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Calculation of the shape of energy-ordered spectra for investigations of the nuclear continuum
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The nuclear continuum may potentially be investigated by means of fusion-evaporation reactions in combina-
tion with the Hk technique. The γ radiation in such experiments can be analyzed using energy ordering which
produces complex spectra. A method for computing the shape of the energy-ordered spectra is presented and
benchmarked by reproducing simulated data. The spectrum shape computation is applied to experimentally rel-
evant cases and is used for extracting the level density parameter from simulations. Furthermore, the calculation
shows to be useful for the characterization of nuclear phase transitions.
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I. INTRODUCTION AND MOTIVATION

There is a large variety of phenomena that can be stud-
ied from nuclei in the continuum region, typically above the
particle threshold where the quantum levels overlap due to
their proximity. For instance, thermodynamic quantities used
to describe the nucleus in the continuum, can be related with
structural quantities such as deformation parameters [1–5],
which makes this region a very attractive field of study of-
fering rich and new physics to explore. Nevertheless during
the last decades most of the experimental studies of nu-
clei have been intended to understand the behavior in the
discrete region, or in the quasicontinuum where the experi-
mental resolution does not allow one to differentiate between
nonoverlapping levels. Thus the investigation of the nuclear
continuum remains one of the most challenging fields from
both theoretical and experimental sides.

Different experimental techniques have been used to study
the continuum and quasicontinuum region, for example to
measure γ strength functions [6]. One of this techniques is the
Oslo method [7], which uses transfer or inelastic scattering
reactions together with particle-γ coincidence for obtaining
the spectra of radiation coming from the quasicontinuum re-
gion. This methodology has been used to obtain level densities
and γ strength functions of several nuclei [8–15]. A recently
developed theoretical formalism [16] to simultaneously deter-
mine level densities and γ strengths has met good agreement
with the experimental data extracted by the Oslo group for
170–172Yb [11]. This result invalidates the time-honored Brink-
Axel hypothesis for γ strengths, showing that this kind of
investigation has truly the chance of touching on new physics.
Nevertheless, the mandatory use of transfer reactions limits
the nuclei that can be studied by using this methodology since
only low spin states can be populated with such reactions.
Therefore, theoretical predictions of nuclear phase transitions
as the one in Ref. [17], as well as of higher spin states
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computed with the formalism in Ref. [16], cannot be exper-
imentally tested yet. More experimental techniques are still
required to overcome the limitations of the already existing
methods, as well as to complement the available databases [6].

A method which may potentially overcome this limita-
tion is based on fusion-evaporation reactions that populate
high spin and energy states in the continuum region. It was
shown by numerical simulations from the γ decay that energy-
ordered spectra (EOS) can be used to study the nuclear
properties of the continuum states [18]. Additionally the Hk
technique could be used to extract EOS from different (spin,
energy) regions in the continuum [19,20]. Therefore the com-
bination of both techniques, Hk-EOS, constitutes a promising
tool in the development of a new experimental technique for
the continuum region. In this work, a calculation of the EOS
shape is presented and applied to the extraction of physical
parameters describing the continuum region.

Nuclear properties can be inferred from the γ emission
following Fermi’s golden rule,

emission probability ∝ f (Eγ )E3
γ

ρ f

ρi
, (1)

where f (Eγ ) is the gamma strength, Eγ is the energy of the
γ ray, and ρ f /i is the final/initial level density. For the tran-
sitions under consideration, the electric dipole E1 provides
the largest contribution to EOS [18] and is well described by
the giant dipole resonance [21], for which we will assume
validity of the Brink-Axel hypothesis [22,23], according to the
formulation in Ref. [24]. The level density is described with
the Fermi gas model including the level density parameter a
[25]. This is a relevant physical quantity for describing the
nucleus, and one of the main focuses of this work.

Relating the γ radiation to Eq. (1) requires isolating the
radiation originated from a certain nuclear excitation energy
E and spin I . Experimentally, this implies two challenges: (i)
the identification of the entry state and (ii) the selection of the
primary radiation or first γ ray of each cascade.

The first task can be achieved using the Hk technique
which allows to perform gates in (I, E ) regions [20]. By
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considering the response function of an experimental array,
measured (k, H) points are converted to an (I, E ) distribution
as it was demonstrated for the GASP array [19].

The second task cannot be accomplished because of limi-
tations in the presently available electronics, which is unable
to distinguish the temporal order of emitted γ rays due to
the short time span in which a cascade is emitted. If this
restriction was not present, one could order the γ rays in a
cascade by their emission time and then produce time-ordered
spectra by histogramming the first emitted ones. The first-
emitted spectrum would correspond to the primary radiation.
This is, however, not feasible. One can instead order the γ

rays in a cascade by their energies [20] and then produce an
energy-ordered spectrum (EOS) by classifying the most ener-
getic ones in one spectrum. This is then taken as a working
approximation to the primary radiation [18].

Previous works showed that it is possible to extract from
EOS physical parameters describing the nucleus. In Ref. [18],
the level density parameter was extracted from a fit to the high
energy tail of EOS. Although this method provided values
in agreement with the input to simulations, the uncertainties
were large since only a reduced part of the spectra was used
and information at low transition energies was disregarded. In
Refs. [26,27], more advanced mathematical tools such as or-
der statistics [28] and extreme value theory [29] were applied
for the calculation of the spectra in the entire energy range.
Although the fit was not optimal, these works contributed to a
better understanding of EOS formation.

A major step towards the modeling of EOS was performed
in Ref. [30]. A detailed probability calculation provided a
mathematical function working in the entire energy range.
Nevertheless, such a function was computed and tested in
the spin-independent case, meaning that no spin dependence
of the transition probabilities was considered. In the present
work, the calculated spectrum shape is reviewed and extended
to include spin dependency (spin-dependent case). This ap-
proach is validated by a comparison with spectra produced by
a simulation of the nuclear continuum decay carried out with
the code GAMBLE [31], which includes all the known variables
deciding on the evolution of the decay process. Wide distri-
butions of entry states can also be given as input, allowing
to account for the experimental conditions given by the Hk
technique.

In Sec. II the spin-independent calculation of the spectrum
shape is reviewed. In Sec. III the extension to the spin-
dependent case is discussed and the result of the calculation is
compared with a simulated spectrum. In Sec. IV distributions
of initial states are included. In Sec. V, the level density
parameter is extracted from fits to EOS and the quality of the
calculation is assessed. In Sec. VI an example of a nuclear
phase transition is analyzed using the spectrum shape calcula-
tions. The summary and conclusions are presented in Sec. VII.

II. SPECTRUM SHAPE FOR THE
SPIN-INDEPENDENT CASE

In the spin-independent case, the probability density of γ

emission p depends only on the intrinsic excitation energy U

and the γ energy Eγ . Following Eq. (1), p can be written

p(Eγ ,U ) = φ(Eγ ,U )

F (U )
(2)

with φ as the non-normalized probability density function,

φ(Eγ ,U ) = f (Eγ )E3
γ ρ(U − Eγ ), (3)

and F its cumulative function

F (U ) =
∫ U

0
dEγ φ(Eγ ,U ). (4)

For initial states with an intrinsic excitation energy U , Eq. (2)
gives the Eγ distribution of the first emitted γ rays, corre-
sponding to the time-ordered spectrum.

Precisely, the difficulty in predicting EOS lies in the fact
that the most energetic γ ray is not necessarily emitted first,
and hence its distribution is not given by Eq. (2) as such transi-
tions do not necessarily occur at the initial U . In Ref. [30], the
energy distribution of the most energetic γ rays or spectrum
shape, pEOS, was computed for the spin-independent case. For
an initial intrinsic excitation energy U , the spectrum shape
is obtained by considering only the first n γ rays of each
cascade. This is expressed by the summation

pEOS(Eγ ,U ) =
n∑

i=1

Pi(Eγ ,U ), (5)

where the term Pi stands for both the probability of the ith γ

ray being the most energetic and its energy distribution.
The exact expression for Pi is

Pi(Eγ ,U ) =
n∏

j=1; j �=i

∫ min{Eγ ,U−∑ j−1
k=1 Ek}

0
dEj

× φ(Ej,U − ∑ j−1
k=1 Ek )

F
(
U − ∑ j−1

k=1 Ek
)

× φ
(
Eγ ,U − ∑i−1

k=1 Ek
)

F
(
U − ∑i−1

k=1 Ek
) . (6)

The product of probabilities of other γ rays having smaller
energy is considered through the multiple integrations and
the first term in the second line. The last term is the energy
distribution of the ith γ ray. Note that for every transition the
intrinsic excitation energy corresponds to the initial U minus
the energy summation of the previously emitted γ rays. Once
Eq. (6) is expanded, Ei must be replaced by Eγ . Refer to [30]
for further details on the derivation.

An energy-ordered spectrum from a Monte Carlo simula-
tion of the nuclear decay of 170Hf using the Fermi gas level
density and the giant dipole resonance γ strength with the
parameters in Ref. [18] is presented in Fig. 1 (solid line).
The spectrum shape has been computed with Eq. (5) for n =
2, 3, and 4 and results have been depicted with dashed lines.
The simulation is satisfactorily reproduced by the previous
calculations at energies above an energy threshold. Such a
threshold moves to lower energies when taking higher values
of n. Consequently, EOS can be properly reproduced in any
energy range by choosing n.
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FIG. 1. Energy-ordered spectrum obtained from a Monte Carlo
simulation (solid line) of the 170Hf decay for an initial U = 11 MeV
and the parameters in Ref. [18]. Computed spectrum shape (dashed
lines) with Eq. (5) for different n values. The agreement at low
energies improves as n increases.

III. SPECTRUM SHAPE FOR THE
SPIN-DEPENDENT CASE

The probability density of γ emission is more complex
than Eq. (3); it also depends on the spin I of initial and final
states, the type of transition regarding the electromagnetic
character and multiplicity (E1, M1, E2), and on whether the
transition is either statistical or collective. Exactly computing
the spectrum shape is a very difficult task due to the multi-
plicity of phenomena to be included in a detailed probability
calculation, however suitable approximations allow to achieve
good agreement between analytically calculated spectra and
simulated ones.

It was demonstrated with GAMBLE simulations, when tak-
ing a slice on excitation energy of 9 < U < 11 MeV, that the
largest contribution to EOS are statistical E1 transitions [18].
Therefore, in the following only such transitions are consid-
ered. E1 transitions can change the nuclear spin by �I =
−1, 0, 1 with �I = −1 the most likely. Thus, it is assumed
that the first transition is E1 �I = −1 and that subsequent
transitions are statistical E1 with an average �I = 0 such as
in the spin-independent case. Under these approximations, the
spectrum shape can be calculated with the spin-independent
function using a suitable initial intrinsic excitation energy.

An initial state (I, E ) has an intrinsic excitation energy
U = E − Eyrast (I ), where Eyrast (I ) is the energy of the yrast
states. The spin-dependent function pS

EOS can be computed
with Eq. (5) using an effective intrinsic excitation energy of
E − Eyrast (I − 1),

pS
EOS(Eγ ; (I, E )) = pEOS(Eγ , E − Eyrast (I − 1)). (7)

In order to test the previous function, a GAMBLE simu-
lation of the decay of the transitional nucleus 154Dy has
been performed using the Fermi gas level density with a =
18.4 MeV−1 [25] and the giant dipole resonance γ strength
[21]. The simulation has been carried out for an initial state
(I, E ) = (47h̄, 29.0 MeV), corresponding to U = 11.0 MeV.

FIG. 2. EOS from GAMBLE simulations of the 154Dy decay (solid
line) and calculated spectrum shape with Eq. (7) (dashed lines) for
an initial state (I, E ) = (47 h̄, 29.0 MeV); U = 11 MeV. A good
agreement between simulated data and the calculated shape with the
proper a is observed (green line). On the contrary, no agreement is
obtained for other a values (red and purple lines).

The number of simulated cascades is 5 × 104. The EOS
constructed from simulated data is shown in Fig. 2 with a
solid line. The function has been numerically computed using
Eq. (7) with n = 4, and has been plotted with a green dashed
line. A good agreement between the simulated spectrum and
the calculated shape is observed in the entire energy range,
validating the spin-dependent calculated function.

The spectrum shape has also been computed and plotted for
a = 14.4 and 24.4 MeV−1, values different from the GAMBLE

input. In this case, correctly, no agreement with the simulated
data is obtained. This shows that the computed spectrum shape
is sensitive to the physical parameters, in this case to a, and
can be used to infer them from comparisons with experimental
data. The quality of the fit and the extraction of physical
parameters will be further discussed in Sec. V.

IV. BROAD INITIAL DISTRIBUTION OF STATES

The excited states produced after fusion-evaporation reac-
tions have a wide distribution of energy and spin [19]. This
case does not correspond to a state with well defined (I, E ) as
discussed in the previous section, thus the calculated function
cannot be directly applied. The situation can be improved by
using the Hk technique [20], which allows to select cascades
coming from a reduced region in the (I, E ) plane. In Fig. 3(a),
a realistic distribution of states obtained with the Hk tech-
nique [19] is presented with contours on the (I, E ) plane. The
red lines depict yrast states.

In order to analyze experimental spectra obtained un-
der more general conditions, the spectrum shape has to be
computed for an initial distribution of states ρ0(I, E ). This dis-
tribution may include the Hk region explained above, but also
more general experimental conditions as differential effects
in the population of the entry states after fusion-evaporation
reactions [32]. This is done by integrating pS

EOS weighted
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FIG. 3. (a) Distribution of initial states ρ0(I, E ) given by the Hk
technique [19]. (b) Simulated EOS for the 154Dy decay and calcu-
lated spectrum shape with Eq. (9) and taking n = 4. An agreement
between simulated data and calculation is observed.

with ρ0,

pS
EOS(Eγ ; ρ0(I, E )) =

∞∑
I=0

∫ ∞

Eyrast

dE pS
EOS(Eγ ; (I, E ))ρ0(I, E ).

(8)
In the previous section, the calculated function for a state
(I, E ) has been approximated with an effective internal energy
U ′ = E − Eyrast (I − 1). Correspondingly, it is convenient to
simplify Eq. (8) for obtaining only an integration on U ′ of the
form

pS
EOS(Eγ ; ρ0(I, E )) =

∫
dU ′ρ0(U ′)pEOS(Eγ ,U ′), (9)

where ρ0(U ′) is an effective distribution, and pEOS is the
spin-independent calculated function from Eq. (5). For a pop-
ulation not overlapping with the yrast states, the effective
distributions can be obtained with

ρ0(U ′) =
∑
I=0

ρ0(I,U ′ + Eyrast (I − 1)). (10)

A GAMBLE simulation of the 154Dy decay has been per-
formed for the realistic distribution of states shown in Fig. 3(a)
and 5 × 104 cascades. The simulated EOS is shown in

Fig. 3(b) with a solid line. The calculated spectrum shape has
been obtained with Eqs. (9) and (10) taking n = 4 for the pEOS

computation. The result plotted with a dashed line matches the
simulation.

The agreement obtained in both cases, Figs. 2 and 3(b),
shows that the calculation of the EOS shape works suitably for
realistic cases, even when experimental conditions are taken
into account.

V. EXTRACTION OF LEVEL DENSITY PARAMETER

The experimental investigation of the nuclear continuum
using EOS requires the assessment of the fit quality in order
to extract physical parameters and to prove nuclear models.
In this section, the level density parameter a is extracted from
comparisons of the computed spectrum shape with simulated
data for various cases. This shows that the computed function
properly recovers the EOS and that physical parameters de-
scribing the nucleus can be extracted with a good accuracy.

The reduced χ -squared χ2
r between the fitting function and

simulated spectrum has been computed with

χ2
r = 1

m

imax∑
j=imin

(
ytheo

j − yexp
j

)2

ytheo
j

, (11)

where the experimental values yexp
j correspond to the sim-

ulated histogram (GAMBLE), the theoretical values ytheo
j

correspond to the computed spectrum shape multiplied times
the number of simulated cascades and energy bin of the
histogram. m = imax − imin is the number of bins under con-
sideration. The energy range for the calculation, Eγ > 2 MeV,
is chosen such that the fitting function for n = 4 converges.

The spectrum shape is computed for multiple values of
the level density parameter a. The best value and its error
bar are obtained from the values of χ2

r [33]. The procedure
is presented for the initial state (I, E ) = (47h̄, 29.0 MeV)
discussed in Sec. III. χ2

r is computed for fitting functions
with a in the range 18.0–19.0 MeV−1. The results are shown
in Fig. 4. The minimum at 18.8 MeV−1 provides the opti-
mal a obtained from the comparison process, whereas the
value χ2

r = 1.63 indicates a good agreement. The error bar
±0.6 MeV−1, indicated as a shadowed area in the figure, is
estimated from the a values at which χ2

r increases by 1 above
the minimum. Note that the input value of the simulation
a = 18.4 MeV−1 depicted in blue is within the error bars.

The same process has been repeated for various initial
states and a different number of cascades N . The results are
summarized in Table I. Higher statistics reduces the error bar
as expected. For other (I, E ) initial states as well as for the
Hk initial distribution discussed in Sec. IV, the fit is also good
and the extracted a is in agreement with the input value to the
simulation.

VI. APPLICATION TO ANALYSIS
OF PHASE TRANSITIONS

Theoretical models predict phase transitions at high exci-
tation energy and spin. For example, in Ref. [17] a transition
between oblate and prolate states in 154Dy has been predicted.
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FIG. 4. χ 2
r according to Eq. (11) as a function of the level density

parameter a. Optimal a is at the minimum χ 2
r and the error bar is

estimated as the variation of a that increases χ 2
r by one.

For low excitation energy and spin, oblate states are predicted,
whereas for high E or I prolate states are expected. Despite
the strong interest in these phenomena, their experimental
investigation is still challenging; the method to locate the
transition boundary in the spin and excitation energy plane,
as well as to determine the physical parameters describing
both regions is still unclear. In this section, the possibility to
use EOS jointly with the computed spectrum shape to analyze
phase transitions and to extract information from experimental
data is discussed.

In the present work two regions of the 154Dy continuum
characterized by different level density parameters a are con-
sidered. In one of the regions a = 18.4 MeV−1 [21] and as
a test value a = 22.1 MeV−1 is taken in the nearby region.
The second value has no experimental support but it provides
20% difference useful for assessing the following procedure.
A phase transition is included at an intrinsic excitation energy
U = 3.5 MeV, as shown by the a(U ) dependence in Fig. 5(a).
This recreates the experimental condition of feeding high E
states in the prolate region, whose decay goes through the
oblate one.

The original GAMBLE code has been modified to include
this type of variation of the level density parameter. The con-

TABLE I. Extracted a values and minimum χ 2
r from the fit to

simulated EOS. Different initial states and number of cascades N are
presented. The extracted values are in agreement with the input value
of simulations a = 18.4 MeV−1. χ 2

r ≈ 1 indicates a good fit quality.

E (MeV) I (h̄) N a(MeV−1) χ 2
r

29 47 5 × 104 18.8 ± 0.6 1.49
29 47 2.5 × 105 18.7 ± 0.3 1.27
29 47 5 × 105 18.6 ± 0.2 1.34
24 47 5 × 104 18.7 ± 0.5 1.32
27 47 5 × 104 18.6 ± 0.6 1.21

Hk → 25.0 ± 2 44 ± 4 5 × 104 18.7 ± 0.6 1.23

FIG. 5. (a) Input a(U ) for 154Dy. A phase transition takes place at
U = 3.5 MeV. (b) The simulated EOS (solid) shows a bump around
9.7 MeV indicating the phase transition. The renormalized calculated
functions (dashed) with a = 18.4 and 22.1 MeV−1 satisfactorily
reproduce the spectrum shape below and above the transition bump,
respectively.

tinuum decay has been simulated for an initial state (I, E ) =
(47h̄, 30.5 MeV) corresponding to U = 12.5 MeV. The num-
ber of cascades is 2.5 × 105. The simulated EOS in Fig. 5(b)
shows a bump; a new feature not observed in spectra with
constant a, cf. Figs. 1, 2, and 3(b). The bump at around
Eγ ≈ 9.7 MeV is an indication of the phase transition; indeed,
that energy approximates the effective excitation energy E −
Eyrast (I − 1) = 13.2 MeV minus the energy at the transition
3.5 MeV. The two plots in Fig. 5 have been aligned to make
this point explicit. From this analysis, it can be concluded that
phase transitions along U can be identified and located with
EOS.

In order to extract a, the function of Eq. (7) with a = 18.4
and 22.1 MeV−1 has been computed. After including a suit-
able normalization, they have been plotted in Fig. 5(b) with
green and red dashed lines, respectively. The function repro-
duces the EOS above and below 9.7 MeV with the proper a,
implying that it is possible to extract the parameters describing
both regions.

VII. CONCLUSIONS

In this work an experimental method for investigating
nuclei at high energy and spin has been reviewed. The
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computation of the shape of energy-ordered spectra has
been presented and extended to cover experimentally relevant
cases. This provides the mathematical tool required for ana-
lyzing data of the nuclear continuum.

The spin-independent spectrum shape [30] has been suc-
cessfully used to reproduce GAMBLE spectra in the entire
energy range. Moreover, a spectrum obtained from an ini-
tial state distribution provided by the Hk technique has
also been reproduced, showing that the function may be
used to analyze spectra including realistic experimental con-
ditions. The level density parameter a has been extracted
from simulated spectra. The obtained values agree well with
simulation inputs and have a better precision than previ-
ous approaches to the spectrum shape. As an additional
plus, the χ2

r analysis has asserted the reliability of the
procedure.

It has been shown that nuclear phase transitions along
the excitation energy could be identified using the Hk-EOS

technique and that there is a chance to determine the energy
value at which the transition happens together with the cor-
responding values of the level density parameters of the two
regions.

In this work analytical procedures on the approximation
to the EOS shape have been presented. The application of
this method requires large granularity arrays covering a solid
angle as close as possible to 4π with high efficiency at γ

energies up to 15 MeV as it was shown for the GASP ar-
ray [19]. Nowadays, one promising case array is the one
envisaged in the original proposal for PARIS [34], presently
under test and development. The capabilities of the array for
the reconstruction of the Hk regions have to be tested by
numerical simulations in order to evaluate the potential for
future experimental proposals. The combination of the results
presented in this paper with an experimental evaluation of the
Hk technique would provide a complete experimental method
for studies of the continuum region.
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