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Amplitude- and truncated partial-wave analyses are combined into a single-channel method for extracting
multipoles directly from measured data. In practice, we have created a two-step procedure which is fit to the same
database: in the first step we perform an energy-independent amplitude analysis where continuity is achieved by
constraining the amplitude phase, and the result of this first step is then taken as a constraint for the second
step where a constrained, energy-independent, truncated partial-wave analysis is done. The method is tested on
the world collection of data for η photoproduction, and the obtained fit results are very good. The sensitivity
to different possible choices of amplitude phase is investigated and it is demonstrated that the present database
is insensitive to notable phase changes due to an incomplete database. New measurements are recommended to
remedy the problem.
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I. INTRODUCTION

Finding a connection between QCD and experiment is
a conditio sine qua non for establishing whether a partic-
ular description of the effects of nonperturbative QCD is
close to being correct, and a lot of effort has, in the last
decades, been put into doing it via comparing resonance
spectra. While on the QCD side, a resonance spectrum is stan-
dardly predicted by lattice QCD and various QCD-inspired
phenomenological models, on the experimental side it is stan-
dardly extracted by identifying poles of the scattering matrix
[1]. However, given that resonances or poles must have defi-
nite quantum numbers, finding pole structure of experimental
data must necessarily go through a partial-wave decompo-
sition where the angular dependence at a fixed energy is
represented by a decomposition over the complete set of Leg-
endre polynomials, which then define proper eigenvalues of
the angular-momentum operator. Combining good quantum
numbers of angular momenta with the known spins of the
reacting particles, resonance quantum numbers are fully de-
fined. However, one should be aware that observables which
are measured are most generally given in terms of amplitudes,
and not partial waves, and to obtain partial waves one has
to invest some extra work. Unfortunately, in that process
the single-channel partial-wave decomposition turned out to
be rather nonunique. For decades, it has been known that,
in the single-channel case, even a complete set of observ-
ables is invariant with respect to the phase rotation of all
reaction amplitudes by the same arbitrary real function of
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energy and angle (continuum ambiguity) [2–4], and this free
rotation either causes a rearrangement of strength between
real and imaginary parts of amplitudes and partial waves for
energy-dependent phase-rotation functions, or it even mixes
partial waves for angular-dependent phase-rotation functions.
These effects lead to unacceptable discontinuities in ampli-
tudes and partial waves, and have been extensively discussed
in Refs. [5,6]. The main conclusion is that at least one of the
reaction amplitude phases must be forced to be continuous
in energy and angle in order to restore a continuous, unique
solution. The open question is how to accomplish this task
with minimal model dependence. With all these issues at
hand, finding an optimal method for extracting partial waves
with minimal reference to a particular theoretical model for
fixing the phase turns out to be of utmost importance.

A direct consequence of the continuum ambiguity is that
an unconstrained single-channel, single-energy partial-wave
analysis (SE PWA), in the sense that there is absolutely no
correlation among SE PWA solutions at neighboring energies,
must be discontinuous. This is the consequence of the fact
that, if a phase is unspecified at an isolated energy, then the
free fit chooses a random phase value because there is an
infinite number of phases which give an absolutely identical
set of observables. So, the variation of the phase between
neighboring energies may be random and discontinuous. If
the variation of the phase between neighboring energies is
discontinuous, the redistribution of strength between real and
imaginary part at each energy will be random, so the partial
wave must be discontinuous, too. The standard way of achiev-
ing the continuity was to implement it on the level of partial
waves, so one resolved to constrain partial waves directly to
values originating from some particular theoretical model. In
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this case, the model dependence is strong. The first ideas
to use more general principles of analyticity for imposing
the continuity instead of referring to a particular model were
introduced in the mid 1980s by the Karlsruhe-Helsinki group
for pion-nucleon (πN) elastic scattering in the form of fixed-t
analyticity [7]. In this case instead of demanding the proxim-
ity of fit partial waves to some model values, the continuity
is imposed on the level of reaction amplitudes by requiring
fixed-t analyticity. In other words, the group was fitting the
world collection of data requiring that the reaction amplitude
for a fixed-t have a certain analytic, hence continuous form. In
this way, any specific dependence on a particular model was
reduced to the level of discussing what is the correct analytic
structure of the reaction amplitudes, and this form is fairly
well defined by the branch points of the analyzed reaction. Un-
fortunately, imposing analyticity in the Mandelstam t variable
opened quite some additional issues, and this is extensively
discussed in Ref. [8].

The aim of this work is to show that invoking analyticity in
the Mandelstam t variable is not really needed and raises un-
wanted complications; the required continuity can be obtained
by amplitude analysis (AA) in the Mandelstam s variable, and
the continuity is imposed by requiring the proper analyticity
of amplitude phases only. So, everything is done in the Man-
delstam s variable, and by this the analysis becomes much
simpler. To our knowledge, this is the first time that amplitude
analysis and truncated partial-wave analysis are joined into
one compact, self-sustained analysis scheme.

Let us stress that the continuum ambiguity problem, and all
problems of the continuity of the phase related to it, are typical
and inherent for single-channel analyses where unitarity is vi-
olated in the sense that there exists the loss of probability-flux
into other channels. Unitarity equations become inequalities,
and the free phase arises. However, in full coupled-channel
formalisms where unitarity is at the end restored by sum-
ming up the flux in all channels, the invariance to phase
rotations disappears as the phase is fixed, and uniqueness is
automatically restored. However, this work analyzes only the
single-channel case.

Let us also warn the reader about another aspect of PWA:
the number of partial waves involved. As the partial-wave
decomposition is an expansion over the complete set of Leg-
endre polynomials, it is inherently infinite, but in practice
it must be finite, so all we can talk about is a truncated
PWA (TPWA). A lot of effort has recently been put into
analyzing the features of a TPWA for pseudoscalar meson
photoproduction [9,10]. A theoretical model was chosen, all
observables were generated from this model with a fixed
angular-momentum cutoff �max, and a complete set of ob-
servables generated this way was taken as input to TPWA.
In that way the outcome of TPWA is known in advance,
and a lot of conclusion on the symmetries and inter-relation
among the thus formed pseudo observables have been drawn.
Unfortunately, as this is an idealized case; most of these con-
clusions are not applicable for our practical purposes. Those
pseudo observables generated from a model by default possess
explicit properties like unrealistically high precision, conti-
nuity in energy and angle, various interdependence among
observables due to finite truncation order, etc., which our real

data do not necessarily have. This is in particular pronounced
if the truncation order is too low. Therefore, we have to be
very careful in our analysis of real data to take the truncation
order high enough to avoid introducing additional, nonexist-
ing symmetries into the analysis which may raise quite some
problems. If we are careful enough, our obtained partial waves
are not exact, but indeed are a good representation of the
amplitude analysis representing the process.

The paper is organized as follows: the main text goes
directly into media res by proposing the new fit method
and showing applications to polarization data in η photo-
production in a detailed way. Discussions on the necessary
background knowledge concerning the photoproduction for-
malism, as well as a more elaborate mathematical discussion
on the motivation of the proposed novel analysis scheme, have
been relegated to the Appendixes. In this way, we can present
our main results quickly and concisely, while the interested
reader can read the more elaborate mathematical discussion
in parallel.

II. THE NOVEL APPROACH TO SINGLE-CHANNEL
PARTIAL-WAVE ANALYSIS AND APPLICATION TO η

PHOTOPRODUCTION

The main intention of our proposed scheme is to obtain
a continuous set of partial waves, directly from experimental
data, with the strongly reduced involvement of theoretical
models.

The zeroth step of our procedure is to perform an un-
constrained single-energy partial-wave analysis (SE PWA),
namely, to fit the available set of measured data with a
chosen number of partial waves at each available energy
independently (at each energy the fit is independent of the
neighboring energy). We know that such a process, due to the
continuum ambiguities on the level of reaction amplitudes,
must produce a set of partial waves that are discontinuous
in energy, even for a complete set of pseudodata with very
high precision. However, this procedure gives the best possi-
ble fit to the data with the chosen number of partial waves
and directly measures the consistency of the data. So, this
gives us a benchmark-set of values for the goodness-of-fit
parameter chi squared—which we call χ2

unc.(W ) (“unc.” for
“unconstrained”)—and any method of enforcing continuity
of partial waves must be as close as possible to this set, but
can never be better. Achieving the continuity of partial waves
is, however, a demanding task. For the case of very precise
pseudodata, it has been shown that the task is still relatively
simple: it is enough to impose the continuity only in one
amplitude phase to achieve the goal that the SE PWA becomes
continuous [5]. However, for the real data we unfortunately
have a serious problem. The existing set of observables is
incomplete, and errors are realistic, so the situation changes
drastically. Simple methods of imposing continuity on one
phase only do not work anymore.

The standard way to impose continuity in discontinuous
SE PWA is the penalty function methodology. The idea is
to require that the solution one obtains by fitting the data at
one isolated energy simultaneously reproduces the data and
is also close to some continuous function. So, out of an in-
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principle infinite number of solutions at isolated energy for the
unconstrained SE PWA, one picks only those which are also
close to a predetermined continuous penalization factor. Of
course, the solution will depend on the size of the penalization
coefficient. The smaller the coefficient, the more the solution
will tend to reproduce the fitted data; it will be more discon-
tinuous and it will less satisfy the penalization function. On
the other hand, if one increases the penalization coefficient,
the more the fit will reproduce the penalization function and
be continuous, but it will less describe the fitted data. In the
final limit of extremely low penalization coefficient, the fit
will ideally describe the data and be discontinuous, and in the
final limit of extremely big penalization coefficient, the fit will
be continuous, perfectly describe the penalization function,
and definitely disagree with the fitted data. The optimum lies
somewhere in between.

The first, most standard approaches found in the literature
were to penalize partial waves. We require that the fitted
partial waves reproduce the observable O and are at the same
time close to some partial waves taken from a theoretical
model. So, for one observable we may at one fixed energy
W write (for a literature example of a penalization scheme
which acts on the level of partial waves, although not quite in
the same way as in the definition given below, see for instance
Ref. [11]):

χ2(W ) =
Ndata∑
i=1

wi
[
Oexpt.

i (W,�i ) − Otheor.
i (Mfit(W,�i))

]2

+λpen.

Ndata∑
i=1

|Mfit(W,�i ) − Mtheor.(W,�i )|2, (1)

where

M def.= {M0,M1,M2, . . . ,M j}
is the generic notation for the set of all multipoles, wi is
the statistical weight, and j is the number of partial waves
(multipoles). Here, Mfit are fitting parameters and Mtheor.

are continuous functions taken from a particular theoretical
model.

In this case the procedure is strongly model-dependent.
A possibility to make the penalization function inde-

pendent of a particular model was first formulated in the
Karlsruhe-Helsinki (KH) πN-elastic PWA by Höhler and col-
laborators in the mid 1980s [7]. Instead of using partial waves,
which are inherently model dependent, the penalization func-
tion was chosen to be constructed from reaction amplitudes
which can be, in principle, directly linked to experimental data
with only analyticity requirements imposed in the amplitude
reconstruction procedure. So, Eq. (1) was changed to

χ2(W ) = χ2
data(W ) + χ2

pen(W ),

χ2
data(W ) =

Ndata∑
i=1

wi
[
Oexpt.

i (W,�i ) − Otheor.
i (Mfit(W,�i ))

]2
,

χ2
pen(W ) = λpen.

Ndata∑
i=1

Namp∑
k=1

∣∣Ak (Mfit(W,�i )) − Apen.
k (W,�i )

∣∣2
,

(2)

where Ak is the generic name for any kind of reaction am-
plitudes (invariant, helicity, transversity, ...). The amplitudes
Ak (Mfit(W,�i )) are discontinuous ones obtained from fitted
multipoles, and the amplitudes Apen.

k (W,�i ) are continuous
amplitudes obtained in the penalization procedure. In this
way, one is now responding to two challenges: to get reac-
tion amplitudes which fit the data, and also to make them
continuous. In the Karlsruhe-Helsinki case, this was accom-
plished by implementing fixed-t analyticity and fitting the
database for fixed t with reaction amplitudes whose analyt-
icity is achieved by using the Pietarinen expansion and using
the obtained, continuous reaction amplitudes as penalization
functions Apen.

k (W,�i ).1 So, the first step of the KH fixed-t
approach was to create the database O(W )|t=fixed by using the
measured data base O(cos θ )|W =fixed, and then to fit them with
a manifestly analytic representation of reaction amplitudes for
a fixed t . Then, the second step was to perform a penalized
PWA defined by Eq. (2) in a fixed-W representation where the
penalizing function Apen.

k (W,�i ) was obtained in the first step
in a fixed-t representation. In that way a stabilized SE PWA
was performed.

This approach was revived very recently for SE PWA of η

photoproduction by the Main-Tuzla-Zagreb collaboration [8]
and analyzed in detail. The basic result of that paper is that this
fixed-t method works very reliably, but is rather complicated.
First it required the creation of a completely new database
O(W )|t=fixed from the measured database O(cos θ )|W =fixed,
which introduced a certain model dependence connected with
the interpolation, and second it involved quite some problems
with the importance of the unphysical regions.

Therefore, we propose an alternative: We also use Eq. (2),
but the penalizing function Apen.

k (W,�i ) is generated by the
amplitude analysis in the same, fixed-W representation, and
not in the fixed-t representation. This simplifies the procedure
significantly and avoids quite some theoretical assumptions on
the behavior in the fixed-t representation.

We also propose a two-step process:

Step 1: Complete experiment analysis or amplitude analy-
sis (CEA-AA) of experimental data in a fixed-W representa-
tion to generate the penalizing function Apen.

k (W,�i).
Step 2: Perform a penalized TPWA, using Eq. (2) with the

penalty function from Step 1.

One has to observe one very important fact: The “main
event” happens in Step 2; Step 1 serves only to impose conti-
nuity of Step 2. Therefore, the reaction amplitudes obtained in
Step 1 need not absolutely reproduce the data, it is important
that they are close to the experiment, and that they are continu-
ous. The best agreement is then achieved in Step 2. Of course,
finding the optimal value of the penalization coefficient λpen.

is of utter importance.

A. Step 1: Complete experiment analysis or amplitude analysis

In Appendix A, we give the formalism of pseudoscalar
meson photoproduction, and in Appendix B we discuss the

1In their case they have chosen to use invariant amplitudes.
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details of CEA-AA. Out of detailed presentation of the prob-
lem we stress the most important fact: that the unconstrained
CEA-AA is nonunique and discontinuous because of the con-
tinuum ambiguity. In this step, therefore, we have to achieve
two goals: to find the amplitudes which achieve the best pos-
sible agreement with the data and are continuous at the same
time. As we do not have a complete set of data of infinite
precision at our disposal, it is by definition impossible to
obtain the unique solution. We can only get the solution with
errors generated by experiment; in other words these errors
originate only in the uncertainty of data, and not in continuum
ambiguity effects. Step 1 is also a two-part procedure. The
best agreement with the data is achieved in the first part, and
the continuity is imposed in the second part.

We adopt the following strategy:

(a) The best agreement with experiment is achieved in the
unconstrained fit of the absolute values of all reaction
amplitudes to the database (observe that in fitting ab-
solute values we do not have any phases involved).

(b) The continuity of the solution is achieved by fixing the
phases of all reaction amplitudes to the analytic phase
of our choice.

Observe that Step 1 is, because of part (b), a model-
dependent step, but this model dependence will be addition-
ally reduced in Step 2. Namely, in Step 2 we fit the data with
partial waves directly, so the phases of all reaction amplitudes
are changed correcting the fact that the penalization which
gives continuity is model dependent. We may safely say that
the approach which is proposed here forces the phase of the
final solution to be in-between the exact and the penalizing
solution and to be continuous at the same time. The situation
may further improve by iteration, i.e., to repeat Step 1 with
input from Step 2 as was done in KH approach for fixed t , but
the final result so far does not require that.

1. Obtaining absolute values

For obtaining absolute values it is extremely useful to use
the transversity representation. Namely, in the transversity
representation for η photoproduction, all four absolute values
|bi| are determined by a set of four observables given by

the unpolarized differential cross section dσ/d

def.= σ0, the

beam asymmetry �, the target asymmetry T , and the recoil-
polarization asymmetry P (cf. Table II in Appendix A):

σ0 = ρ

2
(|b1|2 + |b2|2 + |b3|2 + |b4|2),

�̂ = ρ

2
(−|b1|2 − |b2|2 + |b3|2 + |b4|2),

T̂ = ρ

2
(|b1|2 − |b2|2 − |b3|2 + |b4|2),

P̂ = ρ

2
(−|b1|2 + |b2|2 − |b3|2 + |b4|2), (3)

where Oσ0
def.= Ô and ρ is defined in the Appendixes. There-

fore, having all four observables with sufficient precision and
in adequate number of angular points would enable us, up
to discrete ambiguities, the unique extraction of the absolute
values |bi| in SE PWA. By adequate programming (taking into

account similarity of solutions at neighboring energies, one
can eliminate discontinuities due to discrete ambiguities. All
remaining discontinuities will be of experimental origin.

2. Determining phases

Up to this moment, our model is completely energy and
angle independent and depends only on experimental data.
However, results are still not continuous. Introducing ana-
lytic phases in this step produces continuity. For a single
pole amplitude, the phase is smooth (in the vicinity of the
pole the phase just quickly transverses through π/2 without
producing any pronounced structure), but already two poles
in the analyzed range produce phase interference, so some
structures may be formed. In addition, we know that, in our
energy range of interest, some threshold openings are present,
and this will also produce a rather un-smooth phase behavior.
So, at first it looks as if the phase may behave rather violently.
On the other hand, we are not discussing partial waves where
poles are directly visible, but reaction amplitudes which are a
sum over all known resonances and thresholds, so the effect
is smeared out. So, to the best of our knowledge, we can only
say that phases are smooth and analytic. At this moment there
is very little choice but to take the phase from a theoretical
model. We have chosen the Bonn-Gatchina model solution
BG2014-02 [12,13].

These phases are smooth and contain some structures
which are introduced by the model. Just as an illustration, we
show in Fig. 1 the phase of the b1 amplitude. Other phases are
very similar.

So, our first solution Sol 1 is obtained by using the theo-
retical BG2014-02 phases directly. Unfortunately, we do not
know how strong and model dependent this assumption is.

Given that the single-spin observables dσ/d
, �, T , and
P are phase independent, and only the double-polarization
observables of type beam target (BT ), beam recoil (BR)
and target recoil (T R) are phase dependent, we may hope
that this dependence is weak. Using the fact that phases are
analytic functions offers us the possibility to test the size of
this dependence.

First, we confirm that all transversity amplitude phases
indeed are analytic functions. To do this, we fit all four phases
with a two-dimensional Pietarinen expansion, a method which
has not been formulated up to now. The method is based on
Pietarinen expansion technique [14], but extended to two vari-
ables: energy and angle (more precisely, cosine of the angle
x := cos θ ). Namely, in energy dimension we use standard
Pietarinen expansion, but each of the coefficients also depends
on the angle. Similar as for the energy part, for the angular
dependence we also assume the expansion over a complete
set of functions, in this case we use Legendre polynomials.
So, one gets an analytic function which is analytic in energy
and angle and with the analyticity we control:

PT (W, θ ) =
∑N

k=0 ck (x)Z (W )k∣∣∑N
k=0 ck (x)Z (W )k

∣∣ ,

Z (W ) = α − √
W0 − W

α + √
W0 − W

,
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FIG. 1. The normalized transversity amplitude (phase) eiϕ1 := b1/|b1| from the BG2014-2 solution.

ck (x) =
M∑

l=0

ck,l Pl (x),

x = cos θ, (4)

M and N are small numbers (angular momentum index M is
always around three, and energy index can vary from four for
very simple energy analyticity to 20 for a fairly complicated
one), Pl (x) are Legendre polynomials, and α is the Pietarinen
range parameter. Then we make a two-dimensional (2D) fit
to the four normalized transversity amplitudes and get the
coefficients α, W0, and ck,l for all four absolute values.

If we are able to fit the phases with such an expansion, the
phases have to be analytic functions.

We use a very simple Pietarinen expansion, with only one
branch point at the η photoproduction threshold and only
four terms in the angular expansion. However, we see that
the analytic structure of the fitted phase is rather complicated
in energy, and we need as much as N = 20 energy terms to
obtain a decent fit. The result is shown in Fig. 2.

We again show the result only for b1 amplitude (see Fig. 2).
The analyticity of the phases of b1–b4 offers us the possibil-

ity of testing the sensitivity of our method to the phase. Instead
of the very physical phases b1–b4 of the BG2014-2 model and
illustrated for b1 in Figs. 1 and 2, we shall use a phase with
much simpler analyticity, and which is generated by a 2D fit
to the BG2014-02 phases with N = 4 terms only! This phase
is again shown as an illustration for the b1 amplitude in Fig. 3.

So, our second solution Sol 2 is obtained by using the
smoothed theoretical BG2014-02 phases. We stress that this is
a very unphysical phase because, despite being anticipated, no
structures are allowed, so the amount of dissimilarity between

Sol 1 and Sol 2 will give us the maximum model dependence
of our assumption. It is clear that all structures in the phases
in Sol 2 are eliminated, the obtained functions are smooth, and
represent the best fit to the BG2014-02 phases.

In this way, we complete Step 1 by using the original and
smoothed analytic phases which are generated by the phases
from the theoretical Bonn-Gatchina model [used phases are
the best fit of BG2014-02 input with 2-D Pietarinen expansion
given in Eq. (4)].

B. Step 2: Truncated partial-wave analysis

We perform a standard penalized TPWA defined by Eq. (2)
with �max = 5. The only issue is finding an optimal value
for the penalty-function coefficient λpen.. This issue will be
discussed further below. We, however, have to discuss two
features of TPWA: the threshold behavior and the database.

1. Threshold behavior

We know that, in the vicinity of a threshold, partial waves
have to behave like q(W )L where q(W ) is the absolute value
of the meson’s center-of-mass (c.m.) momentum, and in our
procedure that has not been enforced up to now in any way.
Step 1 is an unconstrained fit as far as the absolute values
|bi| are concerned, so no restrictions are coming through
the penalty function. The TPWA itself also does not require
that our result obeys that rule. Thus, we have to impose that
threshold-behavior somehow.

A very natural way to do it is, again, via the penalty func-
tion technique, and we follow the method recommended by
the KH group in Ref. [7]. The logic is the following: we add
another penalty function to our total χ2(W ), which is to be

FIG. 2. The normalized transversity amplitude (phase) eiϕ1 from the BG2014-02 solution (discrete symbols) and a two-dimensional
Pietarinen fit (2D plane) are shown.
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FIG. 3. The normalized transversity amplitude (phase) eiϕ1 from the smoothed BG2014-02 solution.

minimized:

χ2
thr.(W ) = λthr.

�max∑
l=1

|Ml±|2Fthr.(W, b, l )2l ,

Fthr.(W, b, l ) = bl
q(W ) e

− q(W )
0.1b ,

Ml± = {El±, Ml±}, (5)

where Fthr.(W, b, l ) is a phenomenological function instead of
the theoretical function R2l

2 of Ref. [7], which is connected
with convergence radius of the PWA expansion. We have used
this function for the value b = mN , where mN is the nucleon
mass, and λthr. = 2. The function Fthr.(W, b, l )2l behaves like
q(W )−2l for small q(W ), and vanishes for big q(W ), so it
scales down all multipoles with low q(W ) and leaves those
unchanged that have a big q(W ). In this way, the q(W )l power
law is automatically enforced for low q(W ).

2. Database

The data selection is particularly important as we want to
be as close as possible to a complete set of observables. At
this moment, we take all available measured data, and we
take them without any renormalization, exactly as they are
published. In Table I we give our database.

This selected set of data is somewhat specific and deserves
our special attention. The set is dominated by the very dense
and very precise σ0 data from A2@MAMI, while other spin
observables are measured only at 6–15 energies, and much
fewer angles. So the question arises how these sparse spin data

will be combined with very precise results on σ0. We shall
solve this problem via interpolation.

We generate two sets of interpolated data:

Set 1. We use all σ0 data, and all spin data are interpo-
lated. So the whole minimization is performed on a set which
consists of σ0 data + observables interpolated at energies and
angles where σ0 is measured. These data are marked light
gray. Observe that all data are very dense, but in practice the
only factually measured data are the σ0 values, all other data
are obtained by interpolation from the measured values. This
set of data is somewhat model dependent, and serves only as
an indication. This set will be used in Step 1.

Set 2. We use only part of the σ0 data at energies where
at least one additional spin observables is exactly measured.
This set is not so dense in energy, but the model dependence is
reduced. We denote the results corresponding to this set with
red discrete symbols. This set will be used in Step 2.

III. RESULTS AND DISCUSSION

First we made an unconstrained fit to produce the bench-
mark χ2

unc.(W ) function, which represents the lowest possible
χ2 value for any PW fit, and consequently indicates how
consistent the database actually is. However, let us remind the
reader that the resulting partial waves for such a fit are random
and discontinuous. Then, we performed two fits using the two-
step analysis scheme introduced above, with the results being
denoted as Sol 1 and Sol 2 according to the corresponding sets
of bi phases defined in Sec. II. For both solutions, we adjusted
the following value for the penalty coefficient: λpen. = 10.

TABLE I. Experimental data from A2@MAMI, GRAAL, and CBELSA/TAPS used in our PWA. Data from CBELSA/TAPS are taken at
the center of the energy bin.

Obs. N Elab [MeV] NE θc.m. [deg.] Nθ Reference

σ0 2400 710–1395 120 18–162 20 A2@MAMI(2010) [15]
� 150 724–1472 15 40–160 10 GRAAL(2007) [16]
T 144 725–1350 12 24–156 12 A2@MAMI(2016) [17]
F 144 725–1350 12 24–156 12 A2@MAMI(2016) [17]
E 64 750–1450 8 29–151 8 CBELSA/TAPS(2020) [18]
P 66 725–908 6 41–156 11 CBELSA/TAPS(2020) [18]
G 48 750–1250 6 48–153 8 CBELSA/TAPS(2020) [18]
H 66 725–908 6 41–156 11 CBELSA/TAPS(2020) [18]
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FIG. 4. A comparison of χ 2
unc./ndf for the unconstrained solution,

as well as χ 2
data/ndf for Sol 1 and Sol 2 at all measured energies.

This value represents the lower boundary of the following
roughly estimated optimal window of penalty-coefficient val-
ues around λpen. � 10, . . . , 50. This window of values has
been determined by “sweet-spot-fitting” techniques similar in
spirit, but not exactly equal, to those proposed in Secs. II and
III of Ref. [19]. The coefficient for the threshold penalty (5)
was set to λthr. = 2.

At this moment it is essential to show the difference be-
tween χ2

unc./ndf for the unconstrained solution, as well as
χ2

data/ndf for Sol 1 and Sol 2 (ndf is the number of degrees
of freedom). We show it in Fig. 4.

The χ2
unc./ndf from the unconstrained solution has by far

the smallest values; however, multipoles for this solution are
discontinuous. The χ2

data/ndf for both solutions Sol 1 and Sol 2
is somewhat worse, but still very good.

However, the χ2
data/ndf for Sol 1 and Sol 2, solutions with

two different phases, is barely distinguishable! χ2/ndf for
Sol 1, the solution with phase directly taken over from a very
good multichannel energy-dependent (ED) model BG2014-
2, is systematically better than χ2/ndf for Sol 2 where the
phase is ad hoc smoothed.2 Somewhat more pronounced dif-
ferences can be seen in the energy range 1600 MeV � W �
1700 MeV, but this is exactly the area of numerous threshold
openings (K�, K�, ...) where the phase is expected to have
notable structure.

Therefore, we show in Figs. 5–8 the lowest multipoles for
Sol 1 and Sol 2 and corresponding predictions of the BG2014-
2 theoretical solution.

As expected, differences are noticeable, but not big. In spite
of small differences in χ2/ndf for Sol 1 and Sol 2, the obtained
multipoles are not identical.

2There are several points where this is not the case, but this is just
the reflection of the fact that the phase from BG2014-2 model is still
only a model and not a genuine phase, so there is a possibility that
smoothed phase is accidentally better.

A. Sol 1, solution with BG 2014-2 phase

B. Sol 2, solution with smoothed BG2014-2 phase

In Fig. 9 we repeat the plot of χ2/ndf for the whole process
for Sol 1 from Fig. 4, but in addition we give the χ2/Ndata

for the whole fit, and χ2/Ndata for individual observables. The
χ2/Ndata for individual observables is extremely important as
it gives one the internal consistency of the database used. We
do not show the similar figure for Sol 2 as two figures are
practically indistinguishable.

However, the fits to the data for both solutions Sol 1 and
Sol 2 are practically indistinguishable. So, in Figs. 10–17 we
give the agreement of Sol 1 and Sol 2 with the fitted observ-
ables and compare it to the results of BG2014-2 solution.

Thus, we obtained almost identical fits of all observables
in the present database (indistinguishable when plotted, but
different below drawing precision when a detailed compar-
ison of numbers is made) with two visibly different sets of
multipoles!

If the database were more complete, the two sets of
χ2

data/ndf would be different between Sol 1 and Sol 2, and the
we could refine Step 1 to include the phase fit as well, very
similar as it has been done in the fixed-t analysis.3 Thus,
improving the precision of existing experiments and measur-
ing additional observables to get missing phases is definitely
needed to distinguish between the present solutions. On the
basis of physics arguments, we definitely claim that Sol 1 is
much more favorable, but, solely on the basis of measured
data, Sol 2 cannot be excluded.

However, one thing is important: the proposed analysis-
scheme is good enough to accomplish the given task staying
only in a fixed-W representation.

Furthermore, Figs. 5–8 show the following:

(1) The obtained multipoles are fairly smooth and do not
significantly deviate from the BG2014-02 predictions
in the sense that there is no qualitative difference
between the two sets of multipoles. They are of the
same sign, they have similar shape, they have compa-
rable structure. However, one sees that both solutions
Sol 1 and Sol 2 have notably more structure than the
energy-dependent BG2014-02 model, and that is to be
expected because BG2014-2 is a multichannel model
and does not ideally fit the data in one particular chan-
nel.

(2) One does see some apparent discontinuities at cer-
tain energies in certain multipoles (i.e., a “jump” in
ImE2+ at 1687 MeV), but this is the result of in-
consistencies of the data, and not of the inability of
the proposed analysis scheme to enforce continuity.

3We could fit the theoretical BG2014-02 phases with 2D Pietarinen
expansion with at least N = 20 terms, and then make a global,
energy-dependent fit of all observables, fixing the absolute values
of reaction amplitudes to the values of the present fit with only four
observables and using the Pietarinen expansion coefficients as fitting
parameters for improving phases. Then we would go to Step 2 with
improved phases which are connected to BG 2014-2 values only by
taking them as initial values.
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FIG. 5. Multipoles for L = 0, 1, and 2 partial waves for Sol 1. Gray discrete symbols correspond to Set 1, and red discrete symbols
correspond to Set 2. Orange full line is BG2014-2 solution for comparison. Abbreviation mfm stands for millifermi.

Namely, as shown in a former publication [5], forcing
the phase to be a continuous function is always result-
ing with continuity for the complete set of observables
measured with sufficient precision (in Ref. [5], this

has been shown for pseudodata with infinite preci-
sion). So, if sudden discontinuities appear, they should
be solely attributed to the inconsistency in the data
itself.
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FIG. 6. Multipoles for L = 2 and 3 partial waves for Sol 1. Gray discrete symbols correspond to Set 1, and red discrete symbols correspond
to Set 2. Orange full line is BG2014-2 solution for comparison. Abbreviation mfm stands for millifermi.

(3) As the low-energy behavior of the multipoles is con-
strained by the penalty function technique to the qL

behavior, some low-energy structure in the multipoles
(mostly structures below 1550 MeV) may result from

this effect. However, it is clearly visible that low-
energy structures are more pronounced for Sol 2 which
is obtained with the smoothed, nonphysical set of
phases. This should and will be discussed at length
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FIG. 7. Multipoles for L = 0, 1, and 2 partial waves for Sol 2. Gray discrete symbols correspond to Set 1, and red discrete symbols
correspond to Set 2. Orange full line is BG2014-2 solution for comparison. Abbreviation mfm stands for millifermi.

in future research when the pole structure will be
analyzed using the Laurent + Pietarinen formalism
[14].

(4) We see that both sets of multipoles corresponding to
different choices of interpolating techniques [Set 1
(light gray) and Set 2 (red)] are in fair agreement.
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FIG. 8. Multipoles for L = 2 and 3 partial waves for Sol 2. Gray discrete symbols correspond to Set 1, and red discrete symbols correspond
to Set 2. Orange full line is BG2014-2 solution for comparison. Abbreviation mfm stands for millifermi.

Figure 9 shows the following:

(1) The values of χ2
data/ndf and χ2

data/Ndata are extremely
good but notably nonuniform throughout the analyzed

energy range. This certainly indicates inconsistencies
in the data set, as will be discussed later.

(2) The distributions of χ2
data/Ndata values for particular

observables differ notably.
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FIG. 9. χ 2/Ndata for Sol 1.

(a) It is uniform and very good (close to 0.5) in the
complete energy range for σ0.

(b) It is very good and close to 0.5 in most of the
energy range for �, T , F , and G, but each of
the observables show energy ranges where this
quantity suddenly increases:

(i) For F it rises from an average value in
the ranges 1600–1650 and 1750–1840 MeV;
much more for the second range.

(ii) For T it jumps only slightly at lower and
higher energies.
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FIG. 10. Comparison of experimental data for σ0 (discrete symbols) with results of Sol 1 (red full line) and BG2014-2 fit (blue dashed line)
at representative energies.

(iii) For G it also jumps in the ranges 1600–1650
and 1750–1840 MeV.

(c) It is uniform in the whole energy range, but some-
what worse than typical for E .

(d) It is somewhat worse for P in the available energy
range 1500–1650 MeV.

(e) It notably worse for H in the complete measured
energy range 1500–1650 MeV.

(3) The quantities in these figures indicate that there exist
certain inconsistencies among measured data in certain
energy ranges. In particular, H seems to deviate in the

complete measured range and F seem to be problem-
atic at higher energies.

In Figs. 10–17 we compare the quality of fit of Sol 1 and the
theoretical BG014-02 model for all experimental data from
Table I. We conclude that the quality of fit for Sol 1 is much
better than the one of BG2014-02, and this is not surprising
as this is a fit, and BG2014-02 is an energy-dependent mi-
croscopic model. In addition, we have made some tests, and
we strongly suspect that the agreement with the data given in
Fig. 9 cannot be better even for the free fit. So, this solution
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FIG. 11. Comparison of experimental data for � (discrete symbols) with results of Sol 1 (red full line) and BG2014-2 fit (blue dashed line)
at representative energies.

is very close to the best result one can achieve. However,
analyzing the details of these figures one can also trace the
angular and energy ranges which are problematic and have
either big dissipation or big uncertainty, and we can very
confidently predict where a particular observable is expected
to be. The need for new measurements is automatically sug-
gested. Immediately, we may recommend that H and F should
be remeasured towards the end of the measured energy range.
In addition, the energy range of the P and H observable is
much smaller, so we recommend to extend the energy range
to at least 1800 MeV.

IV. SUMMARY AND CONCLUSIONS

In this paper we have presented a new data analysis scheme
for single-channel pseudoscalar meson photoproduction. It
combines the amplitude analysis CEA-AA of a complete ex-
periment with the truncated partial-wave analysis TPWA of an
idealistic case, where all higher partial waves that cannot be
fit would be completely negligible.

The strength of our scheme is its simplicity and strongly
reduced reference to any particular theoretical model. But it is
also robust enough that it can always extend the lack of data
by additional theoretical constraints.
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FIG. 12. Comparison of experimental data for T (discrete symbols) with results of Sol 1 (red full line) and BG2014-2 fit (blue dashed line)
at representative energies.

The possible weaknesses of the scheme are that it requires
a lot of experimental data, and that they should be mea-
sured with considerable reliability. The main opportunities
of the method are that it enables the direct extraction of
resonance parameters via Laurent-Pietarinen formalism [14],
and at the same time gives a direct possibility to check the
consistency of measured data sets. The scheme also allows
us to test the importance of certain observable to the final
result.

The proposed fit-method yields a continuous and reliable
set of partial waves without experiencing a strong influence to
any theoretical model.

The new variable P, measured by the Bonn group [18], is
extremely important because it helps to pin down the absolute
values of the transversity amplitudes in Step 1.

The present data set is insufficient to uniquely determine
the reaction amplitude phase, so as an example we generate
two solutions with almost identical quality of the fit to the
data, but with notably different partial waves. More mea-
surements are needed if one wants to better specify the pole
structure of partial-wave solutions.

Fitting the relative phase with present database is futile.
New measurements of well selected observables can improve
the analysis a lot. With them the analysis scheme can be
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FIG. 13. Comparison of experimental data for F (discrete symbols) with results of Sol 1 (red full line) and BG2014-2 fit (blue dashed line)
at representative energies.

extended to include fitting the relative phase too, so a unique
solution could be generated.

The method offers the possibility to directly analyze the in-
ternal consistency of different data sets, avoiding the influence
of different theoretical models.

The separate analysis of χ2/Ndata for eight polarization
observables in Fig. 9 suggest that certain observables should
be remeasured in certain energy ranges, and Figs. 10–17 imply
the ranges where the consistent data are expected to be.

We believe that the central result of our work consists
of the fact that applying CEA-AA in practical data analyses
is a very important technique, which should be employed
more and more in the future. The problem of the CEA-AA

has been mostly studied as an isolated mathematical problem
in the past, yielding the well-known complete sets of eight
observables. However, the CEA-AA is also quickly applied to
real data and it is a numerically quite well-behaved procedure,
due to the fact that it involves only four complex numbers for
all energies. The real power of the CEA-AA results emerges
once they are combined with the TPWA. There, they have
a great constraining power and make the TPWA an analysis
which is known to be very badly behaved on its own for
the higher �max, a lot more stable. Using the CEA-AA in
such a constructive way, we have been able to derive SE
PWA solutions for η photoproduction, which have quite con-
trolled and small discontinuities in their energy dependence,
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FIG. 14. Comparison of experimental data for E (discrete symbols) with results of Sol 1 (red full line) and BG2014-2 fit (blue dashed line)
at measured energies.

even for the “small” multipoles (i.e., all multipoles other
than E0+).

APPENDIX A: PHOTOPRODUCTION FORMALISM

In the following, we collect all aspects of the general pho-
toproduction formalism needed for this work. We consider
a 2 → 2-reaction with a spin-1 photon and a spin- 1

2 target
nucleon in the initial state and a pseudoscalar meson and a
spin- 1

2 baryon in the final state:

γ (pγ ; mγ ) + N
(
Pi; msi

) −→ ϕ(pϕ ) + B
(
Pf ; ms f

)
. (A1)

In this expression, the four-momentum as well as the variables
necessary to label the spin-states have been indicated for each
particle. For the reaction of η photoproduction studied in this
work, the pseudoscalar ϕ is the η and the recoil-baryon B is
the nucleon N . However, other combinations are also possible.

In the following, we collect the customary definitions for
the Mandelstam variables s, t , and u. Using four-momentum

conservation, pγ + Pi = pϕ + Pf , each of these variables can
be written in two equivalent forms:

s = (pγ + Pi )
2 = (pϕ + Pf )2, (A2)

t = (pγ − pϕ )2 = (Pf − Pi )
2, (A3)

u = (pγ − Pf )2 = (Pi − pϕ )2. (A4)

Since all particles in the initial- and final state of the reaction
(A1) are assumed to be on the mass shell, the whole reaction
can be described by two independent kinematic invariants.
The latter are often chosen to be the pair (s, t ).

In case center-of-mass (CMS) coordinates are adopted, the
following relations can be established between (s, t ) and the
center-of-mass energy W and scattering angle θ of the reaction

s = W 2, (A5)

t = m2
ϕ − 2k

√
m2

ϕ + q2 + 2kq cos θ. (A6)

FIG. 15. Comparison of experimental data for P (discrete symbols) with results of Sol 1 (red full line) and BG2014-2 fit (blue dashed line)
at measured energies.
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FIG. 16. Comparison of experimental data for G (discrete symbols) with results of Sol 1 (red full line) and BG2014-2 fit (blue dashed line)
at measured energies.

Here, k and q are the absolute values of the CMS three-
momenta for the photon and the meson, respectively. Both of
these variables can be expressed in terms of W and the masses
of the initial- and final-state particles. Therefore, it is seen that
the reaction can be described equivalently in terms of (W, θ ).
Furthermore, the phase-space factor for the considered 2 → 2
reaction is defined as ρ = q/k.

The spins of the particles in the initial and final states
of photoproduction (A1) imply a general decomposition for
the reaction amplitude. This decomposition has been found
by Chew, Goldberger, Low, and Nambu (CGLN) [20] and it
reads:

F = χ†
ms f

(i�σ · ε̂F1 + �σ · q̂�σ · k̂ × ε̂F2 + i�σ · k̂q̂ · ε̂F3

+ i�σ · q̂q̂ · ε̂F4)χmsi
. (A7)

Here, k̂ and q̂ are normalized CMS three-momenta, ε̂ is
the normalized photon polarization-vector, and χmsi

, χms f
are

Pauli spinors. The complex amplitudes F1, . . . , F4 depend on
(W, θ ) and are called CGLN amplitudes. Once this set of four
amplitudes is determined, the full dynamics of the process is
known.

The axis of spin quantization chosen for the initial-state
nucleon and the final-state baryon in the decomposition (A7)
coincides with the ẑ axis in the CMS. However, other choices
are also feasible, which then lead to different but equiva-
lent systems composed of four spin amplitudes. For instance,
it is possible to introduce so-called transversity amplitudes
b1, . . . , b4 by rotating the spin-quantization axis to the di-
rection normal to the so-called reaction plane. The latter is
defined as the plane spanned by the CMS three-momenta �k
and �q. Using the conventions employed implicitly in the work
of Chiang and Tabakin [21], one arrives at the following set of

FIG. 17. Comparison of experimental data for H (discrete symbols) with results of Sol 1 (red full line) and BG2014-2 fit (blue dashed line)
at measured energies.
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linear and invertible relations between transversity and CGLN amplitudes:

b1(W, θ ) = −b3(W, θ ) − 1√
2

sin θ
[
F3(W, θ )e−i θ

2 + F4(W, θ )ei θ
2
]
, (A8)

b2(W, θ ) = −b4(W, θ ) + 1√
2

sin θ
[
F3(W, θ )ei θ

2 + F4(W, θ )e−i θ
2
]
, (A9)

b3(W, θ ) = i√
2

[
F1(W, θ )e−i θ

2 − F2(W, θ )ei θ
2
]
, (A10)

b4(W, θ ) = i√
2

[
F1(W, θ )ei θ

2 − F2(W, θ )e−i θ
2
]
. (A11)

The transversity basis greatly simplifies the definitions of polarization observables (see further below) and is therefore generally
used as a starting point for the discussion of complete-experiment problems. Due to these mathematical advantages, this basis is
also used in the discussion in the main text (Sec. II).

To extract information on the properties of resonances, one has to analyze partial waves. In this work, we adopt the well-known
expansion of the CGLN amplitudes into electric and magnetic multipoles, which reads [20,22]:

F1(W, θ ) =
∞∑

�=0

{[�M�+(W ) + E�+(W )]P′
�+1(cos θ ) + [(� + 1)M�−(W ) + E�−(W )]P′

�−1(cos θ )}, (A12)

F2(W, θ ) =
∞∑

�=1

[(� + 1)M�+(W ) + �M�−(W )]P′
�(cos θ ), (A13)

F3(W, θ ) =
∞∑

�=1

{[E�+(W ) − M�+(W )]P′′
�+1(cos θ ) + [E�−(W ) + M�−(W )]P′′

�−1(cos θ )}, (A14)

F4(W, θ ) =
∞∑

�=2

[M�+(W ) − E�+(W ) − M�−(W ) − E�−(W )]P′′
� (cos θ ). (A15)

The multipoles can be assigned to definite conserved spin-parity quantum numbers JP. In particular, resonances with spin
J = |� ± 1

2 | couple to the multipoles E�± and M�±.
The multipole expansion of the CGLN amplitudes Fi is formally inverted by the following well-known set of projection

integrals [10,23]:

M�+ = 1

2(� + 1)

∫ 1

−1
dx

[
F1P�(x) − F2P�+1(x) − F3

P�−1(x) − P�+1(x)

2� + 1

]
, (A16)

E�+ = 1

2(� + 1)

∫ 1

−1
dx

[
F1P�(x) − F2P�+1(x) + �F3

P�−1(x) − P�+1(x)

2� + 1
+ (� + 1)F4

P�(x) − P�+2(x)

2� + 3

]
, (A17)

M�− = 1

2�

∫ 1

−1
dx

[
−F1P�(x) + F2P�−1(x) + F3

P�−1(x) − P�+1(x)

2� + 1

]
, (A18)

E�− = 1

2�

∫ 1

−1
dx

[
F1P�(x) − F2P�−1(x) − (� + 1)F3

P�−1(x) − P�+1(x)

2� + 1
− �F4

P�−2(x) − P�(x)

2� − 1

]
. (A19)

In these projection equations, one has x = cos θ . Polariza-
tion observables in pseudoscalar meson photoproduction are
generically defined as dimensionless asymmetries among dif-
ferential cross sections for different beam, target, and recoil
polarization states:

O = β
[(

dσ
d


)(B1,T1,R1 ) − (
dσ
d


)(B2,T2,R2 )]
σ0

. (A20)

The factor β has been introduced in the work by Sandorfi
et al. [22] for consistency and it takes the value β = 1

2 for
observables which involve only beam and target polarization
and β = 1 for quantities with recoil polarization. The unpo-
larized cross section σ0 always assumes the form of the sum

of the two polarization configurations:

σ0 = β

[(
dσ

d


)(B1,T1,R1 )

+
(

dσ

d


)(B2,T2,R2 )]
. (A21)

The dimensioned asymmetry σ0O is often called a pro-
file function [10,21] and is distinguished by a hat mark on
the O:

Ô = β

[(
dσ

d


)(B1,T1,R1 )

−
(

dσ

d


)(B2,T2,R2 )]
. (A22)

For the photoproduction of a single pseudoscalar meson, there
exist in total 16 polarization observables [22], which include
also the unpolarized cross section σ0 and which can be further
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TABLE II. The definitions of the 16 polarization observables of
pseudoscalar meson photoproduction in terms of transversity ampli-
tudes bi (cf. Ref. [21]) are collected here. Expressions are given both
in terms of moduli and relative phases of the amplitudes and in terms
of real- and imaginary parts of bilinear products of amplitudes. Fur-
thermore, the phase-space factor ρ has been suppressed in the given
expressions. The four different groups of observables are indicated
as well. The sign-conventions for the observables are consistent with
Ref. [10].

Observable Group

σ0 = 1
2 (|b1|2 + |b2|2 + |b3|2 + |b4|2)

�̂ = 1
2 (−|b1|2 − |b2|2 + |b3|2 + |b4|2) S

T̂ = 1
2 (|b1|2 − |b2|2 − |b3|2 + |b4|2)

P̂ = 1
2 (−|b1|2 + |b2|2 − |b3|2 + |b4|2)

Ê = Re[−b∗
3b1 − b∗

4b2] = −|b1||b3| cos φ13 − |b2||b4| cos φ24

F̂ = Im[b∗
3b1 − b∗

4b2] = |b1||b3| sin φ13 − |b2||b4| sin φ24 BT
Ĝ = Im[−b∗

3b1 − b∗
4b2] = −|b1||b3| sin φ13 − |b2||b4| sin φ24

Ĥ = Re[b∗
3b1 − b∗

4b2] = |b1||b3| cos φ13 − |b2||b4| cos φ24

Ĉx′ = Im[−b∗
4b1 + b∗

3b2] = −|b1||b4| sin φ14 + |b2||b3| sin φ23

Ĉz′ = Re[−b∗
4b1 − b∗

3b2] = −|b1||b4| cos φ14 − |b2||b3| cos φ23 BR
Ôx′ = Re[−b∗

4b1 + b∗
3b2] = −|b1||b4| cos φ14 + |b2||b3| cos φ23

Ôz′ = Im[b∗
4b1 + b∗

3b2] = |b1||b4| sin φ14 + |b2||b3| sin φ23

L̂x′ = Im[−b∗
2b1 − b∗

4b3] = −|b1||b2| sin φ12 − |b3||b4| sin φ34

L̂z′ = Re[−b∗
2b1 − b∗

4b3] = −|b1||b2| cos φ12 − |b3||b4| cos φ34 T R
T̂x′ = Re[b∗

2b1 − b∗
4b3] = |b1||b2| cos φ12 − |b3||b4| cos φ34

T̂z′ = Im[−b∗
2b1 + b∗

4b3] = −|b1||b2| sin φ12 + |b3||b4| sin φ34

divided into the four groups of single-spin observables (S),
beam-target (BT ), beam-recoil (BR), and target-recoil (T R)
observables [21,24]. Each group is composed of four observ-
ables. When expressed in terms of the transversity amplitudes
bi, the 16 observables take the following form:

Ôα (W, θ ) = 1

2

4∑
i, j=1

b∗
i (W, θ )�α

i jb j (W, θ ), α = 1, . . . , 16.

(A23)
The matrices �α represent a complete and orthogonal set of
4 × 4 Dirac matrices, which are all by themselves Hermitian
and unitary. Thus, the observables Ôα are bilinear Hermitian
forms in the transversity amplitudes. The matrices have been
listed by Chiang and Tabakin [21] and can also be found in
the Appendixes of the works [10]. Their algebraic properties
imply useful quadratic constraints among the observables Ôα

known as the (generalized) Fierz identities [21]. A listing of
the 16 quantities (A23) is expressed in terms of moduli |bi|
and relative phases φi j := φi − φ j of the transversity ampli-
tudes in Table II.

APPENDIX B: CEA-AA AND TPWA

This Appendix compiles the definitions and mathematical
details of both the complete-experiment analysis and am-
plitude analysis (CEA-AA) and the truncated partial-wave
analysis (TPWA). Then, both methods are compared and the

FIG. 18. The photoproduction amplitudes in the transversity ba-
sis are shown as an arrangement of four complex numbers. The
schematic is taken over from Ref. [10]. The plots serve to illustrate
the possible solutions of the CEA-AA. (left) The reduced amplitudes
b̃i, defined by the phase-constraint Im[b̃1] = 0, Re[b̃1] � 0, are plot-
ted. A possible choice of three relative-phase angles is indicated.
(right) The true solution for the actual transversity amplitudes bi is
shown and is obtained from the b̃i via a rotation by the overall phase
φ(W, θ ) shown in red.

analysis-method proposed in this work emerges as a synergy
of the two.

The CEA-AA represents the method to extract the four
spin amplitudes, for instance, the transversity amplitudes
b1, . . . , b4, from a subset of the 16 observables collected in
Table II. Due to the structure of the expressions (A23) as sums
span over bilinear amplitude products b∗

i b j , the amplitudes
can only be extracted uniquely up to one unknown overall
phase [5,21], which is a real function that can depend on the
full reaction kinematics, i.e., on (W, θ ). The final goal of the
analysis is to obtain four amplitudes in the complex plane,
with four uniquely defined moduli and three relative phase
angles. This “rigid” amplitude arrangement is, however, free
to rotate as a full entity in the complex plane with energy- and
angle-dependent phase. See Fig. 18 for an illustration.

The choice of variables in terms of which to parametrize
the amplitude arrangement is in principle not unique for the
CEA-AA. Since one has four complex amplitudes and one un-
known overall phase, the number of independent real variables
in the choice always has to amount to 8 − 1 = 7. Usually,
one chooses four moduli of the bi plus three suitably chosen
relative phases, for instance,

|b1|, |b2|, |b3|, |b4|, φ21, φ32, φ43. (B1)

However, in numeric data analyses, the parametrization in
terms of moduli and relative phases can lead to difficul-
ties caused by the logarithmic singularity which enters the
procedure once complex exponentials have to be inverted.
Alternatively, one can also think about parametrizing the
CEA-AA in terms of the phase-rotation functions eiφ jk , i.e.,
to use the set of variables

|b1|, |b2|, |b3|, |b4|, eiφ21 = |b1|
|b2|

b2

b1
,

eiφ32 = |b2|
|b3|

b3

b2
, eiφ43 = |b3|

|b4|
b4

b3
. (B2)

This removes the difficulty of having to invert exponentials.
However, this is bought at the disadvantage of having in-
creased the number of real degrees of freedom artificially,
since the functions eiφ jk have both a real- and an imaginary
part. Still, parametrizations in terms of phase-rotation func-
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FIG. 19. A schematic illustration for a specific binning of points
in phase space (blue polygons) for the CEA-AA. The kinematic
binning has to agree for all observables. The CEA-AA then acts on
each point individually (illustrated by the red boxes) and therefore all
observables involved in the analysis have to be brought to the same
binning.

tions are used in the main text (Sec. II) in order to “smooth”
phase information coming from a PWA model.

Whatever choice one makes to parametrize the amplitudes,
the CEA-AA is always a numerical (or algebraic) procedure
which takes place at one isolated point in (W, θ ) individually.
This means that, in case one wishes to perform the CEA-
AA for a collection of observables over a wider kinematic
region, the kinematic binning of all these observables has to
be brought to a match over this common region. The situation
is illustrated in Fig. 19.

Consequently, the result of the CEA-AA, i.e., the seven
variables parametrizing the transversity amplitudes with a
fixed overall phase, is also returned as a set of “discrete
data” in complex space. In other words, the standard CEA-AA
without any constraints returns a discrete but not necessarily
continuous set of points. The direct consequence is that partial
waves with physical meaning cannot be extracted [9] without
further imposing an overall phase provided by a theoretical
model.

The TPWA denotes the procedure of extracting a finite
set of photoproduction multipoles from experimental data by
introducing continuous angular decomposition of amplitudes
over Legendre polynomials. In practice, the multipole expan-
sion defined by Eqs. (A12) to (A15) is truncated at some
finite angular momentum �max. Inserting this truncation into
the definitions of the 16 polarization observables shown in
Table II yields the mathematical parametrization lying at the
heart of the analysis.

The TPWA parametrization can be expressed in a concise
form. Choosing to express the emerging angular dependence
of the polarization observables Ôα in terms of associated
Legendre polynomials, one arrives at the following form (cf.
Refs. [10,25–27]):

Ôα (W, θ ) = q

k

2�max+βα+γα∑
n=βα

(aL )Ô
α

n (W )Pβα

n (cos θ ),

α = 1, . . . , 16, (B3)

(aL )Ô
α

n (W ) = 〈
M�max (W )

∣∣(CL )Ô
α

n

∣∣M�max (W )
〉
. (B4)

The Legendre coefficients (aL )Ô
α

n take on bilinear Hermi-
tian forms defined by a certain set of matrices (CL )Ô

α

n (such
matrices are given explicitly for the group S and BT ob-
servables in the Appendix of Ref. [10]). The multipoles are
organized into the 4�max-dimensional complex vector |M�max〉
according to the convention

∣∣M�max

〉 = [E0+, E1+, M1+, M1−, E2+, E2−, . . . , M�max−]T .

(B5)
The quantities βα and γα in Eqs. (B3) and (B4) are con-
stants which define the precise form of the TPWA for each
observable. These constants can be found, for instance, in
Refs. [10,27].

For the TPWA, all observables have to be prepared with
a common energy binning. However, since this method for
extracting amplitudes actually parametrizes the angular de-
pendence continuously [cf. Eq. (B3)], the angular binnings of
the observables can be different. The TPWA then returns a
continuous function in angle for each of the discrete energy
bins. However, continuity in energy is another matter and
has been discussed elsewhere [5]. The kinematic situation is
illustrated in Fig. 20.

Note that the CEA-AA and the TPWA are not equivalent
procedures and will not lead to identical results. This becomes
especially apparent once one compares the complete sets of
observables [21,28], i.e., minimal subsets of all polarization
observables which allow for an unambiguous extraction of the
complex amplitudes (or multipoles), valid for both analysis
procedures. The differences among and the most important
characteristics of the CEA-AA and the TPWA are listed in the
following:

CEA-AA (i) Kinematic regime: the CEA-AA takes place
at individual points in the two-dimensional
space (W, θ ) spanned by the energy W and
scattering angle θ .

(ii) In the CEA-AA, one has four complex am-
plitudes while one overall phase φ(W, θ ) is
not known. This results in 8 − 1 = 7 real
independent variables.

(iii) A mathematical complete set for the CEA-
AA is given by eight carefully chosen
observables [21,29]. In addition to the four
observables from the group S (cf. Table II),
one has to select four double polarization
observables which must not belong to the
same group. This becomes apparent once one
considers, for instance, the 4 BT observables
listed in Table II: all four observables only
contain information on two relative phases,
φ13 and φ24. Thus, even if all BT observ-
ables were measured, at least one connecting
relative phase, for instance φ12, remains
unknown, which results in a continuous am-
biguity. Therefore, at least two observables
must be chosen from a third group, e.g.,
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FIG. 20. The plots show schematic illustrations for the kinematic situation in the TPWA. Figures are shown for two different hypothetical
observables. Further observables are not shown, but surely present in the TPWA. The kinematic binning for all the data points (blue polygons)
does not have to fully agree between all observables. However, the energy binning has to be the same for all datasets. The TPWA (represented
by red solid lines) introduces a continuous dependence on the angular variable cos θ . Compare this to Fig. 19.

the BR observables. Further rules for the
selection of complete sets can be found in
Refs. [21,29].

Recent studies [30–33] demonstrate the
fact that the completeness of the minimal
complete sets of eight is lost once measure-
ment errors of realistic sizes are introduced.
Then, in order to recover a unique solution
for the amplitudes, the considered complete
set of eight has to be enlarged.

(iv) In case a mathematically incomplete set of
observables has been selected for the CEA-
AA, in most cases this results in only an
additional twofold discrete ambiguity (in
case the four double-polarization measure-
ments are not taken from the same group).

(v) In a world without measurement uncertain-
ties, the CEA-AA yields an exact representa-
tion of the photoproduction T matrix (up to
one overall phase). This is accomplished by
extracting four complex numbers, indepen-
dently of the considered energy region. The
phase of one of the four complex numbers
has to be constrained, e.g., by demanding this
number to be real and positive.

TPWA (i) Kinematic regime: the TPWA is performed at
an individual point in W , but over a whole dis-
tribution in the angular variable θ (or cos θ ).

(ii) In the TPWA, one has 4�max complex multi-
poles while one energy-dependent overall phase
φ(W ) is not known. This results in 8�max − 1
real independent variables in case the phase
φ(W ) is fixed in some way.

(iii) A mathematical complete set for the TPWA
is given by minimally four observables [9,10].
However, these complete sets of four can only
be found in numerical simulations. On the
other hand, an algebraic solution theory exists

for complete sets composed of five carefully
chosen observables [10,26,28,34]. The minimal
mathematical complete sets mentioned here
lose their validity once measurement errors of
realistic sizes are introduced (cf. Sec. 5.5 of
Ref. [10]) and then have to be enlarged in order
to facilitate a unique solution.

(iv) In case a mathematically incomplete set of ob-
servables has been selected for the TPWA, one
obtains an exact twofold discrete ambiguity
called a double ambiguity [10,28,34], but also
a number of (possible) approximate accidental
ambiguities exists, which scales as 42�max − 2
[10,34]. These discrete ambiguities can cause
severe stability problems for TPWAs performed
with higher truncation orders, i.e., �max > 2 (cf.
the Appendixes of Ref. [10]).

(v) In a world without measurement uncertainties,
the TPWA already contains an inherent system-
atic error due to the fact that it only yields an
approximation of the photoproduction T matrix
for any finite �max. For higher energies, one gen-
erally has to choose a higher truncation order
�max, which can result in an increased numerical
instability.

In this work, we combine both analysis-procedures and use
the amplitudes resulting from a CEA-AA in order to resolve
the instability problems of the TPWA, which exist mainly for
higher truncation orders.

As explained in detail in the main text (Sec. II), a CEA-AA
with smooth, analytic phases originating from a theoretical
model is used as a penalty function in the two-step process
in order to ensure the continuity and to increase the stability
of the TPWA. In this way, the advantages of both methods
have been combined, and a synergy is created which produces
a reliable and very precise description of the data, while at
the same time additional theoretical requirements like a good
threshold behavior are obeyed.
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V. Kashevarov, K. Nikonov, M. Ostrick, L. Tiator, and A. Švarc,
Phys. Rev. C 97, 015207 (2018).

[9] R. L. Workman, L. Tiator, Y. Wunderlich, M. Döring, and H.
Haberzettl, Phys. Rev. C 95, 015206 (2017), and references
therein.

[10] Y. Wunderlich, Ph.D. thesis, University of Bonn, 2020,
arXiv:2008.00514.

[11] R. L. Workman, M. W. Paris, W. J. Briscoe, L. Tiator, S.
Schumann, M. Ostrick, and S. S. Kamalov, Eur. Phys. J. A 47,
143 (2011).

[12] A. V. Anisovich et al., Phys. Rev. C 96, 055202 (2017), and
references therein.

[13] A. Sarantsev et al., Bonn Gatchina Partial Wave Analysis, https:
//pwa.hiskp.uni-bonn.de/.

[14] A. Švarc, M. Hadžimehmedović, H. Osmanović, J. Stahov, L.
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