclear physics. However, theoretical description of quantum tunneling with strongly
interacting particles, such as nucleons in atomic nuclei, remains a major challenge in quantum physics. An initial-
value approach to tunneling accounting for the degrees of freedom of each interacting particle is highly desirable.
Inspired by existing methods to describe instantons with periodic solutions in imaginary time, we investigate the
possibility to use an initial value approach to describe tunneling at the mean-field level. Real-time and imaginary-
time Hartree dynamics are compared to the exact solution in the case of two particles in a two-well potential.
Whereas real-time evolutions exhibit a spurious self-trapping effect preventing tunneling in strongly interacting
systems, the imaginary-time-dependent mean-field method predicts tunneling rates in excellent agreement with
the exact solution. Being an initial-value method, it could be more suitable than approaches requiring periodic
solutions to describe realistic systems such as heavy-ion fusion.
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I. INTRODUCTION

Quantum tunneling, allowing an object to pass a potential
energy barrier, even when classically it does not have enough
energy, is one of the most striking concepts of quantum
physics. In nature, it produces energy in stars via nuclear
fusion, it heats the Earth’s interior by α decay, it produces
new elements in nucleosynthesis, and it is believed to cause
DNA mutations, ageing, and cancer. Quantum tunneling also
underpins many technological applications such as the tunnel-
ing electron microscope, FLASH memory, tunnel junctions
in solar cells, and tunnel diodes in high speed devices.
Although well understood for simple systems such as elec-
trons, the description of quantum tunneling for most systems
(e.g., molecules, atomic nuclei, Bose-Einstein condensates)
remains challenging due to their composite nature and the
interaction between their constituents.

Several methods have been developed in recent years to de-
scribe tunneling of interacting particles. Due to the complexity
of the problem, these methods are either limited to few-body
systems [1–5] or they require approximations to the quantum
many-body dynamics [6–13]. As a result, mean-field driven
nonexponential decay [14–16] as well as substantial deviation
from mean-field dynamics [17] were found in cold atoms sys-
tems. Pairing effects have also been demonstrated in systems
of two and three atoms [4,5,18–21]. Indeed, two atoms can
tunnel as a correlated pair when the interaction is strong and
attractive [4]. Similar cluster tunneling is found in nuclear
systems, e.g., in α decay. Despite being composed of four
strongly interacting nucleons, α clusters can be approximated
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as inert particles due to the large difference between their
ground state and first excited state, thus reducing theoretical
description of α decay to a single-particle tunneling prob-
lem. However, the situation is much more complicated with
heavier systems which can encounter nontrivial many-body
dynamics while tunneling, as, e.g., in spontaneous fission and
in low-energy heavy-ion fusion reactions. Unlike cold atoms
which tunnel sequentially or as small clusters, all nucleons
are usually tunneling together as self-bound systems in such
reactions. However, unlike in α decay, individual nucleonic
degrees of freedom need to be accounted for. Indeed, mi-
croscopic nuclear dynamics calculations (see Ref. [22] for
a review) show that fusion is affected by nucleon transfer
[23,24] leading to dissipation [25,26] and potentially deco-
herence [27] in many-body tunneling.

At present, there is no model of quantum many-body tun-
neling for strongly interacting systems such as nuclei that
explicitly accounts for effects of dissipation or decoherence
that are induced by nucleonic degrees of freedom. Never-
theless, early works based on instantons and path-integral
description of quantum mechanics opened the possibility for
mean-field description of tunneling based on imaginary-time
techniques [28–33]. Direct implementation of this method,
however, is challenging due to the difficulty to find quan-
tum many-particle closed trajectories in imaginary time. To
overcome this difficulty, we propose an initial value approach
to describe tunneling through an imaginary-time mean-field
evolution akin to the way standard real-time mean-field evo-
lution techniques such as time-dependent Hartree-Fock can
be used to study vibrations (without requantization) (see, e.g.,
Refs. [34,35]). This approach is tested in a simple toy model
where an exact solution exists and where the evolution in the
classically forbidden region can be easily visualized. In par-
ticular, we show how tunneling probabilities can be extracted
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at the mean-field level. These predictions are compared with
the exact solution for various strengths of the interaction. The
toy model has been chosen so that generalizations to more
realistic systems are in principle feasible.

The two-well toy model is described in Sec. II, where
both exact and real-time mean-field dynamics are studied.
The path-integral approach and its application within the toy
model are discussed in Sec. III. The method to compute
tunneling probabilities is introduced in Sec. IV. Potential
extensions and applications to more realistic systems are dis-
cussed in Sec. V, before we conclude in Sec. VI.

II. TWO-WELL MODEL

We consider a simple toy model with two interacting dis-
tinguishable particles evolving according to the Hamiltonian

Ĥ (1, 2) = ĥ0(1) + ĥ0(2) + v̂(1, 2). (1)

The single-particle Hamiltonian is written

ĥ0 = α |−〉 〈−|,
where |−〉 is the excited state. Its ground state |+〉 has en-
ergy 0. This corresponds to a two-well potential with two
possible positions, |L〉 and |R〉, for a particle in the left and
right well, respectively. These states are related to the eigen-
states of ĥ0 by |±〉 = 1√

2
(|L〉 ± |R〉). In this model, a particle

initially in one well can tunnel to the other well through a
potential energy barrier decreasing with α. The interaction is
assumed to occur when both particles are in the same well
with v̂(1, 2) = μ (|LL〉 〈LL| + |RR〉 〈RR|), where μ is a pa-
rameter controlling the interaction strength. The initial state is
chosen as |LL〉. It is possible to extend this toy model by con-
sidering identical particles (bosons or fermions), adding more
particles and modes, and using a more realistic interaction.
Nevertheless, despite its simplicity this model accounts for the
essential aspects of tunneling of interacting particles. More-
over, such simplifications allow for easier visualization of the
configuration space available to the system, and thus it gives
us a better understanding of its dynamics. Most importantly,
this model is exactly solvable analytically, thus providing a
benchmark to test various approximations.

A. Exact dynamics

The exact evolution is determined from the time-evolution
operator Û = e−iĤt (we set h̄ = 1). The Hamiltonian of the
two-well model is

Ĥ = α(|−〉1 〈−|1 12 + 11 |−〉2 〈−|2)

+μ(|LL〉 〈LL| + |RR〉 〈RR|),
with |−〉 = 1√

2
(|L〉 − |R〉). The indices refer to particles 1 and

2. In the {L, R} basis it is expressed as

Ĥ =

|LL〉 |LR〉 |RL〉 |RR〉⎛
⎜⎜⎜⎝

α + μ −α/2 −α/2 0

−α/2 α 0 −α/2

−α/2 0 α −α/2

0 −α/2 −α/2 α + μ

⎞
⎟⎟⎟⎠

.

FIG. 1. Exact solutions (blue solid lines) and real-time mean
field predictions (orange solid lines) of 〈N̂L〉(t )/2 for (a) a weak
interaction with |μ| = 1 and (b) a strong interaction with |μ| = 4.
Time unit is fixed by our choice of α = 1.

In this basis, the operator counting the particles in the left well
is

N̂L =

⎛
⎜⎜⎜⎝

2 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

⎞
⎟⎟⎟⎠.

With the condition that the particles are initially in |LL〉, the
state of the system at time t is

|�〉 (t ) = exp(−iĤt )|LL〉.
The expectation value of N̂L in this state can be expressed as

〈N̂L〉 = 1 + β − μ

2β
cos

(
β + μ

2
t

)
+ β + μ

2β
cos

(
β − μ

2
t

)
,

(2)
where β =

√
4α2 + μ2. Note that 〈N̂L〉 does not depend on

the sign of μ, i.e., if the interaction is attractive (μ < 0) or
repulsive (μ > 0). From now on, we set α = 1, so that the
only parameter is the interaction strength μ.

The exact evolution 〈N̂L〉(t ) is represented in Fig. 1 (blue
solid line) for two values of μ. The oscillatory behavior shows
that the particles can tunnel from the left well (〈N̂L〉/2 = 1) to
the right well (〈N̂L〉/2 = 0). The effect of increasing the in-
teraction strength μ is to slow down tunneling as the particles
are found in the right well at a later time.

B. Real-time mean-field evolution

Approximations to describe the dynamics of quantum
many-body systems are often based on the self-consistent
mean-field theory or time-dependent Hartree theory in the
case of distinguishable particles. The latter assumes that the
particles remain independent at all times, i.e., with a state
|�〉 = |ψ1〉 ⊗ |ψ2〉. The Hamiltonian is then approximated
by ĤH (1, 2) = ĥH (1) + ĥH (2) with time-dependent single-
particle Hartree Hamiltonian

ĥH (i) = ĥ0(i) + 〈ψ j | v̂(1, 2) |ψ j〉 ,

where i, j = 1, 2 and j �= i. Note that in this form there is no
spurious self-interaction.

As both particles are initially in the same state, they
encounter the same mean-field evolution. As a result, they re-
main in identical states |ψ (t )〉 = L(t ) |L〉 + R(t ) |R〉 obeying
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the time-dependent Hartree equation

i
d

dt
|ψ (t )〉 = ĥH (t )|ψ (t )〉. (3)

The time dependence of ĥH (t ) is due to its self-consistency.
The equations of motion for L(t ) and R(t ) then become

i
d

dt
L = α

2
(L − R) + μL|L|2, and (4a)

i
d

dt
R = α

2
(R − L) + μR|R|2. (4b)

Let us define new coordinates θ ∈ [−π/2, π/2] and φ ∈
[−π, π ]:

θ = arcsin(|L|2 − |R|2) and φ = arg(R/L). (5)

This choice preserves the normalization |L|2 + |R|2 = 1. Both
sets of coordinates are equivalent up to a global phase. From
Eqs. (5) and the normalization condition we can write

L =
√

1 + sin θ

2
eiφL and R =

√
1 − sin θ

2
eiφR ,

where we have introduced the phases φL,R. According to
Eqs. (5), only their difference φ = φR − φL is relevant.

Inserting into Eqs. (4a) and (4b) gives

iθ̇ cos θ − 2(1 + sin θ )φ̇L

= 1 + sin θ − eiφ cos θ + μ(1 + sin θ )2, (6a)

−iθ̇ cos θ − 2(1 − sin θ )φ̇R

= 1 − sin θ − e−iφ cos θ + μ(1 − sin θ )2, (6b)

where we have set α = 1. Taking the imaginary part gives the
first differential equation

θ̇ = − sin φ. (7)

Taking the real part of Eqs. (6a) and (6b) and rearranging gives
the second differential equation

φ̇ = tan θ cos φ + μ sin θ. (8)

Equations (7) and (8) provide a closed set of equations for the
real-time mean-field dynamics of the system.

Solving these equations numerically with initial condition
(θ, φ) = ( π

2 , 0) corresponding to both particles in the left
well, we get the real-time mean-field prediction for 〈NL〉(t ) =
1 + sin θ (t ) plotted in Fig. 1 (orange solid line). As in the
exact case, the latter does not depend on the sign of μ. Apart
from the noninteracting case μ = 0 (for which mean-field dy-
namics is obviously exact), we see that mean-field predictions
rapidly deviate from the exact solution. Although for |μ| � 2,
which we loosely refer to as the “weakly” interacting regime,
tunneling is observed in the mean-field solution, a transi-
tion appears at |μ| = 2, above which (“strongly” interacting
regime) the particles are “trapped” in one well, unable to tun-
nel completely to the other well. This spurious phenomenon,
called “discrete self-trapping” [36–38], illustrates the inability
of real-time mean-field theory to describe tunneling dynamics
in strongly interacting systems.

C. Hartree energy

In order to investigate the origin of self-trapping, let us
first determine the energy of the system in the mean-field
approximation. Without interaction, the total energy is given
by

K =
2∑

i=1

〈ψi| ĥ0 |ψi〉 = (L∗ R∗)

(
1 −1

−1 1

)(
L
R

)

= 1 − 2Re[L∗R] = 1 − cos θ cos φ,

where we have used |ψ1,2〉 = L |L〉 + R |R〉, Eqs. (5) and

ĥ0 = α

2

(
1 −1

−1 1

)

in the {|L〉 , |R〉} basis, with our choice of α = 1.
With an interaction treated at the mean-field level, an addi-

tional term U = 1
2

∑
i, j �=i 〈ψiψ j | v̂(1, 2) |ψiψ j〉 contributes to

the total energy E = K + U . Using v̂(1, 2) = μ (|LL〉 〈LL| +
|RR〉 〈RR|), we get

U = μ(L∗ R∗)

(|L|2 0
0 |R|2

)(
L
R

)

= μ(|L|4 + |R|4) = μ

2
[1 + sin2 θ ].

As a result, the total (Hartree) energy is expressed as

E = 1 + μ

2
(1 + sin2 θ ) − cos θ cos φ, (9)

which is conserved under Eqs. (7) and (8).

D. Self-trapping

The self-trapping phenomenon can be understood by
examining the mean-field dynamics of the system in the
configuration space. The latter is entirely defined by the co-
ordinates θ and φ, allowing for a simple two-dimensional
representation as in Fig. 2(a) showing the position of the |L〉,
|R〉, and |±〉 states.

Figures 2(a)–2(c) show contour plots of the Hartree energy
in configuration space for various interaction strengths. As in
the exact case, mean-field dynamics conserve total energy.
The system is thus bound to follow isoenergy contour lines.
We see that with no [Fig. 2(a)] or “weak” attraction [Fig. 2(b)],
the system is able to go from one well to the other following
a classically allowed path (thick solid red lines). However,
in the case of “strong” attraction [Fig. 2(c)], there is no
isoenergy contour line connecting both wells. The transition
is classically forbidden, preventing tunneling and leading to
self-trapping.

Self-trapping occurs when the states at θ = ±π/2 are not
connected by any energy contour line in the (θ, φ) plane.
According to Eq. (9), the energy at θ = ±π/2 is

E1 = E |θ=±π/2 = 1 + μ,

while at θ = 0 it is

E2(φ) = E |θ=0 = 1 + μ

2
− cos φ.
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FIG. 2. Mean-field energy contours are shown for (a) free particles, (b) a weak attraction, and (c) a strong attraction. Energy increases from
blue to yellow. Solid red lines show mean-field trajectories starting from the left well. The dashed lines represent constant values of φ.

A condition for the system to tunnel from one well to another
in the realtime mean-field dynamics is that there exist a φ for
which E2(φ) = E1 (otherwise the system is unable to cross
the θ = 0 line). This is only possible for μ/2 = − cos φ,
leading to the condition |μ| � 2. Self-trapping then occurs
when |μ| � 2. This condition does not depend on the sign of
μ. Thus, despite the fact that the contour lines are different
for attractive or repulsive interactions, self-trapping occurs in
both cases for the same magnitude of the interaction strength.

E. “Weak” and “strong” interactions

Some comments are in order regarding the distinction
between “weakly” and “strongly” interacting regimes. The
situation in terms of realistic applications will depend on the
system. For cold atoms, the interaction can be tuned experi-
mentally and the “transition” region could then be explored.

For nuclear systems, in particular in the case of fusion, fis-
sion, and cluster decay, the systems are expected to be well in
the “strong” interaction regime. In our toy model, the energy
splitting 	E between the ground and first excited state of the
exact Hamiltonian is the quantity that drives the tunneling
rate. Arve et al. used a two-well potential with parameters
adjusted to describe a typical fission problem, with energy
splittings between the quasidegenerate eigenstates of the order
of 10−13 MeV for the ground state, up to 10−2 MeV near
the barrier [31]. In the two-well model we use, the energy
splitting 	E is ∼α2/|μ| for |μ| 
 α. The interaction μ is
of the order of the binding energy per nucleon (∼8 MeV).
To get similar splitting as Arve et al., we would then set
α ∼ 10−6 MeV for the ground state, to ∼0.3 MeV near the
barrier. In any case, α remains smaller than 2|μ| (recall that
the transition appears at |μ| = 2α), indicating a system clearly
in the “strong” interaction regime.

III. PATH-INTEGRAL APPROACH

Our goal is now to search for an initial-value mean-field-
based description of the system which would account for
tunneling in the strongly interacting regime. Following Feyn-

man’s many-path approach to quantum mechanics [39], the
amplitude of probability for the system to go from the state |i〉
at time ti to the state | f 〉 at time t f is written as a path integral,

〈 f | Û (t f , ti ) |i〉 =
∫

D[σ ] exp(iS[σ ]),

where Û (t f , ti ) is the evolution operator associated with the
Hamiltonian Ĥ of the system and S[σ ] is the action for the
path σ (t ) in configuration space between ti and t f .

A. Imaginary-time-dependent mean-field equation

Though elegant, this path-integral approach is often too
complicated in practice and requires approximations such
as the stationary phase approximation (SPA). For a single-
particle following a classical path σ (t ) ≡ x(t ), the SPA leads
to the stationary action principle δS = 0 of classical mechan-
ics in which quantum tunneling is forbidden. Nevertheless,
the latter can be recovered approximatively through a Wick
rotation changing real time to imaginary time t → −iτ [40].
Its effect is indeed to change the sign of the potential, thus
allowing the system to explore classically forbidden regions.
This approach is formally equivalent to the WKB semiclassi-
cal approximation [41,42].

For a many-particle system, mean-field equations can be
recovered from the stationary action principle with the Dirac
action

S =
∫ t f

ti

dt 〈�| i∂t − Ĥ |�〉, (10)

while restricting the variational space to independent par-
ticle states. However, as illustrated by our toy model, this
theory does not account for tunneling in the strong in-
teraction regime. Nevertheless, applying a Wick rotation
should produce imaginary-time mean-field equations account-
ing for tunneling. Replacing t → −iτ in Eq. (3) leads to an
imaginary-time dependent Hartree equation

d

dτ
|ψ (τ )〉 = −ĥH (τ )|ψ (τ )〉. (11)
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As in real-time evolution, computing observables 〈Q̂〉(τ ) also
requires a conjugate state which we now define.

B. Wave function of conjugate state

In real time, the wave function of a single-particle con-
jugate state is given by ψ̃ (x, t ) = 〈ψ (t )| x〉 = ψ∗(x, t ). It is
convenient to write the wave function as

ψ (x, t ) =
√

ρ(x, t )eiφ(x,t ), (12)

with

ρ(x, t ) = ψ̃ (x, t )ψ (x, t ), and (13a)

φ(x, t ) = 1

2i
ln

[
ψ (x, t )

ψ̃ (x, t )

]
, (13b)

leading to ψ̃ (x, t ) = √
ρ(x, t )e−iφ(x,t ).

Imaginary-time evolution is obtained from a Wick rotation
t → −iτ . This has a consequence for how the conjugate of a
single-particle wave function is defined. The conjugate is used
to compute expectation values

〈Q̂〉(τ ) =
∫

dx ψ̃ (x, τ ) Q(x, y) ψ (x, τ ),

which are transformed under the Wick rotation as1

〈�(0)|eiĤt Q̂e−iĤt |�(0)〉 −→ 〈�(0)|eĤτ Q̂e−Ĥτ |�(0)〉.
The expectation value is then given by

〈Q̂〉(τ ) = 〈�(−τ )|Q̂|�(τ )〉, (14)

implying

ψ̃ (x, τ ) = ψ∗(x,−τ ). (15)

In imaginary time, ρ and φ become complex. It is easy to
show from Eqs. (12), (13a), and (13b) that ρ(τ ) = ρ∗(−τ )
and φ(τ ) = φ∗(−τ ). As a result, Eq. (15) becomes

ψ̃ (x, τ ) =
√

ρ(x, τ ) exp(−iφ(x, τ )). (16)

As a result, the conjugate in imaginary time has the same
structure as in real time.

C. Classically forbidden region and final condition

Computing expectation values of observables in imaginary
time thus requires both forward and backward evolutions.
These are nevertheless initial value equations as only |�(0)〉
is required to compute both evolutions in the classically for-
bidden region.

Criteria must be defined for where to “stop” the calcula-
tion. One (or several) observable O f can be used to define such
criteria. The system needs then to be evolved in imaginary
time until the condition (see footnote 1)

O(τ ) = 〈ψ0|eĤτ Ôe−Ĥτ |ψ0〉 = O f

1This expression is only correct for a time-independent Hamil-
tonian for which the imaginary-time evolution operator is given
by exp(−Ĥτ ). For a time-dependent Hamiltonian, such as in the
self-consistent mean-field approximation, it should be replaced by
T exp[− ∫ τ

0 Ĥ (τ )dτ ], where T denotes time ordering.

FIG. 3. The real- and imaginary-time mean-field energy is com-
puted with μ = −3 and is increasing from blue to yellow. The
(θR, φR ) horizontal plane shows the energy for φI = θI = 0. The
(θR, φI ) vertical plane shows the energy for φR = θI = 0. The red
(respectively, green) solid line shows an isoenergy contour connect-
ing the left and right wells (respectively, the left and right mean-field
ground states).

is reached. This defines the mean-field path from which the
action and then the probability (see Sec. IV) to reach 〈Ô〉 =
O f can be computed. For instance, Ô could be the quadrupole
operator in fusion/fission problems, or the center of mass in
cluster decay (see Sec. V 3).

Note that the final state is not necessarily in the classi-
cally allowed region (in that case, however, a connection to
real-time dynamics cannot be performed). This is a major
difference with earlier implementation of the imaginary-time
mean-field approximation [28] which required bounce solu-
tions with the condition

|�(τ )〉 = |�(−τ )〉.

D. Application to two-well model

The equations of motion in imaginary time are obtained
from a Wick rotation of Eqs. (7) and (8):

dθ

dτ
= i sin φ and

dφ

dτ
= −i tan θ cos φ − iμ sin θ. (17)

The coordinates θ = θR + iθI and φ = φR + iφI are now
complex. The total energy of the system in the imaginary-
time-dependent Hartree theory is still conserved and given by
Eq. (9). As a result, as long as the initial condition is in the
classically allowed region, i.e., with θI (ti ) = φI (ti) = 0, this
energy remains real. This condition, together with the constant
norm 〈ψ (−τ )|ψ (τ )〉 = 1 also impose relationships between θ

and φ.
Figure 3 shows this energy for a strongly attractive system.

The horizontal plane gives the energy for real-time evolution,
as in Fig. 2. The vertical plane represents the energy for
imaginary-time evolution with φR = 0. It is now possible for
the system to go from the left well to the right one following
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a combination of real and imaginary-time evolutions (solid
red line). This demonstrates the ability of imaginary-time
mean-field evolution to explore classically forbidden regions
through quantum tunneling.

IV. TUNNELING PROBABILITY

Now that we found mean-field tunneling paths, our next
task is to calculate their associated tunneling probability per
unit of time (tunneling rate) and compare it with the exact
case.

Consider a mean-field evolution from |i〉 to | f 〉 over a
time T . In real time, the probability to end up in | f 〉 is
| 〈 f | Û (T ) |i〉 |2 = |eiS|2 = 1 as the Dirac action in Eq. (10) for
this path is real. The energy being constant, the global phase
ET is irrelevant.

In imaginary time, this probability is now given by |eiW |2
with

W (T ) = −
∫ T

0
dτ 〈�| ∂τ |�〉

= −
N∑

i=1

∫ T

0
dτ 〈ψi(τ )| ∂

∂τ
|ψi(τ )〉,

where N is the number of particles. Using results from the
previous section, we find

〈ψ | ∂

∂τ
|ψ〉 =

∫
dx

[
1

2

∂ρ(x, τ )

∂τ
+ iρ(x, τ )

∂φ(x, τ )

∂τ

]

=
∫

dx iρ(x, τ )
∂φ(x, τ )

∂τ
,

where we used the fact that
∫

dx ρ(x, τ ) is constant.
In the toy model, the space integral

∫
dx is simply replaced

by a discrete sum
∑

L,R over the left and right states, giving

W [T ] = −i
∫ T

0
dτ

(
ρL

∂φL

∂τ
+ ρR

∂φR

∂τ

)

where

ρL = 1 + sin θ

2
and ρR = 1 − sin θ

2
.

Once again, only the relative phase φ = φR − φL matters, thus
we set φR = φ/2 and φL = −φ/2, giving

W [T ] = i

2

∫ T

0
dτ sin θ∂τφ.

Using the second equation of motion (17), we finally get

W [T ] = 1

2

∫ T

0
dτ (tan θ cos φ + μ sin θ ) sin θ.

To an irrelevant global phase, the tunneling probability ampli-
tude for an imaginary-time-dependent mean-field path �(τ )
connecting the two wells is then given by

eiS[�] ≡ e−i
∫

dτ 〈�|∂τ |�〉 = e
i
2

∫ T
0 dτ (tan θ cos φ+μ sin θ ) sin θ .

FIG. 4. Exact (solid line) and imaginary-time-dependent mean-
field (symbols) tunneling probabilities per unit of time (in units of
α/h̄) are plotted as a function of the attraction strength −μ (in units
of α). Error bars correspond to numerical uncertainty of 1% in the
action.

As θ and φ are now complex quantities, the tunneling
probability |eiS[�]|2 associated with this path can be less than
1.

By analogy with the standard semiclassical treatment of
α decay [43], the tunneling rate is given by the tunneling
probability multiplied by the frequency at which the system
“hits” the potential barrier, i.e., the frequency of the oscil-
lation observed in mean-field trapping [see orange line in
Fig. 1(b)]. As the system may tunnel from different config-
urations along a real-time isoenergy contour [see solid red
line in Fig. 2(c)], the tunneling rate is in principle obtained
by averaging over the associated imaginary-time paths. To a
good approximation, this corresponds to the tunneling rate for
the path connecting the left and right degenerate mean-field
ground states, indicated by the solid green line in Fig. 3.

In the exact case, the tunneling rate is simply given by
twice the frequency at which the system oscillates between
left and right wells. As shown in Eq. (2), this oscillation has

two modes at ω± =
√

4α2+μ2±|μ|
2π

. Only the lowest frequency
is associated with tunneling, giving an exact tunneling rate

2ω− = 2
π
	E , where 	E =

√
4α2+μ2−|μ|

2 −−−→
|μ|
α

α2

|μ| is the en-

ergy difference between the ground and first excited states.
The mean-field and exact tunneling rates are com-

pared in Fig. 4. Although the imaginary-time mean-field
predictions are wrong for weakly interacting (|μ| < 2)
systems—in which case the real-time mean-field predic-
tion can be used anyway—it is in excellent agreement with
the exact case in the strongly interacting regime, repro-
ducing well the slowing down of tunneling with increased
interactions.

V. TOWARD REALISTIC APPLICATIONS

The purpose of the two-well model is to illustrate the
imaginary-time mean-field method and compare with an exact
solution (which would be hard to obtain with more realistic
models). This is of course a first step and for the method to be
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useful, its applicability to more realistic systems needs to be
demonstrated.

A. Cartesian grids

The toy model has only two states per particle, while the
single-particle Hilbert space for a one-dimensional discretized
Cartesian grid has as many states as the number of points
in the grid—typically ∼100. Naturally, numerical simula-
tions with nonunitary evolution operators such as exp(±Ĥτ )
present additional technical challenges in terms of stability
and convergence. The generalization from one to three dimen-
sions will be another computational challenge, though it does
not bring additional formal difficulty in terms of the algorithm
itself.

B. Spin and exchange terms

Other extensions include the inclusion of spin and ex-
change terms. Spin-1/2 degrees of freedom can be accounted
for in the same way as in real-time calculations where each
single particle is treated as a 2-spinor (ϕ↑(r), ϕ↓(r)). An
exchange (Fock) term also appears in the case of identical
particles. In general, it is nonlocal and often requires a major
extra computation cost. However, in the case of contact inter-
actions (often used in cold atoms systems as well as in nuclear
physics, e.g., with the Skyrme effective interaction [44]), the
exchange terms are easily accounted for. For Coulomb inter-
actions, the exchange term can also be included via the Slater
approximation.

C. Potential applications

Several applications could be considered:

(i) Interacting particles in an external potential
Cluster dynamics such as α decay or emission of

atom clusters can be studied with an external poten-
tial. In this case, the external potential simulates the
mean-field of the particles which do not belong to the
cluster, while each particle of the cluster is treated
explicitly. One could study the effect of the internal
degrees of freedom of the cluster while it tunnels as
a whole. In this case the classically forbidden region
could be defined as the turning points of the external
potential in the usual way.

(ii) Merging of two self-bound systems
A typical example is the fusion of two atomic

nuclei. Note that the nuclei are self-bound and thus
there is no external potential in this problem, i.e.,
h0 only contains the kinetic energy of the nucleons.
The nuclei are bound thanks to their strong nuclear
interaction. The Coulomb barrier preventing fusion in
the classical case is produced by the competition of
long-range Coulomb repulsion between protons and
the short range nuclear attraction of all nucleons, both
terms being part of the interaction v(1, 2). In this
case, the real-time mean-field dynamics is only able

to reach fusion if the kinetic energy at large distance
exceeds the Coulomb barrier height (for a central
collision). At lower energy, tunneling will be obtained
through the imaginary-time mean-field method.

As illustrated by the red line in Fig. 3, the sys-
tem may explore different configurations through
real-time dynamics, with each of these configura-
tions potentially serving as initial condition for the
imaginary-time evolution. In principle, a weighting
of each possibility should be determined. In practice,
however, the transmission through the barrier is ex-
pected to be dominated by the trajectory starting from
the distance of closest approach.

(iii) Scission of a self-bound metastable system
Self-bound systems can be in a local minimum of

their potential energy surface, with more stable con-
figurations corresponding to disconnected fragments.
This is the case of fission in heavy nuclei. Here, again,
the parent nucleus is self-bound and no external po-
tential is required (h0 only contains a kinetic energy
term). In the case of spontaneous fission in particular,
all directions in the multidimensional potential en-
ergy surface are classically forbidden, thus the initial
condition for the imaginary-time evolution is well
defined.2

VI. CONCLUSIONS

Theoretical description of tunneling in strongly interact-
ing systems such as atomic nuclei remains a challenging
problem. Standard real-time mean-field approaches are un-
able to account for many-body tunneling due to spurious
“self-trapping.” Using a simple model with two particles in
a two-well potential, we demonstrated the possibility to over-
come this limitation by allowing imaginary-time mean-field
evolution. Tunneling probabilities are in excellent agreement
with the exact solution in the strongly interacting regime.

These results are promising and encourage applications to
more realistic systems. A first natural extension is to increase
the number of modes, e.g., using Cartesian grids with one
or more dimensions. Computational effort only increases lin-
early with the number of particles at the mean-field level, so
simulating tunneling dynamics of larger systems (out of reach
to exact and few-body techniques) should not be an issue. The
imaginary-time mean-field equations could also be extended
to include pairing correlations [45].
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2In practice, a small deviation from the mean-field ground state
would be needed to initiate the evolution in the right “direction” (e.g.,
a small increase of the quadrupole moment).

064614-7



PATRICK MCGLYNN AND CÉDRIC SIMENEL PHYSICAL REVIEW C 102, 064614 (2020)

[1] N. Ahsan and A. Volya, Quantum tunneling and scattering
of a composite object reexamined, Phys. Rev. C 82, 064607
(2010).

[2] S. Hunn, K. Zimmermann, M. Hiller, and A. Buchleitner,
Tunneling decay of two interacting bosons in an asymmetric
double-well potential: A spectral approach, Phys. Rev. A 87,
043626 (2013).

[3] M. Rontani, Pair tunneling of two atoms out of a trap, Phys.
Rev. A 88, 043633 (2013).

[4] R. Lundmark, C. Forssén, and J. Rotureau, Tunneling theory
for tunable open quantum systems of ultracold atoms in one-
dimensional traps, Phys. Rev. A 91, 041601(R) (2015).
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[21] J. Dobrzyniecki and T. Sowiński, Momentum correlations of a
few ultracold bosons escaping from an open well, Phys. Rev. A
99, 063608 (2019).

[22] C. Simenel and A. S. Umar, Heavy-ion collisions and fission
dynamics with the time-dependent Hartree-Fock theory and its
extensions, Prog. Part. Nucl. Phys. 103, 19 (2018).

[23] K. Vo-Phuoc, C. Simenel, and E. C. Simpson, Dynamical ef-
fects in fusion with exotic nuclei, Phys. Rev. C 94, 024612
(2016).

[24] K. Godbey, A. S. Umar, and C. Simenel, Dependence of
fusion on isospin dynamics, Phys. Rev. C 95, 011601(R)
(2017).

[25] E. Williams, K. Sekizawa, D. J. Hinde, C. Simenel, M.
Dasgupta, I. P. Carter, K. J. Cook, D. Y. Jeung, S. D. McNeil,
C. S. Palshetkar, D. C. Rafferty, K. Ramachandran, and A.
Wakhle, Exploring Zeptosecond Quantum Equilibration Dy-
namics: From Deep-Inelastic to Fusion-Fission Outcomes in
58Ni + 60Ni Reactions, Phys. Rev. Lett. 120, 022501 (2018).

[26] C. Simenel, K. Godbey, and A. S. Umar, Timescales of
Quantum Equilibration, Dissipation and Fluctuation in Nuclear
Collisions, Phys. Rev. Lett. 124, 212504 (2020).

[27] M. Dasgupta, D. J. Hinde, A. Diaz-Torres, B. Bouriquet, C. I.
Low, G. J. Milburn, and J. O. Newton, Beyond the Coherent
Coupled Channels Description of Nuclear Fusion, Phys. Rev.
Lett. 99, 192701 (2007).

[28] S. Levit, J. W. Negele, and Z. Paltiel, Barrier penetration and
spontaneous fission in the time-dependent mean-field approxi-
mation, Phys. Rev. C 22, 1979 (1980).

[29] H. Reinhardt, Semiclassical theory of nuclear fission, Nucl.
Phys. A 367, 269 (1981).

[30] G. Puddu and J. W. Negele, Solution of the mean field equations
for spontaneous fission, Phys. Rev. C 35, 1007 (1987).

[31] P. Arve, G. F. Bertsch, J. W. Negele, and G. Puddu, Model
for tunneling in many-particle systems, Phys. Rev. C 36, 2018
(1987).

[32] J. W. Negele, Microscopic theory of fission dynamics, Nucl.
Phys. A 502, 371 (1989).

[33] J. Skalski, Nuclear fission with mean-field instantons, Phys.
Rev. C 77, 064610 (2008).

[34] C. Simenel and Ph. Chomaz, Couplings between dipole and
quadrupole vibrations in tin isotopes, Phys. Rev. C 80, 064309
(2009).

[35] B. Avez and C. Simenel, Structure and direct decay of Giant
Monopole Resonances, Eur. Phys. J. A 49, 76 (2013).

[36] J. C. Eilbeck, P. S. Lomdahl, and A. C. Scott, The discrete self-
trapping equation, Phys. D 16, 318 (1985).

[37] A. Smerzi, S. Fantoni, S. Giovanazzi, and S. R. Shenoy,
Quantum Coherent Atomic Tunneling Between Two Trapped
Bose-Einstein Condensates, Phys. Rev. Lett. 79, 4950 (1997).

[38] G. J. Milburn, J. Corney, E. M. Wright, and D. F. Walls,
Quantum dynamics of an atomic Bose-Einstein condensate in
a double-well potential, Phys. Rev. A 55, 4318 (1997).

[39] R. P. Feynman, Space-time approach to non-relativistic quan-
tum mechanics, Rev. Mod. Phys. 20, 367 (1948).

[40] A. Zichichi and S. Coleman, The Whys of Subnuclear Physics,
edited by Antonino Zichichi (Springer US, Boston, MA, 1979).

[41] B. R. Holstein and A. R. Swift, Path integrals and the WKB
approximation, Am. J. Phys. 50, 829 (1982).

064614-8

https://doi.org/10.1103/PhysRevC.82.064607
https://doi.org/10.1103/PhysRevA.87.043626
https://doi.org/10.1103/PhysRevA.88.043633
https://doi.org/10.1103/PhysRevA.91.041601
https://doi.org/10.1103/PhysRevA.98.013634
https://doi.org/10.1140/epja/i2008-10712-5
https://doi.org/10.1143/PTP.128.1061
https://doi.org/10.1103/PhysRevC.88.064604
https://doi.org/10.1103/PhysRevA.93.033635
https://doi.org/10.1103/PhysRevC.96.014610
https://doi.org/10.1103/PhysRevC.95.031601
https://doi.org/10.1103/PhysRevC.100.024619
https://doi.org/10.1103/RevModPhys.92.011001
https://doi.org/10.1103/PhysRevA.96.063601
https://doi.org/10.1103/PhysRevLett.118.210403
https://doi.org/10.1103/PhysRevLett.118.060402
https://doi.org/10.1088/2058-9565/aad399
https://doi.org/10.1103/PhysRevLett.108.075303
https://doi.org/10.1103/PhysRevLett.111.175302
https://doi.org/10.1103/PhysRevA.92.033629
https://doi.org/10.1103/PhysRevA.99.063608
https://doi.org/10.1016/j.ppnp.2018.07.002
https://doi.org/10.1103/PhysRevC.94.024612
https://doi.org/10.1103/PhysRevC.95.011601
https://doi.org/10.1103/PhysRevLett.120.022501
https://doi.org/10.1103/PhysRevLett.124.212504
https://doi.org/10.1103/PhysRevLett.99.192701
https://doi.org/10.1103/PhysRevC.22.1979
https://doi.org/10.1016/0375-9474(81)90517-0
https://doi.org/10.1103/PhysRevC.35.1007
https://doi.org/10.1103/PhysRevC.36.2018
https://doi.org/10.1016/0375-9474(89)90676-3
https://doi.org/10.1103/PhysRevC.77.064610
https://doi.org/10.1103/PhysRevC.80.064309
https://doi.org/10.1140/epja/i2013-13076-9
https://doi.org/10.1016/0167-2789(85)90012-0
https://doi.org/10.1103/PhysRevLett.79.4950
https://doi.org/10.1103/PhysRevA.55.4318
https://doi.org/10.1103/RevModPhys.20.367
https://doi.org/10.1119/1.12750


IMAGINARY-TIME MEAN-FIELD METHOD FOR … PHYSICAL REVIEW C 102, 064614 (2020)

[42] Barry R. Holstein and Arthur R. Swift, Barrier penetration via
path integrals, Am. J. Phys. 50, 833 (1982).

[43] G. Gamow, Zur Quantentheorie des Atomkernes, Z. Phys. 51,
204 (1928).

[44] T. H. R. Skyrme, CVII. The nuclear surface, Philos. Mag. 1,
1043 (1956).

[45] S. Levit, Mean field tunneling dynamics of superfluid fermi
systems. spontaneous and induced fission, arXiv:2007.02575.

064614-9

https://doi.org/10.1119/1.12751
https://doi.org/10.1007/BF01343196
https://doi.org/10.1080/14786435608238186
http://arxiv.org/abs/arXiv:2007.02575

