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From odd-even staggering to the pairing gap in neutron matter
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The properties of neutron matter are integral to the correct description of neutron stars as well as the
description of neutron-rich nuclei. One key property of neutron matter is its superfluid behavior in a range
of densities relevant to the inner crust of neutron stars. This work investigates the finite-size effects in the pairing
gap of a pure neutron matter superfluid system at densities found in the inner crust of cold neutron stars. The
BCS (Bardeen-Cooper-Schrieffer) treatment of superfluidity gives rise to the mean-field pairing gap, while a
projection after variation (PBCS theory) can provide a beyond-mean-field pairing gap through an odd-even
staggering formula. While these two pairing gap results should agree in the thermodynamic limit, in this work
we demonstrate that this is the case for systems far from the thermodynamic limit as well. These results can
prove valuable to the study of neutron matter since they can connect ab initio approaches to other approaches
found in the literature. This is a first step towards a model-independent extraction of the pairing gap in neutron
matter.
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I. INTRODUCTION

The physics of neutron-rich nuclei is connected to that
of low-density neutron matter (NM) [1,2], while properties
of neutron stars (NSs) such as their cooling [3–5] and the
irregularities of their periods [6,7] can be traced back to in-
teresting physics of the NM that makes up their inner and
outer crusts. Furthermore, the equation of state of high-density
NM is integral to the determination of NS properties such as
the mass-radius relation and the NS maximum mass, while
accurately calculated properties of NM can be used to provide
a benchmark for nuclear energy-density functionals [8], which
in turn can be used to guide hydrodynamic descriptions of
the inner crust of NSs [9]. Finally, one can find a correspon-
dence between NM and cold atoms: unitarity is the regime
of a Fermi gas with kFa → −∞, where a is the scattering
length and the negligible effective range kFre ≈ 0. In such
systems all length scales drop out of the problem and one
expects a universal behavior [10]. This regime is located on
the Bardeen-Cooper-Schrieffer (BCS)-BEC crossover which
is encountered upon increasing 1/kFa from negative to posi-
tive (from kFa → −∞ to kFa → ∞), where kF is the Fermi
momentum. This crossover can be generalized for finite re

[11] to −1/(kFa) + rekF/2 = 0. The bare neutron-neutron
(NN) interaction is characterized by a very large scattering
length (a ≈ −18.5 fm), which means that, to the extent that
the finite effective range of the NN interaction can be ne-
glected (re ≈ 2.7 fm), the properties of a dilute neutron gas
can be considered close to that of a unitary gas. This allows
a connection between NM and cold atoms close to unitarity
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which has motivated and benefited from various theoretical
[12–17] and experimental studies [18,19].

Pairing in nuclear systems has been a longstanding area
of research for the past half a century. In almost all known
nuclei, one finds isovector (T = 1, S = 0) neutron-neutron
(nn) and proton-proton (pp) pairing dominating. In N ≈ Z
nuclei, isovector and isoscalar (T = 0, S = 1) neutron-proton
(np) pairing should be present, with the latter being notori-
ously elusive [20–22]. The inner crust of a cold NS consists
of a fluid of neutrons permeating a crystal lattice of heavy
(neutron-rich) nuclei. The density of these neutrons is slightly
less than the nuclear saturation density n0 = 0.16 fm−3. At
low densities the NN interaction is attractive mainly through
the 1S0 channel, causing the creation of neutron isovector
pairing, which in turn brings the neutron fluid to a super-
fluid state [1]. Deeper in the crust isovector proton pairing
is also present [8]. As the density increases with depth, the
NN interaction becomes repulsive in the 1S0 channel, closing
superfluidity through that channel at densities that correspond
to kF ≈ 1.5 fm−1. From that point on, the dominant compo-
nent of attractive interactions comes from the 3P2 channel,
which is coupled to the 3F2 channel. This p-wave attractive
interaction has been shown to be crucial to the description
of the NS structure at higher densities since it corrects the
instability due to the repulsiveness of the s-wave interaction
at these densities [23]. The exponentially suppressed heat
capacity of the superfluid state and the scattering of electrons
in the “normal-state” cores of the vortex lines in the superfluid
inner crust impact the observed cooling of NSs [3–5] and the
glitches of pulsars [6], respectively. A correct description of
neutron pairing is important for the understanding of such
phenomena (see Ref. [8] for a review of the superfluidity in
NSs).
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Calculations of the pairing gap in NM have been done in
the past for the 1S0 pairing gap for realistic interactions set
to reproduce the scattering length and effective range of the
bare NN interaction. Such studies have been conducted in
the BCS framework [1,17] and beyond by the inclusion of
short- and long-range correlations in the gap equations [24]
or by the means of correlated basis functions [25], where
one describes the ground state of the system with the use of
correlation operators [26,27]. Calculations of the 1S0 NM pair-
ing gap have also been done employing interactions tuned to
reproduce other well-established physics of NM [28] as well
as chiral interactions [24,29–31]. General studies of strongly
paired fermions, of which NM is a subcategory, have also
been conducted using effective field theory (see [32] and ref-
erences therein). These calculations refer to a pairing gap that
is defined as the minimum of the corresponding quasiparticle
excitation energy. Finally, to these one should add ab initio
calculations of the 1S0 pairing gap which have been done
using quantum Monte Carlo techniques [13,33,34] for finite
particle numbers and then extrapolated to the thermodynamic
limit (TL). These techniques utilize an odd-even staggering
(OES) definition where the pairing gap is computed as the
energy difference between systems with fully paired parti-
cles and systems with one unpaired particle. While these two
definitions are equivalent at the TL, the relationship between
the two far from the TL is not trivial. Aiming to bridge this
gap, we performed mean-field calculations of the pairing gap
in finite superfluid systems which then were extended to a
beyond-mean-field approach by means of symmetry restora-
tion techniques. The pairing gaps resulting from the two
approaches were then compared far from the TL, where they
were found to agree with each other. In the context of ab
initio approaches, where one faces the task of extrapolating
studies of finite systems to the TL [17,35] (for higher densities
see Refs. [36] and [37]), these results can be used to connect
studies of superfluid systems to other approaches in the liter-
ature. Thus, this is a first step towards a model-independent
extraction of the pairing gap in neutron matter.

II. THE BCS THEORY FOR NEUTRON MATTER

We investigate the effects of pairing in the NM found in
the inner crust of NSs. At first order, the NM of the inner crust
of a cold NS can be approximated by infinite pure NM. On a
mean-field level one can use the bare NN interaction within
the BCS theory of superconductivity to describe the NM pair-
ing correlations [34]. In more sophisticated approaches one
could consider induced interactions stemming from the small
component of protons in the inner crust as well as screening
and antiscreening effects [38], both of which are beyond the
scope of this work. We are interested in the properties of
the bulk medium in pure NM, and therefore, we enclose the
system in a box of length L, much larger than the effective
range of the NN interaction, employing periodic boundary
conditions (PBCs). The choice of PBCs comes naturally from
the observation that in uniform infinite matter all physical
properties must be invariant under spatial translation.

A. Even-particle-number systems

According to the BCS theory, the normal state of a fluid
of unpolarized fermions (half of which are spin-up and half
spin-down) exhibits an instability in the presence of attractive
interactions. In the formulation of the theory, the ground state
of the system is described as a superposition of pairs of time-
reversed states,

|ψBCS〉 =
∏

k

(uk + vkĉ†
k↑ĉ†

−k↓)|0〉, (1)

where ĉ†
kσ and ĉkσ are fermionic creation and annihilation

operators, respectively, that are associated with the single-
particle wave functions of particles of momentum k and spin
σ in a cubic box under PBCs and |0〉 is the vacuum state. The
state in Eq. (1) describes systems with even particle numbers
while, as shown in Sec. II B, a minor modification can be
done in Eq. (1) to describe systems with odd particle numbers.
The functions v2

k and u2
k are the probabilities of finding or not

finding, respectively, a pair with momenta k ↑ and −k ↓, and
as such their sum for a given k is normalized to unity:

v2
k + u2

k = 1. (2)

Our aim is to study the effects of pairing and as such
we employ a Hamiltonian where one ignores normal-state
interactions, as is standard in the literature,

Ĥ =
∑
kσ

εkĉ†
kσ ĉkσ +

∑
kl

〈k|V |l〉ĉ†
k↑ĉ†

−k↓ĉ−l↓ĉl↑, (3)

where εk is the single-particle energy associated with the
momentum state k and 〈k|V |l〉 the matrix element of the
pairing interaction, i.e., the attractive interaction responsible
for the instability against the pairing. The state in Eq. (1) is
not an eigenstate of the number operator, N̂ = ∑

kσ ĉ†
kσ ĉkσ .

Because of this, BCS theory is formulated in a grand canonical
ensemble such that the average number of particles remains
fixed:

〈N̂〉 = 〈ψBCS|
(∑

k

ĉ†
k↑ĉk↑ + ĉ†

k↓ĉk↓

)
|ψBCS〉

= 2
∑

k

v2
k. (4)

The ground state of the system is determined through a
variational approach: the distributions vk and uk are deter-
mined so that they minimize the energy of the state in Eq. (1),

〈ψBCS|Ĥ |ψBCS〉 =
∑
kσ

εkv
2
k +

∑
kk′

〈k|V |k′〉ukvkuk′vk′ , (5)

while respecting the constraint in Eq. (4). Using the Lagrange
multiplier scheme, this minimization is equivalent to minimiz-
ing the quantity,

W [vk; μ] = 〈Ĥ〉 − μ(〈N̂〉 − N0)

=
∑
kσ

ξkv
2
k +

∑
kk′

〈k|V |k′〉ukvkuk′vk′

+ μN0, (6)
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FIG. 1. The quasiparticle excitation energy, at kFa = −10, as a
function of the square of the momentum magnitude k2 for a set of
different average particle numbers 〈N〉 chosen to clearly demonstrate
the shift of the minimum of the quasiparticle excitation energy as
a function of 〈N〉. The positions of the minima of the excitation
energies for different values of 〈N〉 are circled. The value of these
minima correspond to the mean-field pairing gap.

where ξk = εk − μ [39]. The single-particle energies εk are

εk = h̄2

2m
|k|2. (7)

The quantity N0 is the desired average particle number of
the system and μ the chemical potential (the Lagrange mul-
tiplier). In Eq. (6) we have neglected terms that come from
the diagonal elements of the interaction matrix in Eq. (3).
These terms’ only effect, when grouped with the kinetic term
in Eq. (6), is the renormalization of the single-particle energies
[40, p. 238]. Note that the explicit dependence of W on uk
was omitted since the distribution uk can be uniquely defined
through Eq. (2) for a given distribution vk. Taking the varia-
tion of W with respect to vk we arrive at the famous BCS gap
equation, whose solution determines v2

k and u2
k,

�k = −1

2

∑
k′

〈k|V |k′〉�k′

Ek′
, (8)

where the gap function is

�k = −
∑

k′
〈k|V |k′〉vk′uk′ . (9)

Here, Ek is the quasiparticle excitation energy, i.e., the energy
needed to create an excitation by breaking a pair at a state k,
and it is defined as

Ek =
√

ξ 2
k + �2

k. (10)

Solving Eqs. (8) and (16) one obtains the gap distribution
�k and the chemical potential μ for a given average particle
number 〈N〉. A plot of the quasiparticle excitation energy
using the solutions of the gap equations for finite systems with
various particle numbers 〈N〉 is shown in Fig. 1 as a function
of the momentum squared. The minimum of the quasiparticle

excitation energy is defined as the pairing gap:

�MF = minkEk. (11)

As discussed in Sec. VI, the pairing gap is a measure of the
pairing correlation in the superfluid. The subscript MF above
refers to the fact that the pairing gap calculated using Eq. (11)
is a result of a pure mean-field treatment and as such contains
no beyond-mean-field contributions.

One should note that we are describing an interacting sys-
tem, and as such the concepts of a Fermi energy EF and a
Fermi momentum kF should be understood as an energy scale
introduced by the density n of the inner crust as

EF = h̄2

2m
k2

F = h̄2

2m
(3π2n)2/3. (12)

As our goal is to study the trend of a finite system towards
the TL, we want to focus on intensive quantities of the system
since these will remain finite at the TL. Therefore it is more
suitable for one to focus on the energy per particle as opposed
to the pure energy of the system. This introduces an additional
energy constant which is the energy per particle of a free
Fermi gas at the TL:

E

N

∣∣∣∣
TL

= 3

5
EF. (13)

It should also be noted that hereafter we refer to the density
using the dimensionless parameter kFa, where a ≈ −18.5 fm
is the scattering length of NM. The BCS formalism was first
expressed in terms of the scattering length in Ref. [41]. Since
then it has been customary to study the properties of superfluid
dilute Fermi gases as a function of kFa, first used in Ref. [16].

In terms of the quasiparticle excitation energy and the gap
distribution, the distributions vk and uk are

v2
k = 1

2

(
1 − ξk

Ek

)
, (14)

u2
k = 1

2

(
1 + ξk

Ek

)
. (15)

The above relations can be derived by solving for vk (or uk)
in 2ukvk = �k/Ek along with Eq. (2). Taking the variation of
W with respect to the Lagrange multiplier μ we find

〈N̂〉 =
∑

k

(
1 − ξk

Ek

)
= N0, (16)

which is nothing more than the average particle-number con-
servation that one finds in the grand canonical ensemble. The
distribution v2

k is the probability of finding a pair at a momen-
tum k. A substantial smearing of that distribution over k space
is shown in Fig. 2. That smearing is proportional to the mean-
field pairing gap and it is a consequence of strong pairing
correlations. The specific particle numbers plotted both in that
figure and Fig. 1 are illustrative.

Equations (8) and (16) are two coupled nonlinear equations
in the sense that Eq. (8) contains the gap distribution �k on
both the left-hand side (LHS) and the right-hand side (RHS) in
a nonseparable way (nonlinear) and both Eq. (8) and Eq. (16)
contain the unknowns �k and μ in such a way that one is un-
able to solve the one and substitute it into the other (coupled).
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FIG. 2. The pair occupation probability, at kFa = −10, as a func-
tion of the momentum magnitude k for a set of different average
particle numbers 〈N〉 chosen to clearly demonstrate the dependence
of the occupation of the shell that corresponds to the minimum of
Ek on the average particle number. The positions of the minima
of the excitation energies for different values of 〈N〉 are circled.
A key feature of strong pairing is the smearing of the probability
distributions.

Equations (8) and (16) are usually referred to as the BCS
gap equations. They can be decoupled in the weak-coupling
limit where �/μ 
 1. That condition, however, is not met
for NM and one is faced with the task of solving the BCS gap
equations self-consistently.

Before engaging in this task, it has to be ensured that the
matrix element in Eq. (8) is the interaction responsible for the
pairing. In NM at the densities considered here, this interac-
tion comes mainly from the 1S0 channel of the NN interaction.
Therefore, the matrix element in Eq. (8) must be expanded in
partial waves where only the S wave is to be kept. That leads
to the angle-averaged version of the BCS gap equations,

�(k) = −2π

L3

∑
k′

M(k′)V0(k, k′)
�(k′)
E (k′)

, (17)

〈N̂〉 =
∑

k

M(k)

(
1 − ξ (k)

E (k)

)
, (18)

where L is the length of the (cubic) box and V0(k, k′) is
the matrix element of the potential averaged over the angle
between k and k′,

V0(k, k′) =
∫ ∞

0
dr r2 j0(kr)V (r) j0(k′r), (19)

with j0(kr) being the zeroth-order spherical Bessel function
of the first kind. Here M(k′) is the population function, which
counts the number of k states that correspond to magnitude
k′. The full derivation of the above equations can be found in
Ref. [42]. We present a simplified version in Appendix A.

Within the BCS framework, the energy of even-particle-
number systems is given by the ground-state expectation value
of the Hamiltonian, namely, Eq. (5). In a way similar to that
for the BCS gap equations, the S wave of the pairing interac-

tion in this equations has to be isolated, leading to the equation
for even-particle-number systems

EBCS
even (N ) =

∑
k

M(k)εk2v2
k

+ 4π

L3

∑
kk′

M(k)M(k′)V0(k, k′)ukvkuk′vk′ , (20)

where M(k) is again the population function and the quantities
v2

k and vkukvk′uk′ have been replaced by their angle-averaged
counterparts. We have also used Eq. (A25).

B. Odd-particle-number systems

As discussed above, the BCS ground state [see Eq. (1)]
describes the condensate as a superposition of pair states, and
as such it can only describe systems with an even number of
particles. Odd-particle-number systems are described employ-
ing blocked states in which the extra, unpaired particle will
occupy a momentum state b, blocking the formation of a pair
on it. These systems, at the BCS level, are described by the
state ∣∣ψbγ

BCS

〉 = ĉ†
bγ

∏
k �=b

(uk + vkĉ+
k↑ĉ+

−k↓)|0〉, (21)

where b and γ are the momentum and the spin projection,
respectively, of the unpaired particle. The distributions vk
and uk come from this state’s own self-consistent treatment:
one needs to minimize the energy of the state subject to the
constraint of the fixed average particle number as in Eq. (6).
This results in the blocked BCS gap equations,

�(k) = −2π

L3

∑
k′ �=b

M(k′)V0(k, k′)
�(k′)
E (k′)

, (22)

〈N̂〉 − 1 =
∑
k �=b

M(k)

(
1 − ξ (k)

E (k)

)
, (23)

where we have again kept only the S wave of the pairing
interaction. We should note that there is a slight abuse of
notation in Eqs. (22) and (23): the symbol

∑
k �=b signifies

the blocking of only one k state and not the entire shell of k
states corresponding to |k| = k. We see that the blocked state
describes a superfluid of N0 − 1 particles which has no access
to the blocked state b and a particle on the blocked state b
which is essentially a free particle and whose effect on the
condensate is only through the restriction that the blocking
imposes on the available k space. This can be seen by inspect-
ing Eq. (3) or, more clearly, in the energy that corresponds to
the blocked state,〈

ψ
bγ

BCS

∣∣Ĥ ∣∣ψbγ

BCS

〉 =
∑
k �=b

εkv
2
k + εb

+
∑

kk′ �=b

〈k|V |k′〉ukvkuk′vk′ , (24)

where the only direct contribution of the blocked momentum
state b to the energy is through its single-particle energy. It
should be noted, however, that this is not the only way that
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FIG. 3. The pairing gap as a minimum of the quasiparticle exci-
tation energy in odd- and even-particle-number systems in BCS at
kFa = −10.

the energy depends on the blocked momentum state b since
the distributions vk and uk are defined through Eqs. (22) and
(23) and are, therefore, dependent on b. Solving Eqs. (22) and
(23) one can obtain a quasiparticle excitation energy in a way
identical to Eq. (10). The minimum of that excitation energy
will be equal to the pairing gap for the same reasons as its
even-particle-number counterpart, as shown in Fig. 3.

At this point, a discussion about the finite-size effect (FSE)
of the pairing gap is in order. One can see a very pronounced
FSE in Fig. 3 for the even-particle-number and the odd-
particle-number cases alike. As shown later, this is generally
not the case for all quantities of the system. The exaggerated
nature of these FSEs can be understood as an interplay be-
tween the definition of the pairing gap and the quantization
of the momenta: the pairing gap is defined as the minimum
of the quasiparticle excitation energy, as per Eq. (11), and
with the k magnitudes being quantized, the position of this
“available” minimum does not necessarily fall on the true
minimum that the quasiparticle excitation curve would have
if it were a smooth function instead of the discretized version
that we show in Fig. 1. Therefore, a small change in 〈N〉 can
shift this true minimum farther from the position of the lowest
point of the discretized curve, making a higher or lower k
magnitude the new position of the minimum, i.e., the new
lowest point of the curve. One can see clear examples of this
line of thought in Fig. 1, where it is apparent that the curves,
were they smooth and continuous, would yield a minimum
different from the lowest point circled in red.

As discussed later, an odd-particle-number system can be
viewed as a one-quasi-particle excitation state of its even-
particle-number vacuum. To describe the lowest of these
excitations one can use the state in Eq. (21) where the mo-
mentum state b is chosen such that the energy of that state,
namely, Eq. (24), is minimum. This minimization requires a
survey over the possible candidates for state b, where one has
to solve Eqs. (22) and (23) for every new b considered. This,
combined with the inherent nonlinearities of Eqs. (22) and
(23), makes the description of such a system computationally
expensive. An alternative to obtaining the distributions vk and
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E
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FIG. 4. The energy per particle, divided by the Fermi energy, of
an odd-particle-number system (〈N〉 = 67). The energies are calcu-
lated as an optimized quasiparticle excitation of an even system and
as a quasiparticle excitation of an already optimized, fully paired,
wave function with 〈N〉 = 67, at kFa = −10.

uk by solving Eqs. (22) and (23), is a perturbative approach to
blocking: one can use the distributions vk and uk that solve
Eqs. (17) and (18) setting N0 equal to the particle number of
the odd-particle-number state [43], namely, N0 = Nodd. The
error in the distributions vk and uk resulting from a pertur-
bative description is inversely proportional to the number of
pairs N0/2; such an approach is less computationally expen-
sive since the gap equations need to be solved only once [40].
Motivated by this we can use a perturbative scheme to identify
the structure of the excitations of an even-particle-number
system like the one in Fig. 4 and compare it with the one from
a nonperturbative approach. These are calculations of the en-
ergy of the state in Eq. (21) for different blocked momenta b.
We see that the structure of the excitations remains unchanged
in the sense that the energy curves produced by each approach
yield a minimum at the same momentum state k. Similar
calculations for a variety of particle numbers show the same
behavior. This motivates the use of the revised perturbative
scheme to locate the momentum b that minimizes the energy
in Eq. (24) and the use of this blocked state to solve Eqs. (22)
and (23).

As in the even-particle-number systems, the energy of
odd-particle-number systems is given by the ground-state ex-
pectation value of the Hamiltonian, namely, Eq. (24). Isolating
the S wave of the pairing interaction in this equation we arrive
at the equation for odd-particle-number systems

EBCS
odd (b; N ) =

∑
k �=b

M(k)εk2v2
k + εb

+ 4π

L3

∑
kk′ �=b

M(k)M(k′)V0(k, k′)ukvkuk′vk′ ,

(25)

where M(k) is again the population function and the
quantities v2

k and vkukvk′uk′ have been replaced by their
angle-averaged counterparts. We have also used Eq. (A25).
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As before, the energy of the blocked state has an explicit
dependence on the blocked momentum state b, through εb,
as well as an implicit one, through the distributions uk and
vk . In what follows, the only odd-particle-number systems
considered are the ones that constitute the one-quasiparticle
excitation of their corresponding even-particle-number vac-
uum. Note that this distinction does not survive at the TL,
where N → ∞ and the very distinction between even and odd
particle numbers loses its meaning. However, when discussing
systems far from the TL the distinction between an even fully
paired system and its first excitation with one unpaired particle
is vital in probing pairing correlations (see Sec. VI).

C. The system at the thermodynamic limit

Intensive quantities for a finite system may change as the
system approaches its TL, reaching their TL values as the sys-
tem becomes a better approximation of the infinite one. These
discrepancies of the calculated quantities from their TL value
are called finite-size effects. Typically, they are recognized as
the result of a discretized k space, which in turn comes from
the boundary conditions of a finite system, and their study
plays an important role in the description of infinite systems.
To identify such a trend in a quantity, one needs to know the
TL of the system at hand. For superfluid systems in the BCS
framework this can be done straightforwardly by taking the
limit of L → ∞ in Eqs. (17) and (18). This leads to the TL
version of the BCS gap equations:

�(k) = − 1

π

∫ ∞

0
dk′(k′)2V0(k, k′)

�(k′)
E (k′)

, (26)

〈N̂〉
L3

= n = 1

2π2

∫ ∞

0
dkk2

(
1 − ξ (k)

E (k)

)
. (27)

These equations, just like their discrete counterparts, are a set
of nonlinear coupled equations that have to be solved self-
consistently. In Sec. IV we describe the way one can solve
Eqs. (17) and (18) and the same method applies to Eqs. (26)
and (27). Solving these one obtains the pairing gap at the TL,
which is shown in Fig. 5, where we also plot the pairing gaps
for 〈N〉 = 66 at kFa = −10 and −5. This result is consistent
with the choice usually made in quantum Monte Carlo NM
calculations [34]: a periodic box of 66 particles happens to
provide a good approximation of the infinite system and can
therefore be used to extrapolate to the TL.

Finally, an expression for the energy density at the TL can
be derived by taking the limit of L → ∞ in Eq. (5), yielding

ETL

V
= 1

2π2

∫ ∞

0
dkk22v(k)2ε(k) (28)

+ 1

π3

∫ ∞

0
dkdk′k2k′2V0(k, k′)u(k)v(k)u(k′)v(k′),

(29)

which is connected to the energy per particle as

ETL

V
= n

ETL

N
. (30)
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FIG. 5. The pairing gap at the TL in units of the total energy as
a function of the Fermi momentum kF. Also graphed are the pairing
gaps for 〈N〉 = 66 at kFa = −10 and −5.

III. THE INTERACTION

At the densities considered here the NN interaction is
dominated by the 1S0 channel. This interaction is attractive
enough to almost create a bound system (dineutron). The
NN scattering length and effective range are a ≈ −18.5 fm
and re ≈ 2.7 fm, respectively [44]. At low energies those two
quantities capture the physics of the system. In other words,
all potentials that can be tuned to reproduce the scattering
length and effective range of NM will produce indistinguish-
able results at low energies regardless of the details of their
functional forms (shape independence). Moreover, these pa-
rameters correspond to the free-space NN interaction. While
for low-density studies, such as this one, the in-medium ef-
fects can be neglected, moving to higher densities the effects
of the medium have to be dealt with [38,45] We choose to
model the NN interaction with the modified Pöschl-Teller
potential [17]. This is

V (r) = − h̄

mn

λ(λ − 1)β2

cosh2 (βr)
, (31)

where the parameters λ and β are tuned to reproduce the 1S0

scattering length and effective range. In the 1S0 channel the
potential is

V0(k, k′) =
∫ ∞

0
drr2 j0(kr)V (r) j0(k′r) (32)

= Aπ

4βkk′

(
k − k′

sinh (k−k′ )π
2β

− k + k′

sinh (k+k′ )π
2β

)
(33)

for k �= k′, k, k′ �= 0 ,

= A

2β2k2

(
β − k

π

sinh kπ
β

)
(34)

for k = k′ �= 0 ,

= A

2β2k2

[
1

sinh πk
2β

(
πk

2β
coth

πk

2β
− 1

)]
(35)

for k �= k′, k′ = 0 ,
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= Aπ2

12β3

for k = k′ = 0, (36)

where we have defined

A = − h̄

m
λ(λ − 1)β2 . (37)

By choosing this form for our interaction we neglect the re-
pulsive core of the NN interaction at short distances since the
modified Pöschl-Teller potential is a purely attractive poten-
tial. This repulsive core is probed at densities higher than the
ones discussed here, and therefore, for our range of densities a
potential with a repulsive core would produce the same results
as the modified Pöschl-Teller potential. This is consistent with
the shape independence mentioned above.

IV. SOLUTION OF THE BCS GAP EQUATIONS

We want to investigate the effects of pairing in the NM
found in the inner crust of NSs. As noted above, our interest
in the properties of the bulk medium along with the transla-
tional symmetry of the infinite medium suggests the use of a
cubic box under PBCs. These boundary conditions lead to the
quantization of momenta,

k = 2π

L
n, with nx, ny, nz = 0,±1, . . . , (38)

which in turn leads to the single-particle energies

εk = h̄2

2m
|k|2 = 2π2h̄2

mL2
|n|2 , ni = 0,±1, . . . , (39)

where the length of the box L is determined so that the particle
number of the system yields the desired density.

The lack of a repulsive core (see Sec. III) in the potential
permits the use of an iterative scheme for the solution of
Eqs. (17) and (18). That is, for a given value of μ we can
solve Eq. (17) iteratively by assuming a gap distribution on the
RHS and getting an updated one on the LHS. By substituting
the updated gap distribution on the RHS again we get yet
a new one on the LHS, and so on. The iterative procedure
stops when the gap distribution assumed on the RHS is equal
to the updated one on the LHS. This gap distribution is the
solution of Eq. (17) given a chemical potential μ. Inserting
this solution along with the given μ into Eq. (18) we get the
average particle number that corresponds to that value of μ.
Using this iterative scheme we are, essentially, calculating
the average particle number 〈N〉 as a function of μ, i.e.,
〈N〉(μ). Finally, we reduce the problem to finding the root
of the equation 〈N〉(μ) − N0 = 0, where N0 is the number of
particles that corresponds to the desired density in the cubic
box. The TL equations are solved using the same procedure.
That is, one can calculate the density as a function of μ by first
solving Eq. (26) iteratively and using its solution in Eq. (27).
More sophisticated methods have been developed for general
potentials [46,47].

V. THE PARTICLE-NUMBER PROJECTION

As discussed above, the BCS ground state does not con-
serve the particle number. One can restore the particle-number
conservation by projecting out of the state in Eq. (1) the
component that respects this symmetry. In the literature this is
called the projection after variation (PAV) method or the pro-
jected BCS (PBCS) theory. In the PBCS one starts by building
a self-consistent wave function in the BCS framework, as
described in Sec. II. A projection operator is then applied to
that BCS ground state to project out the particle-conserving
component of the wave function that corresponds to the right
particle number, N0. Earlier, following the original BCS for-
mulation, we chose to respect this symmetry “on average” by
introducing the chemical potential in Eq. (6). For systems with
large particle numbers the nonexact conservation of particles
is not important since the fluctuations around the average
particle number 〈N〉 are of the order 1/

√
N . However, for

quantum Monte Carlo calculations where one works with fi-
nite systems of up to a hundred particles this nonconservation
has to be dealt with (for a review on symmetry restoration see
Ref. [48]).

Using a projection operator one can project out the particle-
number-conserving component of the BCS ground state
[49],

|ψN 〉 = 1

C
P̂N |ψBCS〉

= 1

C

∮
dz

2π i
z− N

2 −1
∏

k

(uk + zvk p̂†
k )|0〉 (40)

= 1

C

∫ 2π

0

dφ

2π
e−i N

2 φ
∏

k

(uk + eiφvk p̂†
k )|0〉, (41)

where N/2 is the number of pairs and C a normalization
constant defined by requiring that

〈ψN |ψN 〉 = 1. (42)

This treatment is equivalent to expressing the BCS ground
state as a linear combination of eigenstates of the number
operator,

|ψBCS〉 =
∑

N

λN |ψN 〉, (43)

and picking the one that corresponds to the right N
value, i.e., N = N0. Using that as the ground state of
the system for N particles the expression for the energy
becomes

EPBCS
even (N ) = 〈ψN |Ĥ |ψN 〉

〈ψN |ψN 〉

=
∑

k

εk2v2
k

R1
1(k)

R0
0

+
∑
kk′

Vklukuk′vkvk′
R2

1(kk′)
R0

0

, (44)
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where the quantities Rm
n (k1 . . . km) are defined as the residues

of contour integrals in the complex plane,

Rm
n (k1k2 . . . km)

= 1

2π i

∮
dzz−( N

2 −n)−1
∏

k �=k1,k2,...km

(
u2

k + zv2
k

)

=
∫ 2π

0

dφ

2π
e−i( N

2 −n)φ
∏

k �=k1,k2,...km

(
u2

k + eiφv2
k

)
, (45)

with N/2 the number of pairs described by the state in Eq. (1).
From the blocked state in Eq. (21) odd-particle-number

eigenstates of the number operator can be projected that de-
scribe a system with N + 1 particles,∣∣ψbγ

N+1

〉 = 1

C(b)
P̂N

∣∣ψbγ

BCS

〉
= 1

C(b)
ĉ†

bγ

∮
dz

2π i
z− N

2 −1

×
∏
k �=b

(uk + zvk p̂†
k )|0〉 (46)

= 1

C(b)
ĉ†

bγ

∫ 2π

0

dφ

2π
e−i N

2 φ

×
∏
k �=b

(uk + eiφvk p̂†
k )|0〉, (47)

where N/2 is the number of pairs described by the state in
Eq. (21) and C(b) a normalization constant defined by requir-
ing that 〈

ψ
bγ

N+1|ψbγ

N+1

〉 = 1. (48)

The state in Eq. (21) leads to an energy

EPBCS
odd (b; N + 1) =

〈
ψ

bγ

N+1

∣∣Ĥ ∣∣ψbγ

N+1

〉
〈
ψ

bγ

N+1|ψbγ

N+1

〉
=

∑
k �=b

εk2v2
k

R2
1(bk)

R1
0(b)

+ εb

+
∑

kk′ �=b

Vkk′ukuk′vkvk′
R3

1(bkk′)
R1

0(b)
. (49)

The residuum integrals can be calculated numerically using
Eq. (45). These two prescriptions for calculation of the ener-
gies of even-particle-number and odd-particle-number finite
superfluid systems, namely, Eqs. (44) and (49), constitute a
beyond-mean-field treatment since the expansion in Eq. (43)
introduces correlations beyond mean field [48]. Finally, as
with the BCS treatment, the S-wave component of the interac-
tion has to be isolated from these energy expressions, leading
to the following expression for even-particle-number systems,

EPBCS
even (N ) =

∑
k

M(k)εk2v2
k

R1
1(k)

R0
0

+ 4π

L3

∑
kk′

M(k)M(k′)V0(k, k′)

× ukvkuk′vk′
R2

1(kl )

R0
0

, (50)
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FIG. 6. The energy in BCS and PBCS as a function of the particle
number N for kF a = −10 and −5.

and for odd-particle-number-systems,

EPBCS
odd (b; N ) =

∑
k �=b

M(k)εk2v2
k

R2
1(bk)

R1
0(b)

+ εb + 4π

L3

∑
kk′ �=b

M(k)M(k′)V0(k, k′)

× ukvkuk′vk′
R3

1(bkl )

R1
0(b)

. (51)

Using Eqs. (50) and (51) one can calculate the energy of a
system with a fixed number of particles N . A calculation of
that energy can be seen in Fig. 6, where we plot the energy of
an even-particle-number system for kFa = −10 and −5 in the
BCS and PBCS, that is, using Eqs. (20) and (50), respectively.
It is noteworthy that the FSEs for the energy are smaller than
for the pairing gap as shown in Fig. 3.

It should also be noted that the projection method described
above starts by building a self-consistent BCS wave func-
tion, namely, the state in Eq. (1) [or the state in Eq. (21)
for odd-particle-number systems]. That BCS ground state,
however, is built to minimize the free energy in Eq. (6), and
this does not guarantee that the resulting projected state in
Eq. (41) [or Eq. (47) for odd-particle-number systems] will
also be self-consistent. That is, if one were to determine the
distributions vk and uk so that they minimize the energy in
Eq. (44) [or Eq. (49) for odd-particle-number systems], they
would, in principle, find distributions different from the ones
that come from the BCS treatment described in Sec. II. The
latter approach of minimizing the energy of the projected state
is called the variation after projection method and it has been
used to restore the particle-number symmetry for nn and pp
pairing in nuclei [50] as well as the particle-number, spin, and
isospin symmetries in np pairing [22]. It can be shown that for
strong pairing the VAP and BCS descriptions are equivalent
[49]. Furthermore, the PBCS approach gets closer to the VAP
one as the pairing correlations increase. In this work we are
interested in the pairing correlations in NM, which exhibits
some of the strongest pairing effects in nature. Therefore we
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extend our BCS results to finite systems using the PBCS
theory.

VI. THE PAIRING GAP AND THE
ODD-EVEN STAGGERING

The key signature of pairing correlations is the occurrence
of the so-called pairing gap. The pairing gap is manifested
in two different observables. First, a gap is observed in the
quasiparticle excitation spectrum of the BCS ground state (see
Fig. 1), and second, there is an energy shift between the en-
ergy curves of even-particle-number and odd-particle-number
systems. Both of those features can be exploited to calculate
the pairing gap.

The first effect mentioned above lets us identify the mini-
mum of the quasiparticle excitation energy as the pairing gap
[cf. Eq. (11)]. The value of this minimum, even though not
explicitly stated in Eq. (11), is also a function of the average
particle number as shown in Fig. 1.

The second effect mentioned above can also be exploited
to calculate the pairing gap by pointwise interpolation of the
two curves using finite-difference formulas and calculation
of the shift for each particle number N . This treatment, in-
spired by the odd-even mass staggering in nuclei, leads to
formulas containing only differences in the energy of sys-
tems with different particle numbers. Additionally, increasing
the level of sophistication with which the pairing has been
dealt in each of the energy calculations that go into the
odd-even staggering formulas, one can get beyond-mean-field
contributions of increasing accuracy. Furthermore, different
interpolation schemes give rise to OES formulas of differ-
ent orders. Beyond-mean-field correlations, resulting from
more than mere particle projection have been studied in nu-
clei [51–53]. However, this study, as mentioned above, has
a more limited scope, which is to provide guidance for ab
initio approaches that will presumably capture such beyond-
mean-field effects accurately. Therefore we investigate the
phenomenological value of the odd-even staggering and not
the correlations induced by a particle-number projection. In
studies of superfluid systems, for a given choice of Hamil-
tonian and boundary conditions, the odd-even staggering is
a quantity that can be tackled in a variety of theoretical ap-
proaches and so it can help compare their results without
any dependence on the details of the formalism. Thus, the
connection of odd-even staggering to phenomenological ap-
proaches, like the BCS treatment, is important and should be
well defined.

Finite-difference formulas are derived from a Taylor series
expansion of the energy as a function of the particle number
[54],

E (N ) =
∑ 1

n!

∂nE0

∂Nn

∣∣∣∣
N0

(N − N0)n + D(N ), (52)

where E0(N ) is the energy of a fully paired BCS wave function
and D(N ) is the gap defined as

D(N ) =
{

0, for even N,

�(N ), for odd N.
(53)

The energy E0(N ) corresponds to the energy in Eq. (5)
[or Eq. (44) for PBCS], where vk and uk come from solving
the BCS gap equations, namely, Eqs. (17) and (18), setting
〈N〉 equal to the even or odd particle number. Note that for
odd-particle-number systems, this energy does not necessarily
correspond to the energy in Eq. (24) [or Eq. (49) for PBCS],
where vk and uk come from solving the BCS gap equations
(22) and (23) setting 〈N〉 equal to the odd particle number.
Denoting it Eblocked, the former energy is

Eblocked = E0(N ) + �(b)(N ), (54)

where �(b) is a quantification of blocking which we refer to
as the “blocking gap.” It is not the same as the pairing gap
as, along with pure pairing correlations, it contains the polar-
ization effects that arise from the breaking of the time-reversal
symmetry by blocking momentum state b in the wave function
in Eq. (21).

The OES formulas for the gap �(N0) are linear com-
binations of values of E (N ) for N around N0, where the
contributions of E0(N ) and its first 2M − 1 derivatives van-
ish. Their construction can be found in Appendix C. Using
Eq. (C6) for different values of M we get OES formulas of
different orders. For M = 1, we get the three-point (second-
order) OES expression,

�(N0) = − (−1)N0

2
[2E (N0) − E (N0 + 1) − E (N0 − 1)],

(55)

while for M = 2 we get the five-point (fourth-order) OES
expression,

�(N0) = − (−1)N0

8
[E (N0 + 2) − 4E (N0 + 1) + 6E (N0)

− 4E (N0 − 1) + E (N0 − 2)]. (56)

These finite-difference formulas can also be understood as an
estimation of the shift between the even-N and the odd-N
curves interpolating from given points to different orders.
These are the most widely used expressions in the literature,
along with a hybrid five-point formula and a four-point for-
mula [50].

The OES treatment aims to decouple the pure pairing cor-
relations from the underlying mean-field treatment that is used
to calculate E (N ). Naturally, higher- differences result in bet-
ter decoupling. Additionally, extra mean-field contributions
could leak into a pairing gap calculated by an OES formula
when N0 is not an odd number [55].

We calculated the pairing gap in NM using the three-
point formula in Eq. (55) for densities ranging from kF a =
−5 to kF a = −10. Equation (55) was centered around odd
particle numbers to minimize the mean-field contributions.
The odd-particle-number energies E (N ) correspond to the
energies of one-quasiparticle excitation states of the even-
particle-number vacuum of energy E (N − 1) and they were
obtained using a mix of the revised perturbative scheme and
the self-consistent method as described in Sec. II. Calculations
were done with energies coming from both BCS and PBCS
treatments, with their results being in reasonable agreement
as shown in Fig. 7. It should be noted that an OES treatment
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FIG. 7. The pairing gap at kF a = −10 as a result of a mean-field
and the OES treatment.

in the context of the BCS is, by definition, ill defined since the
energy E (N ) in the BCS refers to the average energy of an en-
semble of systems with an average particle number 〈N〉 = N .
However, it is shown here for the sake of completeness.

Evidently, from Fig. 7, the pairing gap resulting from the
OES treatment is in agreement with the mean-field gap from
Eq. (11). In more detail, we see that in the region of N = 66
the OES treatment is equivalent to the mean-field one and both
of them are good approximations of the TL. This motivates
and further justifies the study of pairing in NM in systems of
N = 66 particles, a practice that has been standard in ab initio
studies of NM [2,36,37] due to the shell closure of the free
Fermi gas. This behavior is not surprising: a system with a
short-range interaction at low densities (L 
 re) is expected to
be similar to the noninteracting one, at least as far as the FSEs
are concerned. At higher densities, the validity of N = 66 as
a good approximation of the TL has been verified by ab initio
studies of NM [36,37]. A comparison of the pairing gaps
from OES at kF a = −10,−7.5, and −5 is shown in Fig. 8.
Higher-order treatments such as the one in Eqs. (56) were
also used, giving results identical to that of the three-point-
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FIG. 8. The pairing gap at kF a = −10, −7.5, and −5 as a result
of the OES treatment.

formula, indicating that a second-order approximation to the
pairing is of sufficient accuracy.

The mean-field pairing gap from the BCS theory and the
beyond-mean-field gap from the PBCS theory are expected
to agree at the TL. That is, Eqs. (11) and (55) are equivalent
as N → ∞. This is clearly shown in Fig. 7, where the BCS
gap and the PBCS gap reach the same value as the number of
particles increases. However, what is also evident in the same
figure is that this agreement is present far from the TL as well.

VII. SUMMARY AND CONCLUSIONS

In summary, we performed calculations of the pairing gap
in pure NM for a range of densities relevant to the inner crust
of NSs using a realistic interaction tuned to reproduce the scat-
tering length and effective range of the bare NN interaction.
The calculations were done in the BCS framework, where one
treats the system as a part of a grand-canonical ensemble.
We also performed a symmetry restoration to recover the lost
particle-number symmetry and get wave functions that de-
scribe the finite system more accurately. Finally, in the context
of the symmetry-restored theory (PBCS) we calculated the
pairing gap using OES prescriptions. Our work shows that,
far from the TL, the pairing gap as a result of a mean-field
treatment matches the pairing gap calculated through OES.
Moreover, OES formulas of different orders of accuracy are
in good agreement with each other, indicating that the NM
pairing correlations in the 1S0 channel can be captured by the
OES of the lowest order, namely, the three-point formula.

Our findings motivate the study of pairing in NM in sys-
tems of N = 66 particles [34], where the two approaches
agree with each other and provide a good approximation of
the TL (see Fig. 7). Given the large scattering length of NM
(a ≈ −18.5 fm), one can extend these results to cold Fermi
atoms via the unitarity regime, to the extent that the finite ef-
fective range of NM can be neglected. Quantum Monte Carlo
techniques can be used to carry out studies for both NM and
cold Fermi atoms with great precision [17] as well as studies
of the unitarity regime that connects them [13,35]. Given our
results, one can connect such studies to other techniques in the
literature.
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APPENDIX A: THE PARTIAL-WAVE EXPANSION OF THE
BCS GAP EQUATIONS

In this Appendix we present the S-wave expansion of func-
tions of vectors that are in the form of sums of the potential
multiplied with other functions of vectors. We use the final ex-
pressions in our S-wave expansion of the gap equations where
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the vectors are momenta on a three-dimensional k lattice [see
Eqs. (17) and (18)] or in a continuum three-dimensional k
space [see Eqs. (26) and (27)]. The momenta in the following
derivation are denoted by general vectors ν in an attempt to
hint that these expressions are applicable outside BCS theory
as well.

1. Single-sum quantities

Let S(ν) be a quantity that depends on ν as

S(ν) =
∑
ν′

〈ν|V |ν′〉B(ν′), (A1)

where B(ν) is an arbitrary function of ν. We can separate the
dependencies of the quantity S from different channels of the
potential and eventually express it as

S(ν) =
∑

l

Sl (ν). (A2)

To this end we separate the potential’s radial and angular
dependence on the momenta,

〈ν|V |ν′〉 = 4π

L3

∞∑
l=0

(2l + 1)Vl (ν, ν
′)Pl (ν̂ · ν̂ ′), (A3)

where

Vl (ν, ν
′) =

∫
drr2 jl (kνr)V (r) jl (kν ′r), (A4)

Pl are the Legendre polynomials, and jl the spherical Bessel
functions. Using this, the quantity S becomes

S(ν) =
∑
ν′

4π

L3

∞∑
l=0

(2l + 1)Vl (ν, ν
′)Pl (ν̂ · ν̂ ′)B(ν′)

=
∞∑

l=0

4π

L3

∑
ν′

[(2l + 1)Vl (ν, ν
′)Pl (ν̂ · ν̂ ′)]B(ν′)

=
∑

l

Sl (ν), (A5)

where

Sl (ν) = 4π

L3

∑
ν′

[(2l + 1)Vl (ν, ν
′)Pl (ν̂ · ν̂ ′)]B(ν′),

and therefore,

S0(ν) = 4π

L3

∑
ν′

[V0(ν, ν ′)P0(ν̂ · ν̂ ′)]B(ν′)

= 4π

L3

∑
ν′

V0(ν, ν ′)B(ν′). (A6)

Having separated S into different channels we can also
separate the radial and angular dependencies of S. To do so
we can use the expansion of the Legendre polynomials in
spherical harmonics:

Pl (ν̂ · ν̂ ′) = 4π

2l + 1

l∑
m=−l

Ylm(ν̂)Y ∗
lm(ν̂ ′). (A7)

With this, S becomes

S(ν) =
∑
lm

4π

L3

∑
ν′

[4πVl (ν, ν
′)Ylm(ν̂)Y ∗

lm(ν̂ ′)]B(ν′)

=
∑
lm

√
4π

2l + 1
Ylm(ν̂)

×
[

4π

L3

∑
ν′

(2l + 1)

√
4π

2l + 1
Y ∗

lm(ν̂ ′)Vl (ν, ν
′)B(ν′)

]
.

(A8)

Expanding S in a Laplace series,

S(ν) =
∑
lm

√
4π

2l + 1
Ylm(ν̂)Slm(ν), (A9)

and using the orthogonality of the spherical harmonics, we can
identify Slm as

Slm(ν) = 4π

L3

∑
ν′

(2l + 1)

√
4π

2l + 1
Y ∗

lm(ν̂ ′)Vl (ν, ν
′)B(ν′),

(A10)

and therefore

S00(ν) = 4π

L3

∑
ν′

√
4πY ∗

00(ν̂ ′)V0(ν, ν ′)B(ν′)

= 4π

L3

∑
ν′

V0(ν, ν ′)B(ν′). (A11)

At this point we can also identify the ways in which S depends
on different moments of B. To do so we have to expand B in
its own Laplace series,

B(ν′) =
∑
l ′m′

√
4π

2l ′ + 1
Yl ′m′ (ν̂ ′)Bl ′m′ (ν ′). (A12)

If we substitute this in the expression for S we get

S(ν) =
∑
ν′

4π

L3

∞∑
l=0

(2l + 1)Vl (ν, ν
′)

4π

2l + 1

l∑
m=−l

Ylm(ν̂)

× Y ∗
lm(ν̂ ′)

∑
l ′m′

√
4π

2l ′ + 1
Bl ′m′ (ν ′)Yl ′m′ (ν̂ ′)

=
∑
lm

√
4π

2l + 1
Ylm(ν̂)

[
4π

L3

∑
ν′

∑
l ′m′

4π

√
2l + 1

2l ′ + 1

× Y ∗
lm(ν̂ ′)Yl ′m′ (ν̂ ′)Vl (ν, ν

′)Bl ′m′ (ν ′)
]
. (A13)

Again, using the orthogonality of the spherical harmonics we
can identify Slm as

Slm(ν) = 4π

L3

∑
ν′

∑
l ′m′

4π

√
2l + 1

2l ′ + 1

× Y ∗
lm(ν̂ ′)Yl ′m′ (ν̂ ′)Vl (ν, ν

′)Bl ′m′ (ν ′). (A14)
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Therefore

S00 =4π

L3

∑
ν′

∑
l ′m′

4π

√
1

2l ′ + 1

× Y ∗
00(ν̂ ′)Yl ′m′ (ν̂ ′)V0(ν, ν ′)Bl ′m′ (ν ′)

=4π

L3

{∑
ν ′

V0(ν, ν ′)B00(ν ′)

+
∑
ν′

∑
l ′m′

′
√

4π

2l ′ + 1
Yl ′m′ (ν̂ ′)V0(ν, ν ′)Bl ′m′ (ν ′)

}
,

(A15)

where

∑
l ′m′

′ =
∞∑

l ′=1

l ′∑
m′=−l ′

.

Finally, keeping only the B00 term,

S00 =4π

L3

∑
ν ′

V0(ν, ν ′)B00(ν ′). (A16)

2. Double-sum quantities

Let Q(ν) be a quantity that depends on ν as

Q(ν) =
∑
ν′,ν′′

〈ν′|V |ν′′〉B(ν′, ν′′, ν), (A17)

where B(ν′, ν′′, ν) is an arbitrary function of ν′, ν′′, ν. Carrying
out a derivation similar to the one presented for the single-sum
quantities we have to separate the radial and angular depen-
dencies of the potential:

〈ν′|V |ν′′〉 = 4π

L3

∞∑
l=0

(2l + 1)Vl (ν
′, ν ′′)Pl (ν̂

′ · ν̂ ′′). (A18)

Plugging this in we get

Q(ν) =
∞∑

l=0

4π

L3

∑
ν′,ν′′

[(2l + 1)Vl (ν
′, ν ′′)

× Pl (ν̂
′ · ν̂ ′′)]B(ν′, ν′′, ν)

=
∑

l

Ql (ν), (A19)

where

Ql (ν) = 4π

L3

∑
ν′,ν′′

[(2l + 1)Vl (ν
′, ν ′′)Pl (ν̂

′ · ν̂ ′′)]

× B(ν′, ν′′, ν), (A20)

and therefore

Q0(ν) = 4π

L3

∑
ν′,ν′′

[V0(ν ′, ν ′′)P0(ν̂ ′ · ν̂ ′′)]B(ν′, ν′′, ν)

= 4π

L3

∑
ν′,ν′′

V0(ν ′, ν ′′)B(ν′, ν′′, ν). (A21)

Following similar steps as before, we can separate the
radial and angular ν dependences of B by expanding it in a
Laplace series,

B(ν′, ν′′, ν) =
∑
lm

√
4π

2l + 1
Ylm(ν̂)Blm(ν′, ν′′, ν), (A22)

using that in the expression for Q and using the expansion of
the Legendre polynomials, namely, Eq. (A7), we get

Q(ν) =
∑
lm

√
4π

2l + 1
Ylm(ν̂)

{
4π

L3

∑
ν′,ν′′

∑
l ′m′

V ′
l (ν ′, ν ′′)

× Yl ′m′ (ν̂ ′)Y ∗
l ′m′ (ν̂ ′′)Blm(ν′, ν′′, ν)

}
. (A23)

Expanding Q in its own Laplace series and using the or-
thogonality of the spherical harmonics we identify Qlm as

Qlm(ν) = 4π

L3

∑
ν′,ν′′

∑
l ′m′

V ′
l (ν ′, ν ′′)

× Yl ′m′ (ν̂ ′)Y ∗
l ′m′ (ν̂ ′′)Blm(ν′, ν′′, ν)

= 4π

L3

∑
ν′,ν′′

[
V0(ν ′, ν ′′) +

∑
l ′m′

′
V ′

l (ν ′, ν ′′)

× Yl ′m′ (ν̂ ′)Y ∗
l ′m′ (ν̂ ′′)

]
Blm(ν′, ν′′, ν), (A24)

therefore

Q00(ν) = 4π

L3

∑
ν′,ν′′

V0(ν ′, ν ′′)B00(ν′, ν′′, ν). (A25)

APPENDIX B: THE RESIDUUM INTEGRALS

For convenience, in this section we adopt the following
notation:

p̂k = ĉk↑ĉ−k↓,

p̂+
k = ĉ+

−k↓ĉ+
k↑. (B1)

It can be shown that

[p̂†
kĉlσ ] = ĉ+

k↑δl,−kδσ↓ − ĉ+
−k↓δl,kδσ↑, (B2)

[p̂kĉ+
lσ ] = ĉ−k↓δl,kδσ↑ − ĉk↑δl,−kδσ↓, (B3)

[p̂†
kĉ+

lσ ] = [p̂kĉlσ ] = 0, (B4)

[ p̂†
k p̂l] = (n̂k↑ + n̂k↓ − 1)δl,k, (B5)

[ p̂k p̂l] = [ p̂†
k p̂†

l ] = 0. (B6)

Starting with the normalization of the even-particle-number
wave function in the PBCS,

〈ψN |ψN 〉 = 1

|C|2
∫

dφ1

2π

∫
dφ2

2π
e−i N

2 (φ2−φ1 )

× 〈0|
∏

l

(ul + vle
−iφ1 p̂l)
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×
∏

k

(uk + vkeiφ2 p̂†
k )|0〉

= 1

|C|2
∫

dφ1

2π

∫
dφ2

2π
e−i N

2 (φ2−φ1 )

×
∏

k

(
u2

k + v2
kei(φ2−φ1 )

)
, (B7)

since

〈0| p̂k|0〉 = 〈0|p̂†
k|0〉 = 0,

〈0|p̂k p̂†
k|0〉 = 1.

We perform the change of variables,{
ϕ = φ2 − φ1,

ψ = φ2 + φ1,
(B8)

which translates to a rotation of the initial integration domain
and a scaling-up by a factor of 2. With the new variables the
integral becomes

〈ψN |ψN 〉

= 1

2|C|2
[ ∫ 0

−2π

dϕ

2π

∫ 4π+ϕ

−ϕ

dψ

2π
e−i N

2 ϕ
∏

k

(
u2

k + v2
keiϕ

)

+
∫ 2π

0

dϕ

2π

∫ 4π−ϕ

ϕ

dψ

2π
e−i N

2 ϕ
∏

k

(
u2

k + v2
keiϕ

)]

= 1

4π2|C|2
[ ∫ 2π

0
dωωe−i N

2 (ω−2π )
∏

k

(
u2

k + v2
kei(ω−2π )

)

+
∫ 2π

0
dϕ(2π − ϕ)e−i N

2 ϕ
∏

k

(
u2

k + v2
keiϕ

)]
, (B9)

where we have performed the following additional change of
variables in the first integral:

ω ≡ 2π + ϕ. (B10)

At this point we observe that only terms even in N will show
up in the expansion of Eq. (43). This means that N/2 in the
exponents above is an integer. This is a consequence of the
fact that the product in Eq. (1) essentially adds pairs of k states
with a probability amplitude of vk, and consequently, this state
can only describe systems with an even number of particles.
Using the fact that N/2 ∈ Z to simplify the first integral and
renaming the dummy variable of the first integral from ω back
to ϕ, we get

〈ψN |ψN 〉

= 1

4π2|C|2
[ ∫ 0

−2π

dϕϕe−i N
2 ϕ

∏
k

(
u2

k + v2
keiϕ

)

+
∫ 2π

0
dϕ(2π − ϕ)e−i N

2 ϕ
∏

k

(
u2

k + v2
keiϕ

)]

= 1

|C|2
∫ 2π

0

dϕ

2π
e−i N

2 ϕ
∏

k

(
u2

k + v2
keiϕ

)
. (B11)

Finally, demanding that |ψN 〉 be normalized we find

1 = 1

|C|2
∫ 2π

0

dϕ

2π
e−i N

2 ϕ
∏

k

(
u2

k + v2
keiϕ

)
(B12)

⇔ |C|2 =
∫ 2π

0

dϕ

2π
e−i N

2 ϕ
∏

k

(
u2

k + v2
keiϕ

) ≡ R0
0, (B13)

where we have identified the last expression as one of the
residuum integrals defined as

Rm
n (k1k2 . . . km)

≡ 1

2π i

∮
dzz−( N

2 −n)−1
∏

k �=k1,k2,...,km

(
u2

k + zv2
k

)

=
∫ 2π

0

dφ

2π
e−i( N

2 −n)φ
∏

k �=k1,k2,...,km

(
u2

k + eiφv2
k

)
. (B14)

These show up in many expectation values in the PBCS theory
and they can be shown to be related to the ways in which one
can arrange pairs on momentum states k.

APPENDIX C: THE ODD-EVEN STAGGERING FORMULAS

The OES formulas for the gap �(N0) are derived by taking
a linear combination of values of E (N ) for N around N0,

BM =
M∑

n=−M

αnE (N0 + n), (C1)

and requiring that the contributions of E0(N ) and its first
2M − 1 derivatives in B vanish and that the gap D(N ) varies
only slowly with N . The quantity E0(N ) is the energy of a
fully paired BCS wave function and D(N ) is the gap defined
in Eq. (53). The relation of E0(N ) and D(N ) to E (N ) can be
found in Eq. (52). Using Eq. (52) in Eq. (C1) we get

BM =
M∑

n=−M

αn

[ ∞∑
m=0

1

m!
E (m)

0 (N0)nm + D(N0 + n)

]
(C2)

=
∞∑

m=0

E (m)
0 (N0)

m!

M∑
n=−M

αnnm

+
M∑

n=−M

αnD(N0 + n)

=
∞∑

m=0

E (m)
0 (N0)

m!

M∑
n=−M

αnnm

+�(N0)
M∑

n=−M

αn
1 − (−1)N0+n

2
, (C3)

where in the last step we have incorporated Eq. (53) and
assumed that �(N ) varies slowly to pull �(N0) out of the
sum. As described above, demanding that the contributions
of E0(N0) and its derivatives vanish in BM we get

M∑
n=−M

αnnm = 0 , m = 0, 1, . . . , 2M − 1, (C4)
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and
M∑

n=−M

αn
1 − (−1)N0+n

2
= 1. (C5)

Concerning the range of m in Eq. (C4), for a finite M we
have 2M + 1 coefficients an to determine. This means that
for a given finite M, we can demand the cancellation of the
contributions from E0(N0) and its first 2M − 1 derivatives [the
(2M + 1)th relation comes from Eq. (C5)]. Finally, for m = 0
Eq. (C4) is to be understood as the direct sum of the coeffi-

cients αn. Solving Eqs. (C4) and (C5) one can construct an
OES formula observing that, using the αn coefficients found,
the quantity BM simplifies to �(N0):

BM =
M∑

n=−M

αnE (N0 + n) = �(N0). (C6)

For different values of M, Eq. (C6) yields OES formulas of
different orders.
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