
PHYSICAL REVIEW C 102, 064328 (2020)

Alternating-parity bands of 236,238U and 238,240Pu in a particle-number-conserving
method based on the cranked shell model
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The particle-number-conserving (PNC) method in the framework of cranked shell model (CSM) is de-
veloped to deal with the reflection-asymmetric nuclear system by applying the Sx symmetry. Based on an
octupole-deformed Nilsson potential, the alternating-parity bands in 236,238U and 238,240Pu are investigated. The
experimental kinematic moments of inertia (MoI) and the angular momentum alignments of all studied bands
are reproduced well in the PNC-CSM calculations. The striking difference of rotational behaviors between U
and Pu isotopes can be linked to the strength of octupole correlations. The upbendings of the alternating-parity
bands in 236,238U are due to the alignments of pairs of nucleons occupying νg9/2, π f7/2 orbitals and ν j15/2, π i13/2

high- j intruder orbitals. In particular, the interference terms of nucleon occupying the octupole-correlation pairs
of ν2 j15/2g9/2 and of π 2i13/2 f7/2 give a very important contribution to the suddenly gained alignments.

DOI: 10.1103/PhysRevC.102.064328

I. INTRODUCTION

Since the first observation of low-lying negative-parity
states by the Berkeley group in the 1950s [1,2], octupole cor-
relations have long been an attractive topic in nuclear structure
physics [3–6]. In the microscopic picture, these result from
the long-range octupole interaction between normal orbital
with quantum numbers (l − 3, j − 3) and intruder orbital of
opposite parity with quantum numbers (l, j). When these
pairs of nucleons occupy the single-particle levels near the
Fermi surface, strong octupole correlations can lead to reflec-
tion asymmetric shapes. Nuclei with Z ≈ 34, 56, 88 and N ≈
34, 56, 88, 134 are expected to meet the condition [5]. Many
experimental phenomena provided indications for reflection
asymmetric deformation, such as alternating-parity bands in
even-even nuclei [7,8], parity doublets in odd-A nuclei [9],
and connected enhanced electric dipole transitions inter these
bands.

Several theoretical approaches have been developed to
study the properties of reflection asymmetric shape and ro-
tational bands (see Ref. [5] and reference therein). These
include the macroscopic-microscopic models [10,11], self-
consistent mean field models [12–16], cranking model [17],
interacting boson models [18–21], cluster models [22–26],
phenomenological collective models [27–31], and reflection
asymmetric shell model [32,33]. Cranked shell model is one
of the most useful microscopic models to investigate the
nuclear rotational collectivity. Specifically, because the sim-
plex operator commutes with cranking Hamiltonian, it is very
convenient to study the properties of rotational bands with
octupole correlations.
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Pairing correlations are essential to describe not only the
nuclear ground-state properties but also the excited state prop-
erties [34,35]. In the framework of cranked shell model,
a particle-number-conserving (PNC-CSM) method is used
to treat the pairing correlations [36–40]. In the PNC-CSM
method, the cranked shell model Hamiltonian is diagonalized
directly in a truncated Fock space and a pair-broken excited
configuration is defined by blocking the real particles in the
single-particle orbitals [37]. The particle number is conserved
and the Pauli blocking effect is treated spontaneously. The
PNC-CSM method has previously been applied successfully
to describe the intrinsic reflection-symmetric system from the
light nuclear mass region around A = 40 [41] to the very
heavy region around A = 250 [42–45].

The previous PNC-CSM method can not be applied to
study the reflection-asymmetric nuclear system. In the present
work, the PNC-CSM method is developed to include octupole
deformation and then used to investigate the alternating-parity
rotational bands in 236,238U and 238,240Pu. The actinide region
is one of the typical nuclear mass region where signatures
of octupole correlations have been identified in the exper-
iment [4,5]. It is found experimentally that the rotational
behaviors between 236,238U and 238,240Pu are dramatically
different and this issue needs further theoretical investiga-
tions [46–50]. In the present work, the striking difference
of the rotational properties between 236,238U and 238,240Pu is
explained.

The PNC-CSM formalism for reflection-asymmetric
shapes by applying the Sx symmetry are presented in Sec. II.
In Sec. III, arguments based on experimental alternating-
parity bands are presented for the stable octupole deformation
at high spins in U and Pu isotopes. The results of the PNC-
CSM calculations based on an octupole-deformed Nilsson
potential and the discussions of the microscopic mechanism
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which leads to the different rotational behaviors between U
and Pu isotopes are presented in Sec. IV. Finally, a brief
summary is given in Sec. V.

II. PNC-CSM FORMALISM IN THE PRESENCE
OF OCTUPOLE DEFORMATION

A. Cranked single-particle levels

The CSM Hamiltonian of an axially deformed nucleus in
the rotating frame is

HCSM = H0 + HP = HNil − ωJx + HP , (1)

where −ωJx = −ω
∑

jx is the Coriolis interaction with the
cranking frequency ω about the x axis. Note that rotations
about different axes (x or y axes) perpendicular to the sym-
metry axis (z axis here) are equivalent. For definiteness, we
choose rotation about the x axis to discuss. HNil = ∑

hNil is
the Nilsson Hamiltonian [51–53],

hNil = 1
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,

(2)

where ε2, ε3, ε4 are the quadrupole, octupole, and hexade-
capole deformation parameters, respectively, and the subscript
t means that the single-particle Hamiltonian hNil is written in
the stretched coordinates (ξ, η, ζ ).

In the spherical harmonic oscillation basis |Nl�〉, which
are the simultaneous eigenstates of h, l2, lz, and sz, the selec-
tion rules of the matrix elements of ρ2P3(cos θt ) are

N ′ = N ± 1, l ′ = l ± 3, ′ = , �′ = � . (3)

Since parity p = (−1)N , both symmetries of space inversion
P and rotation Rx(π ) = e−iπ jx are broken in an intrinsic re-
flection asymmetric system (ε3 �= 0). However, in this case,
the reflection through plane yoz, Sx invariant holds [34]. Ac-
cording to the definition of Goodman, Sx = PR−1

x (π ) [54].
Due to the Coriolis interaction −ω jx, � =  + � (single-

particle angular momentum projection on the symmetry axis
z) is no longer a good quantum number. However, [ jx, j2

z ] =
0 and [Sx, j2

z ] = 0 hold still. The eigenstates of h(ω) =
hNil − ω jx can be characterized by the simplex s (the eigen-
value of Sx). A good simplex basis can be constructed in
a reflection asymmetric system. Let |ξ 〉 denote the spheri-
cal single-particle basis |Nξ lξξ�ξ 〉 and |ξ̄〉 = T |ξ 〉 be its
time-reversal state. A new single-particle basis is obtained by
transforming the time-reversal basis |ξ 〉 (|ξ̄〉) to simplex basis
|ξs〉,

|ξ, s = ±i〉 = 1√
2

[|ξ 〉 ∓ iSx|ξ 〉]

= 1√
2

[|ξ 〉 ± (−1)�ξ −1/2T |ξ 〉]

= 1√
2

[a†
ξ ± (−1)�ξ −1/2a†

ξ̄
]|0〉, (4)

where |ξ 〉 = a†
ξ |0〉, |ξ̄〉 = a†

ξ̄
|0〉. The creation operator for a

nucleon on state |ξs〉 is β
†
ξs = 1√

2
[a†

ξ ± (−1)�ξ −1/2a†
ξ̄
]. |ξs〉 is

the simultaneous eigenstate of Sx and j2
z ,

Sx|ξs〉 = s|ξs〉, s = ±i, (5)

j2
z |ξs〉 = �2

ξ |ξs〉. (6)

The nonzero matrix elements of h(ω) = hNil − ω jx are

〈ξs|hNil|ξ ′s′〉 = 〈ξ |hNil|ξ ′〉δss′ (7)

and

〈ξs| jx|ξ ′s′〉 =
{

〈ξ | jx|ξ ′〉δss′ , �ξ �= 1
2 or �ξ ′ �= 1

2 ,

±〈ξ | jx| − ξ ′〉δss′ , �ξ = �ξ ′ = 1
2 .

(8)

By diagonalizing h(ω) in the |ξs〉 basis, the eigenstate |μs〉 of
the cranked single-particle Hamiltonian is expressed as

|μs〉 =
∑

ξ

Cμξ (s)|ξs〉, Cμξ (s) is real. (9)

Hereafter, |μs〉 is sometimes denoted simply by |μ〉. b†
μs =∑

ξ Cμξ (s)β†
ξs is the real particle operator of the cranked

single-particle state |μs〉.

B. Cranked many-particle configuration

For an n-particle system, the cranked many-particle config-
uration (CMPC) is

|i〉 = |μ1μ2 . . . μn〉 = b†
μ1

b†
μ2

. . . b†
μn

|0〉, (10)

where μ1μ2 . . . μn are the occupied cranked Nilsson orbitals.
Each configuration is characterized by the simplex s,

si =
∏

μi (occ.)

sμi , (11)

and the energy of each configuration is

Ei =
∑

μi (occ.)

εμi , (12)

where μi(occ.) denotes the occupied cranked Nilsson orbitals.

C. Pairing correlations

The pairing includes the monopole- and quadrupole-
pairing correlations HP(0) and HP(2),

HP(0) = −G0

∑
ξη

a†
ξ a†

ξ̄
aη̄aη , (13)

HP(2) = −G2

∑
ξη

q2(ξ )q2(η)a†
ξ a†

ξ̄
aη̄aη , (14)

where q2(ξ ) = √
16π/5〈ξ |r2Y20|ξ 〉 is the diagonal element

of the stretched quadrupole operator, and G0 and G2 are the
effective strengths of monopole- and quadrupole-pairing in-
teractions, respectively.
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In the cranked simplex representation,

HP(0) = −G0

∑
μμ′νν ′

f ∗
μμ′ fν ′νb†

μ+b†
μ′−bν−bν ′+,

f ∗
μμ′ =

∑
ξ>0

(−)�ξ Cμξ (+)Cμ′ξ (−),

fν ′ν =
∑
η>0

(−)�ηCν ′η(+)Cνη(−), (15)

and

HP(2) = −G2

∑
μμ′νν ′

g∗
μμ′gν ′νb†

μ+b†
μ′−bν−bν ′+,

g∗
μμ′ =

∑
ξ>0

(−)�ξ Cμξ (+)Cμ′ξ (−)q2(ξ ),

gν ′ν =
∑
η>0

(−)�ηCν ′η(+)Cνη(−)q2(η), (16)

where Cμξ (+) (b†
μ+) and Cμξ (−) (b†

μ−) stand for the case of
s = +i and s = −i, respectively.

D. Particle-number-conserving method

The cranked shell model Hamiltonian HCSM is diagonal-
ized in a sufficiently large cranked many-particle configura-
tion space and then sufficiently accurate low-lying excited
eigenstates are obtained as

|ψ〉 =
∑

i

Ci|i〉, (17)

where |i〉 is a cranked many-particle configuration of the n-
body system and Ci is the corresponding amplitude. Note that
|ψ〉 is parity independent but with certain simplex.

The occupation probability nμ of each cranked Nilsson
orbital μ can be calculated as

nμ =
∑

i

|Ci|2Piμ, (18)

where Piμ = 1 if |μ〉 is occupied and Piμ = 0 otherwise. The
total particle number N = ∑

μ nμ. The configuration of a rota-
tional band, including sidebands built on pair-broken excited
intrinsic configurations, can be determined by the rotational
frequency ω dependence of occupation probabilities nμ.

E. Moment of inertia

The angular momentum alignment includes the diagonal
and off-diagonal parts,

〈ψ |Jx|ψ〉 =
∑

i

|Ci|2〈i|Jx|i〉 + 2
∑
i< j

C∗
i Cj〈i|Jx| j〉 . (19)

〈ψ |Jx|ψ〉 is simplified as 〈Jx〉 hereafter sometimes. Jx is an
one-body operator; the off-diagonal parts 〈i|Jx| j〉 (i �= j) do
not vanish only when |i〉 and | j〉 differ by one particle occupa-
tion. After a certain permutation of creation operators, |i〉 and
| j〉 are reconstructed into

|i〉 = (−1)Miμ |μ . . . 〉 , | j〉 = (−1)Mjν |ν . . . 〉 , (20)

where the ellipses stand for the same particle occupation and
(−1)Miμ = ±1, (−1)Mjν = ±1 depend on whether the permu-
tation is even or odd. Then,

〈Jx〉 =
∑

μ

jx(μ) +
∑
μ<ν

jx(μν),

jx(μ) = nμ〈μ| jx|μ〉,
jx(μν) = 2〈μ| jx|ν〉

∑
i< j

(−1)Miμ+MjνC∗
i Cj, (μ �= ν), (21)

where jx(μ) is the diagonal contribution and jx(μν) is the off-
diagonal contribution.

The kinematic moment of inertia for the state |ψ〉 is given
by

J (1) = 1

ω
〈ψ |Jx|ψ〉. (22)

F. Description for the octupole-deformed bands

The square of the simplex operator Sx is related to the total
number of the nucleons,

S2
x = (−1)A. (23)

The rotational band with simplex s is characterized by spin
states I of alternation parity [34],

p = se−iπI . (24)

For reflection-asymmetric systems with even number of nu-
cleons,

s = +1, I p = 0+, 1−, 2+, 3−, . . . , (25)

s = −1, I p = 0−, 1+, 2−, 3+, . . . , (26)

and for systems with odd number of nucleons,

s = +i, I p = 1/2+, 3/2−, 5/2+, 7/2−, . . . , (27)

s = −i, I p = 1/2−, 3/2+, 5/2−, 7/2+, . . . . (28)

In the limit of static octupole deformation, the properties
of both rotational bands can have a unified description. The
energies of the experimental alternating-parity bands in even-
even nuclei and the parity doublet bands in odd-A or odd-odd
nuclei can be described as [55]

E (I ) = Eav(I ) − 1
2 p�E (I ), (29)

Eav(I ) is parity-independent energy of state I in an intrinsic
band,

Eav(I ) = 1
2 [Einter (I ) + Eexp(I )], (30)

where Einter (I ) is a smooth interpolation between the energies
of states in the positive-parity band at the odd value of I [56],
Eexp(I ) is the energy of state I in negative parity, and �E (I )
is the parity splitting [57,58],

�E (I ) = Eexp(I ) − Einter (I ). (31)

E (ω) = 〈ψ |H |ψ〉, energy of state |ψ〉 in the PNC-CSM,
is the parity-independent function of the rotational frequency
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FIG. 1. Ratio of rotational frequencies of the positive- and
negative-parity bands R = ω(−)/ω(+) as a function of angular mo-
mentum I for even-even nuclei 236,238U and 238,240Pu (left) and odd-A
nuclei 237U and 239Pu (right). The experimental data are taken from
Refs. [46,49,59–61]. The solid and dashed lines show the static
octupole deformation limit and octupole vibration limit, respectively.

ω. Similar to Eq. (29), the positive- and negative-parity bands
can be expressed as

Ep(ω) = E (ω) − 1
2 p�E (ω) , (32)

where �E (ω) is the parity splitting.
The angular momentum alignment and moment of inertia

for positive- and negative-parity bands have similar expres-
sion,

〈Jx〉p = 〈ψ |Jx|ψ〉 − 1

2
p�Ix(ω), (33)

J (1)
p = 〈ψ |Jx|ψ〉

ω
− 1

2
p�J (1)(ω). (34)

�Ix(ω) and �J (1)(ω) are parity splitting of the alignment and
MoI, respectively, which can be obtained from the experimen-
tal data as

�Ix(ω) = Ix−(ω) − Ix+(ω) , (35)

�J (1)(ω) = J (1)
− (ω) − J (1)

+ (ω), (36)

with +(−) denoting the corresponding value of positive-
(negative-) parity bands.

III. EXPERIMENTAL INFORMATION OF THE YRAST
BANDS IN U AND Pu ISOTOPES

Empirically, it shows that rotation can stabilize ocutpole
deformation, namely that octupole shapes are more stable at
high spin than at low spin [4,5]. In a rotational band with the
same simplex, the ratio of rotational frequency of the negative
parity band and the positive parity band is defined as [4]

R = ω(−)/ω(+). (37)

In the limit of static octupole deformation, parity splitting
should be vanished and at the meantime the ratio between
the rotational frequency of the positive- and negative-parity
bands should be close to one, i.e., R → Rrigid = 1. Another
limit is the limit of aligned octupole phonon, which is R →
[4(I − 3) − 2]/(4I − 2). Figure 1 plots the ratio R versus I for

TABLE I. Deformation parameters ε2, ε3, and ε4 used in the
present PNC-CSM calculations for 236,238U and 238,240Pu.

236U 238U 238Pu 240Pu

ε2 0.200 0.220 0.228 0.230
ε3 0.110 0.130 0.025 0.010
ε4 −0.055 −0.040 −0.065 −0.045

nuclei 236,237,238U and 238,239,240Pu. It shows that these nuclei
have fine deformation stability and the octupole shapes are
stabilized by rotation. R approaches to one at high spin for
both of even-even nuclei 236,238U, 238,240Pu and odd-A nuclei
237U, 239Pu.

More detailed, value of R is bigger (closer to one) for U
isotopes than that for Pu isotopes at the high-spin region.
This implies that there might be octupole vibration mixed for
the bands in Pu isotopes even at the high-spin region. When
compared values of R at the low spin region, it is found that
Rodd-A > Reven-even. This means octupole deformation becom-
ing more stable in odd-mass nuclei due to the existence of the
unpaired nucleon [62]. This issue needs further investigation.

IV. RESULTS AND DISCUSSION

A. Parameters

The set of Nilsson parameters (κ, μ) is taken from
Ref. [42]. The deformations ε2, ε3, and ε4 are input parameters
in the PNC-CSM method, and values used in the present
calculations are listed in Table I. The values of ε2 and ε4 are
chosen to be close to the calculated ground-state deformations
in the actinide region [51], where ε2 are little larger than
those predicted in the macroscopic-microscopic models [63]
and the finite-range droplet model [64]. While the octupole
deformation mode was demonstrated in the experiments for U
and Pu isotopes, the values of octupole deformation parameter
can hardly be obtained in the literature. It was found that the
rotational behaviors of the yrast (and negative-parity) bands
in 238–240Pu and those in 236–238U and 241–244Pu are striking
different, which can be linked to variations with mass of the
strength of octupole correlations [46–49]. In the present calcu-
lations, the values of ε3 are used to fit the moments of inertia
of the experimental yrast bands in 236,238U and 238,240Pu. It
turns out the different behaviors of the yrast bands in 238,240Pu
and those in 236,238U can be explained under different octupole
deformation.

The effective pairing strengths G0 and G2 can be deter-
mined in principle by the odd-even differences in nuclear
binding energies B [65],

Pn = 1
2 [B(Z, N ) + B(Z, N + 2)] − B(Z, N + 1)

= Eg(Z, N + 1) − 1
2 [Eg(Z, N ) + Eg(Z, N + 2)], (38)

Pp = 1
2 [B(Z, N ) + B(Z + 2, N )] − B(Z + 1, N )

= Eg(Z + 1, N ) − 1
2 [Eg(Z, N ) + Eg(Z + 2, N )]. (39)

where Z = 92 and N = 144. Eg is the theoretical ground-
state energy at frequency h̄ω = 0 MeV. The effective pairing
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FIG. 2. Cranked Nilsson levels near the Fermi surface of 238U for proton (top) and neutron (bottom). For reflection symmetric system
(ε3 = 0), the positive- (negative-) parity levels are denoted by blue (red) lines with quantum numbers [Nnz]� and α = +1/2 (α = −1/2)
signatures levels are denoted by solid (dashed) lines. For the reflection asymmetric system (ε3 �= 0), the simplex s = +i (s = −i) levels are
denoted by black solid (dashed) lines with quantum numbers l j�.

strengths depend also on the dimensions of the truncated
CMPC space. In the present calculation, the CMPC space
is constructed in the proton N = 5, 6 and neutron N = 6, 7
major shells, and the dimensions are about 1000 for both pro-
tons and neutrons. Then their values are determined as G0p =
0.25 MeV, G2p = 0.03 MeV and G0n = 0.25 MeV, G2n =
0.015 MeV for protons and neutrons, respectively. The same
values of the effective pairing strengths are used for all the
nuclei studied in this work. For the yrast and low-lying excited
states, the number of important CMPC (weight >10−2) is very
limited (<20), and almost all of CMPC with weight >10−3

are taken into account. The PNC-CSM calculations are stable
against the change of the dimension of the CMPC space, and
calculations in a larger CMPC space with decreased effective
pairing strengths give the result nearly unchanged [66].

B. Cranked Nilsson levels

Figures 2 and 3 show the calculated cranked Nilsson levels
near the Fermi surface of 238U and 240Pu, respectively. When
ε3 = 0, the positive- (negative-) parity levels are denoted by
blue (red) lines, and the signature α = +1/2 (−1/2) levels
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FIG. 3. The same as Fig. 2, but for cranked Nilsson levels near the Fermi surface of 240Pu.

are denoted by solid (dotted) lines with quantum numbers
[Nnz]� at the band head (ω = 0). When ε3 �= 0, the levels
are denoted by black lines, and the simplex s = +i (−i) levels
are denoted by solid (dotted) lines with quantum number �

at the band head (ω = 0). The cranked Nilsson levels near the
Fermi surface of 236U and 238Pu are quite similar to that of
238U and 240Pu, respectively, and will not be displayed here.

Based on such a sequence of single-particle levels, the
experimental ground state and low-lying excited states in their
neighbor odd-A nuclei can be reproduced well, such as the
proton exited states in 237 Np and 241Am [67] and neutron
exited states in 237U and 239Pu except for the first exited
state with configuration of ν[622]5/2+. The disagreement of

the position of ν[622]5/2+ in the theoretical prediction and
experimental data were discussed in Refs. [42,68]. The Z =
92, 96 gaps for protons and the N = 142, 146 gaps for neu-
trons in the reflection-symmetric deformed field is consistent
with the calculation by using a Woods-Saxon potential [69].
The Z = 88, 94 gaps for protons and N = 138, 142 gaps for
neutrons in the octupole deformed field is consistent with
results of a Woods-Saxon potential [70] and a folded Yukawa
potential [71].

Comparing Fig. 2 with Fig. 3, it is seen that the cranked
Nilsson levels in a stronger octupole deformed field of 238U
are quite different from that of 240Pu. For 240Pu, the cranked
single-particle levels in reflection-asymmetric deformed field
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FIG. 4. The kinematic moments of inertia J (1) (top row) and alignments Jx (bottom row) of the alternating-parity rotational bands in 236,238U
and 238,240Pu. The experimental data are denoted by solid and open circles for the positive- and negative-parity bands, respectively, which are
taken from Refs. [46,49,59–61]. The alignment ix are obtained by subtracting a common reference ωJ0 + ω3J1 where Harris parameters
J0 = 65h̄2 MeV−1 and J1 = 369h̄4 MeV−3 are taken from Ref. [72]. The PNC-CSM calculations of the yrast parity-independent bands are
denoted by dash-dotted lines. After considering the parity splitting of Eqs. (35) and (36), the positive- and negative-parity bands are denoted
by solid and dotted lines, respectively.

are similar to that in reflection-symmetric deformed field. As
for 238U, the proton π1/2 level stemming from f7/2 orbital
and the neutron ν5/2 level from g9/2 orbital rise quickly to the
Fermi surface as octupole deformation increases. As we know,
the octupole correlation in this mass region is mainly concern-
ing about nucleon occupying the octupole-correlation pairs of
neutron ν2 j15/2g9/2 and of proton π2i13/2 f7/2. Therefore, the
properties of the rotational bands are influenced intensively by
the octupole correlations in 236,238U.

C. Alternating-parity bands in 236,238U and 238,240Pu

The kinematic moments of inertia and alignments of the
ground-state bands of 236,238U and 238,240Pu are shown in
Fig. 4, which show an alternating-parity structure. The PNC-
CSM calculations of Jx [Eq. (19)] and J (1) [Eq. (22)] are
presented by dash-dotted lines. Considering the parity split-
ting [Eqs. (35) and (36)], the alternating-parity bands are
shown as the solid and dotted lines for positive- and negative-
parity bands, respectively. Experimental data are denoted by
solid and open circles for positive- and negative-parity bands,
respectively, which are taken from Refs. [49,59–61]. The ex-
perimental MoIs and alignments are reproduced very well
by the PNC-CSM calculation. It is seen that the rotational
behaviors of U isotopes and Pu isotopes are quite differ-
ent. There are distinct upbendings for both alternating-parity
bands in 236,238U while behaviors are much plainer for bands
in 238,240Pu. It is known that the backbending is caused by
crossing of the ground-state band with a pair-broken band
based on the high- j intruder orbitals. In this region, the high- j
intruder orbitals near the Fermi surface are the proton π i13/2

and neutron ν j15/2 orbitals.
Figure 5 shows the occupation probability nμ of each or-

bital μ (including both s = ±i) near the Fermi surface for
the alternating-parity bands in 236,238U and 238,240Pu. For U
isotopes, due to the effect of octupole correlation, proton π1/2
and neutron ν5/2 orbitals rise to the Fermi surface rapidly

(see Fig. 2). As shown in Fig. 5, both π1/2 and ν5/2 are
partially occupied. The octupole correlation between pairs
of nucleons occupying ν2 j15/2g9/2 and of π2i13/2 f7/2 orbitals
will affect strongly the rotational properties of the alternating-
parity bands in U isotopes.

Upbendings of the alternating-parity bands occur at fre-
quency h̄ω ≈ 0.20 MeV in 236U while that are delayed to
h̄ω ≈ 0.25 MeV in 238U. From Figs. 5(e) and 5(f), we can see
that the proton occupation probability for 236U and 238U are
very similar. Occupation probabilities of orbitals π5/2, π1/2,
and π3/2 are almost constant at h̄ω < 0.25 and changed
rapidly at h̄ω > 0.25. This leads to upbendings of proton
alignment at h̄ω ≈ 0.25 [see Figs. 6(e) and 6(f)]. Occupation
probabilities of neutrons for 236U and 238U are quite differ-
ent. As shown in Fig. 5(a), both of ν1/2 and ν5/2 are half
occupied (nμ ≈ 1) at h̄ω < 0.20 MeV and ν1/2 gets nearly
fully occupied (nμ ≈ 2) while ν5/2 becomes almost empty
(nμ ≈ 0) at h̄ω > 0.20 MeV for 236U. Meanwhile, both of
ν1/2 and ν5/2 are almost fully occupied and keep nearly
constant with nμ = 1.5–2.0 at the whole frequency region
for 238U [see Fig. 5(b)]. Therefore, as shown in Fig. 6 that
upbendings of alternating-parity bands in 236U are mainly
due to the sudden increased neutron alignment at h̄ω ≈ 0.20
MeV while ones in 238U are mostly from the rapidly gained
proton alignment at h̄ω ≈ 0.25 MeV. This difference is easy
to understand since the neutron Fermi surface of 238U locates
just above the N = 146 deformed shell.

For both of 238,240Pu, the moments of inertia J (1) keep
nearly constant at frequency h̄ω < 0.2 MeV and increased
slightly at h̄ω > 0.2 MeV. Since neutron ν5/2 (g9/2) and
proton π1/2 ( f7/2) levels locate well below the Fermi surface,
both neutron ν5/2 and proton π1/2 orbitals are nearly fully
occupied with nμ ≈ 2, while the high- j orbitals ν7/2 ( j15/2)
and π5/2 (i13/2) are partially occupied. Thus, unlike 236,238U,
in which upbendings of J (1) are effected strongly by the
octupole correlation between ν2 j15/2g9/2 pairs and proton
π2i13/2 f7/2 pairs, in 238,240Pu, it is the high- j intruder orbitals
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FIG. 5. The occupation probability nμ of each neutron (top row) and proton (bottom row) orbitals μ (including both s = ±i) near the
Fermi surface for the alternating-parity bands in 236,238U and 238,240Pu. The Nilsson levels far above (nμ ≈ 0) and far below (nμ ≈ 2) the Fermi
surface are not shown.

ν j15/2 and π i13/2 that influence the variation of J (1) versus
frequency.

The contributions of proton (bottom row) and neutron (top
row) to the angular momentum alignment 〈Jx〉 for the alter-
nating bands in 236,238U and 238,240Pu are shown in Fig. 6.
The diagonal

∑
μ jx(μ) and off-diagonal

∑
μ<ν jx(μν) parts

are denoted by blue dashed and red dotted lines, respectively.
In general, the gradual rise of J (1) for all the studied bands
are attributed to diagonal parts of both neutron and proton
alignment. The upbending of J (1) at h̄ω ≈ 0.20 MeV in 236U
is mainly due to the off-diagonal contribution from neutrons
while one at h̄ω ≈ 0.25 MeV in 238U is from the off-diagonal
part of proton alignment. As for 238,240Pu, only very subtle
increases happen for off-diagonal parts of both neutrons and

protons alignments, which result in the slight increases of J (1)

at h̄ω > 0.20 MeV.
The contributions to the alignment from each single-

particle levels are shown in Fig. 7. According to Eq. (21),
it includes the direct term jx(μ) and the interference term
jx(μν). As discussed above, only the off-diagonal parts con-
tribute to upbendings of moment of inertia versus frequency.
Therefore, only the interference terms are displayed.

In Fig. 7, the interference term jx(μν) between orbitals
from neutron ν2 j15/2g9/2 pairs and proton π2i13/2 f7/2 pairs
are denoted by black solid lines. Other interference terms,
which have importance effects on the alignment, are denoted
by black dotted lines. The orbitals that have little contribu-
tions are not shown. To investigate the impact of the octupole

FIG. 6. Contributions of neutron (top row) and proton (bottom row) to the angular momentum alignment 〈Jx〉 for the alternating-parity
rotational bands in 236,238U and 238,240Pu. The diagonal

∑
μ jx (μ) and off-diagonal parts

∑
μ<ν jx (μν ) are denoted by blue dashed and red

dotted lines, respectively.

064328-8



ALTERNATING-PARITY BANDS OF 236,238U AND … PHYSICAL REVIEW C 102, 064328 (2020)

FIG. 7. The off-diagonal parts jx (μν ) of contribution from each neutron (top row) and proton (bottom row) orbitals to the angular
momentum alignments 〈Jx〉 for the alternating-parity rotational bands in 236,238U and 238,240Pu. The interference term jx (μν ) between orbitals
from neutron ν2 j15/2g9/2 pairs and proton π 2i13/2 f7/2 pairs are denoted by black solid lines, sum of which are denoted by olive dashed lines.
Other interference terms are denoted by black dotted lines. The orbitals that have little contributions are not shown. Orbitals from νg9/2 (π f7/2)
and ν j15/2 (π i13/2) are denoted by red and blue quantum numbers �, respectively.

correlation on the rotational properties, all terms of jx(μν)
(black solid lines) belonging to the neutron ν2 j15/2g9/2 pairs
and proton π2i13/2 f7/2 pairs are added, the sums of which are
denoted by olive dashed lines.

It can be seen clearly that the upbending of the alternating-
parity bands at h̄ω ≈ 0.20 MeV in 236U mostly attribute to
the alignments of neutrons occupying orbital ν5/2 (g9/2)
and high- j intruder orbital ν7/2 ( j15/2). Particularly, the in-
terference terms between neutron ν2 j15/2g9/2 pairs give a
considerable contribution to the suddenly increased alignment
at h̄ω ≈ 0.20 MeV.

For 238U, the upbendings of J (1) are mainly due to the
suddenly gained alignment of protons occupying orbital
π1/2 ( f7/2) and high- j intruder orbitals π3/2 (i13/2) and
π5/2 (i13/2). As shown in Fig. 7(f), the interference terms
(olive dashed line) between π2i13/2 f7/2 pairs play a very im-
portant role in the sharp increased alignment. For neutrons,
although the alignment of ν2 j15/2g9/2 rises suddenly at h̄ω ≈
0.15 MeV, the effect is canceled out by contributions from
other orbitals.

For 238,240Pu, only the interference terms jx(μν) concern-
ing the high- j orbitals ν7/2 ( j15/2) and π5/2 (i13/2) increase
a little at the high-frequency region, and ones from neutron
ν2 j15/2g9/2 pairs and π2i13/2 f7/2 pairs give little contributions.
Therefore, the moments of inertia of the alternating-parity
bands in 238,240Pu are nearly constant at frequency h̄ω < 0.2
MeV and increase slightly at h̄ω > 0.2 MeV.

V. SUMMARY

The particle-number-conserving pairing method in the
framework of the cranked shell model is developed to treat the
reflection-asymmetric nuclear system by including octupole
deformation. Based on an octupole-deformed Nilsson poten-
tial, the alternating-parity bands in even-even nuclei 236,238U

and 238,240Pu have been studied. The observed ω variations of
moment of inertia J (1) and the angular momentum alignments
of all studied bands are reproduced very well by the PNC-
CSM calculations. The significant difference of rotational
properties between U and Pu isotopes are explained.

For all the studied bands in the present work, it is the off-
diagonal part of the alignment that effects mostly the variation
of the moment of inertia J (1) versus frequency. The diagonal
parts of alignment contribute mainly to the gradual rise of the
moment of inertia J (1).

The octupole correlation for U and Pu isotopes in this
region is mainly concerned with nucleons occupying pairs
of neutron ν2 j15/2g9/2 and proton π2i13/2 f7/2 orbitals. The
upbending of the alternating-parity bands in 236U is mainly
due to the sudden alignment of nucleons occupying the neu-
tron ν5/2 (g9/2) and ν7/2 ( j15/2) orbitals while the one in
238U is attributed to the sharply increased alignment of nu-
cleons occupying the proton π1/2 ( f7/2) and π3/2 (i13/2)
orbitals. Particularly, the interference terms of the alignment
for nucleons occupying the octupole-deformed pairs of neu-
tron ν2 j15/2g9/2 and of proton π2i13/2 f7/2 orbitals give a very
important contribution to the upbendings.

Compared to the case of 236U, the upbending frequency of
J (1) is delayed to the higher frequency region in 238U. This is
because the neutron Fermi surface of 238U locates just above
the deformed subshell at N = 146. Then the upbendings of
J (1) is mostly from the contribution of proton alignments
which happen at higher frequency.

Variation of J (1) versus frequency is much plain for
the alternating-parity bands in 238,240Pu, which can be re-
produced and explained based on a Nilsson potential with
comparatively weaker octupole correlations. Under a weaker
octupole-deformed field, ν5/2 (g9/2) and π1/2 ( f7/2) orbitals
are well below the Fermi surface. Alignments from nucleons
occupying the octupole correlation pairs of ν2 j15/2g9/2 and of
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π2i13/2 f7/2 are very trivial. Then the alignments are mainly
gained from nucleons occupying the high- j intruder orbitals
ν7/2 ( j15/2), π3/2 (i13/2), and π5/2 (i13/2) at the high-spin
region, and its changes are quite gentle.
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