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Isospin-density-dependent pairing from infinite nuclear matter to finite nuclei

Xu Meng, Shisheng Zhang ,* and Lin Guo
School of Physics, Beihang University, Beijing 100191, China

Lisheng Geng†

School of Physics, Beihang University, Beijing 100191, China;
Beijing Key Laboratory of Advanced Nuclear Materials and Physics, Beihang University, Beijing 100191, China;

School of Medicine and Engineering, Beihang University, Beijing, 100191, China;
and School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, Henan 450001, China

Ligang Cao ‡

College of Science and Technology, Beijing Normal University, Beijing 100875, China

(Received 24 June 2020; revised 28 November 2020; accepted 7 December 2020; published 24 December 2020)

The effective isospin-density-dependent pairing interaction (P1) [S. S. Zhang, U. Lombardo, and E. G. Zhao,
Sci. Chin. Phys. Mech. Astron. 54, 236 (2011)] extracted from neutron pairing gaps for 1S0 in asymmetric
nuclear matter calculations [S. S. Zhang, L. G. Cao, U. Lombardo, E. G. Zhao, and S. G. Zhou, Phys. Rev. C
81, 044313 (2010)] is employed to study the bulk properties of Ca, Ni, Zr, and Sn isotopes. The odd-even mass
(OEM) staggering is calculated by the Skyrme Hartree-Fock plus BCS method (SHF+BCS) with the SkP force.
For comparison, we study two other types of isovector effective pairing interactions. One is also extracted from
pairing gaps of infinite nuclear matter by the Brueckner-Hartree-Fock (BHF) method but for free spectrum (P2).
The other is obtained by fitting the empirical OEM (P3). An isoscalar effective pairing interaction (P4) is also
adopted, which is determined by fitting the empirical OEM. We find that interaction P1 can better describe the
OEM staggering of Ni, Zr, and Sn isotopes by 14.3%, 41%, and 30.4% compared with interaction P2, in terms
of root-mean-square deviations to the empirical OEM, respectively. On the other hand, the performance of P1
and P2 is comparable for Ca isotopes. For Ca and Ni isotopes, P1 behaves similarly to P3, but for Zr isotopes
P1 is better than P3 by ≈34%. One may conclude that the isovector pairings are preferred over the isoscalar one
for neutron pairings in finite nuclei with the SkP force. It is quite interesting to note that the pairing interaction
P1 extracted from nuclear matter calculations can describe pairing gaps of finite nuclei as well as or even better
than the interaction P3 directly fitted to finite nuclei. To study the influence from the mean fields on the OEM,
we perform the same analysis using the SLy4 and SkI4 forces as well. It turns out that pairing gaps described by
these two forces with four pairing interactions are underestimated, so that P2 seems to be better than P1 and is
comparable with P3.

DOI: 10.1103/PhysRevC.102.064322

I. INTRODUCTION

Pairing correlations play an important role in describing
many observables and processes in nuclear physics, for in-
stance, the odd-even mass (OEM) staggering for finite nuclei
[1,2], the superfluidity and cooling of neutron stars [3,4],
r-process nucleosynthesis [5], etc.

Tremendous efforts have been made to extract pairing in-
teractions from different observables. One way is to fit the
OEM staggering of finite nuclei via the empirical three-point
or five-point pairing gap formulas with the experimental bind-
ing energies as inputs [6,7]. But pairing gaps can be different
for three-point and five-point formulas, and sometimes can-
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not reproduce small pairing for nuclei with (double) magic
numbers or truly reflect the experimental OEM difference
since energy density functionals for odd-A systems are not
as good as those for even-even systems [8]. Recently, there
is a proposal that nucleonic pairing can be extracted from
nuclear density functional theory for pairing rotational bands
in even-even nuclei with the quasi-particle random-phase ap-
proximation (QRPA) method [8]. A separable force of finite
range is widely used to describe pairing correlations in normal
nuclei [9] and has recently been applied to provide effective
pairing interactions for hyperons [10]. Another alternative is
to extract pairing interactions from asymmetric nuclear matter
(ANM) calculations with the microscopic Brueckner-Hartree-
Fock (BHF) method [1,2,11–15] and adopt the local density
approximation to obtain the isospin-density-dependent pa-
rameters for finite nuclei. In the last decade, Margueron,
Sagawa, and Hagino introduced zero-range isospin-density-
dependent effective pairing interactions [11,16] by fitting to
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the corresponding pairing gaps of symmetric nuclear matter
(SNM) and pure neutron matter (PNM) obtained by the BHF
method with and without medium polarization effect [17]. But
those pairing gaps presented in Ref. [16] are extracted from
free spectrum instead of the mean field spectrum, as clarified
in our previous paper [1]. In that paper, we proposed a new
effective pairing interaction [1] from the mean field spectrum
based on self-consistent calculations, denoted by P1 in the
following.

In this paper, we aim at applying the new pairing inter-
action P1 to describe finite nuclei and to see whether one
can provide a universal description of pairing correlations
in nuclear matter and finite nuclei. For comparison, we also
study three other pairing interactions. We label the pairing in-
teraction of Ref. [11] as P2, which is obtained in the same way
as P1 but fitted to pairing gaps of free spectrum instead of the
mean field. We also consider a second isovector pairing inter-
action, referred to as P3, which is extracted from fitting to the
experimental OEM using the empirical three-point formula
[6]. In addition to the above two isovector types of pairing
interactions, we also study an isoscalar pairing interaction,
denoted as P4, to check the impact of isospin dependence.

For the mean field part, we use the EV8 code [18,19] with
the SkP, SLy4, and SkI4 forces. The particle-particle channel
is described by the BCS approximation with the four differ-
ent pairing interactions detailed above. Experimental binding
energies are taken from AME2016 [20].

The paper is organized as follows. In Sec. II, we give a brief
introduction of the Skyrme Hartree-Fock plus BCS method
(SHF+BCS) and describe the isospin-density-dependent and
isoscalar pairing interactions. Numerical details are also pre-
sented in this section. Then, we take Ca, Ni, Zr, and Sn
isotopes as examples to compare the results of the four ef-
fective pairing interactions for the SkP force in Sec. III.
Moreover, we adopt the SLy4 and SkI4 forces to study the im-
pacts from the mean field. Finally, we make a brief summary
in Sec. IV.

II. THEORETICAL FRAMEWORK

In this section, we briefly review the SHF+BCS method,
describe the isospin-density-dependent pairing interactions,
and spell out some numerical details.

A. Skyrme force

The Skyrme force is widely used in Hartree-Fock calcula-
tions. Its energy density functional contains the same terms as
that in Ref. [21]. We adopt the SkP force [22] in our present
study, which is obtained by paying particular attention to pair-
ing properties and accurate description of binding energies.
The SLy4 force [21], and SkI4 force [23] are also used for
comparison.

B. Isospin-density-dependent pairing interactions

As a linear interpolation of the particle-particle interac-
tion between symmetric nuclear matter and pure neutron
matter, isospin-density-dependent zero-range effective inter-
actions are derived in Refs. [11,16], for neutrons and protons,

respectively,

gn(ρ, β ) = 1 − ηs(ρ/ρ0)αs (1 − β ) − ηn(ρ/ρ0)αnβ,

gp(ρ, β ) = 1 − ηs(ρ/ρ0)αs (1 + β ) + ηn(ρ/ρ0)αnβ,
(1)

where the four parameters ηs, ηn, αs, and αn are adjusted
to reproduce the values of the pairing gaps in infinite nu-
clear matter. The saturation density ρ0 of the SNM is ρ0 =
0.16 fm−3 and asymmetric parameter β = (ρn − ρp)/(ρn +
ρp), in which N (Z) is the neutron (proton) number, A =
N + Z is mass number and ρn (ρp) refers to neutron (proton)
density.

The isoscalar pairing interaction reads

g(ρ, β = 0) = 1 − ηs(ρ/ρ0)αs , (2)

where ηs = 1 and αs = 1.
In the BCS approximation [24], the pairing matrix element

reads

v̄
pair
q,kk̄mm̄

= −Vq

∫
d3r gq(ρ, β )�†

k (r)�†
k̄
(r)�m(r)�m̄(r),

(3)

where q stands for n or p, Vq = V0 is the pairing strength
determined by the scattering length, which reproduces the
phase shift in the low energy region for a given cutoff energy,
g(ρ, β ) from Eq. (1) or (2) is the form factor of the isovector
or isoscalar pairing interaction, and �k (r) is the wave function
of the kth HF single-particle (s.p.) level [25].

C. Pairing energy, binding energy, and pairing gap in the
SHF+BCS method

In the SHF+BCS method, the binding energy B of a nu-
cleus can be written as a sum of five parts [19]:

B = −Ekin − ESk − ECoul − Epair − Ecorr, (4)

where Ekin is the kinetic energy, ESk is the Skyrme energy,
ECoul is the Coulomb energy, Epair is the pairing energy, and
Ecorr is the center-of-mass correction energy. Epair is the main
contribution of the pairing interaction to the binding energy.
Other parts of the binding energy, such as ESk, are functions of
the density ρ, and the density ρ is a function of the occupation
probability v2

k of single-particle levels. Therefore, the bind-
ing energy will also be influenced by the pairing interaction
through v2

k .
In particular, the pairing energy Epair can be written in the

canonical basis as

Epair =
∑

k,m>0

fkukvk fmumvmv̄
pair
kk̄mm̄

, (5)

in which u2
k + v2

k = 1, v̄pair
kk̄mm̄

is the pairing matrix element, and

fk = [
1 + e(εk−λq−EC )/μq

]−1/2[
1 + e(λq−εk−EC )/μq

]−1/2
(6)

is the cutoff factor, where εk is the energy of the kth s.p.
level, λ is the Fermi energy, EC is the truncation energy of
the pairing interaction, and μq is fixed to be 0.5 MeV [25].

The set of equations that determine the occupation proba-
bility of single-particle states v2

k are derived from the variation
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TABLE I. Parameters of the pairing interactions studied in the
present work, in which P1, P2, and P3 are of isovector type, and
P4 is of isoscalar type. EC is the truncated energy, V0 is the pairing
strength, and ηs, αs, ηn, and αn are the parameters of Eq. (1).

Parameters P1 P2 P3 P4

EC (MeV) 40 40 5 5
V0 (MeV fm3) 542 542 824 1400
ηs 0.729 0.664 0.677 1
αs 0.522 0.522 0.365 1
ηn 1.010 1.010 0.931
αn 0.525 0.525 0.378

of

δ

δv j

(
2

∑
k>0

εkv
2
k − λq〈N̂q〉 + Epair

)
= 0, (7)

where λq is the Lagrange multiplier, which is introduced to
obtain the required mean number of protons and neutrons.

The probability of the s.p. state |k〉 and its time-reversal s.p.
state |k̄〉 being occupied by one pair of neutrons or protons can
be expressed as

v2
k =

[
1 − (εk − λq)

/√
(εk − λq)2 + f 2

k 
2
kk̄

]/
2, (8)

in which


kk̄ = −
∑
m>0

fmumvmv̄
pair
kk̄mm̄

(9)

is the pairing gap of the kth single-particle level.
For odd-A nuclei, we use the blocking method of Ref. [26].

When a pair of s.p states |k〉 or |k̄〉 is chosen to be occupied or
blocked, the occupied or unoccupied probability in the BCS
state is fixed to be u2

k = v2
k = 1/2, and the pairing gap of that

s.p. level is fixed to be 
k = 0 MeV.

D. Numerical details

The EV8 code solves the HF+BCS equations to obtain
binding energies iteratively with the imaginary time step
method [27]. For even-even and odd-A nuclei, we use the
empirical three-point formula to extract the OEM staggering
of isotopes:


(3)
n (N, Z )= − πN

2
[B(N + 1, Z )−2B(N, Z ) + B(N − 1, Z )],

(10)
where B(N, Z ) is the binding energy of a nucleus, and πN is
the parity of the isotope with neutron number N .

We adopt three isospin-density-dependent pairing inter-
actions, P1 [1], P2 [11,16], and P3 [6], with the isoscalar
interaction P4 [6] for comparison, and list the parameters in
Table I. One can see that P1 and P2 have the same cutoff en-
ergy EC = 40 MeV, which gives the best agreement between
the microscopic and contact interactions in the high Fermi mo-
mentum region kFn > 1 fm−1. P3 and P4 have a smaller cutoff
energy EC = 5 MeV, which is the maximum energy window
around the Fermi energy allowed by the old version of EV8
(2005) in Ref. [18]. In our calculations, we use the updated
version of EV8 (2015) in Ref. [19], in which the cutoff energy

EC is taken to be 5 MeV for P3 and P4 and 40 MeV for P1 and
P2. As we know, effective pairing interactions are sensitive
to the values of the energy (or momentum) cutoff (see, e.g.,
Fig. 4(a) of Ref. [2] for PNM). Therefore, the parameters are
quite different for P2 and P3, especially the potential strength
V0. This will be further analyzed in the following section.

Before large-scale calculations, we check the convergence
of OEM staggering with respect to the number of neutron
wave functions, i.e., “nwaven” in the EV8 code. It turns out
that 
n converges within the absolute accuracy 0.03 MeV as
N = 100. In most calculations, the absolute accuracy of 10−4

MeV can be achieved for binding energies. Since the binding
energies are at the order of 1000 MeV, the relative accuracy
is better than 10−7. However, for some odd-A nuclei, it is
difficult to achieve such an accuracy. Therefore, the criterion
of convergence is fixed to be 10−2 MeV, which corresponds to
a relative accuracy 10−5.

III. RESULTS AND DISCUSSIONS

We calculate the binding energies of even-even and odd-A
Ca, Ni, Zr, and Sn isotopes with the SkP force, then derive
the OEM staggering via the three-point formula of Eq. (10).
It is known that pairing gaps obtained from the OEM stag-
gering are not reliable for isotopes with magic or semimagic
number N = 20, 28, 40, 50, and 82, such as 40Ca, 48Ca, 56Ni,
78Ni, 90Zr, 100Sn, and 132Sn. Therefore, we ignore the neutron
pairing gaps 
n for these nuclei in the later analysis.

In Fig. 1, we show the OEM staggering as a function of
mass number A for Ca, Ni, Zr, and Sn isotopes with the SkP
force. The solid red (dark blue) lines with triangles (squares)
refer to the neutron pairing gaps obtained with the isovec-
tor pairing interaction P1 (P2), which is extracted from the
BHF+BCS calculations for SNM and PNM with the mean
field (free) spectrum. The solid green lines with diamonds cor-
respond to the predictions of the isovector pairing interaction
P3, which is obtained by fitting to the experimental OEM stag-
gering. While the solid light blue lines with stars denote the
results obtained with the isoscalar pairing interaction P4. The
black solid circles with error bars labeled by Exp. represent
the experimental data. Generally speaking, the neutron pairing
gaps 
(3)

n obtained with the isovector pairing interactions P1,
P2, and P3 are much closer to the experimental data than
those from the isoscalar pairing interaction P4. Therefore,
the isospin dependence of the pairing interaction seems to be
crucial to reproduce the experimental OEM staggering.

To quantitatively evaluate the deviations of the theoretical
predictions from the experimental OEM staggering, we calcu-
late the root mean square error (RMSE) of the neutron pairing
gaps for all the isovector pairing interactions, except for magic
or semimagic nuclei as mentioned above. The RMSE is de-
fined by

σ =

√√√√√ N∑
i=1

(
i,cal − 
i,exp)2

N
, i = 1, 2, . . . , N, (11)

where 
i,cal and 
i,exp are the calculated and the experimental
OEM staggering of an isotope labeled by i, and N is the
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FIG. 1. Odd-even mass staggering as a function of mass number A for Ca, Ni, Zr, and Sn isotopes with the SkP force. P1 (solid red lines
with triangles), P2 (solid dark blue lines with squares), and P3 (solid green lines with diamonds) are isovector pairing interactions and P4 (solid
light blue lines with stars) is an isoscalar one. The black solid circles with error bars correspond to experimental data.

number of isotopes considered. We list the RMSEs in Table II
for a better understanding of the predictions of different pair-
ing interactions in comparison with the experimental data. As
mentioned above, the neutron pairing gaps for magic nuclei
40Ca, 48Ca, 56Ni, 78Ni, 90Zr, 100Sn, and 132Sn are omitted in
calculating the RMSEs.

For Ni and Zr isotopes, P1 turns out to be the best among
the isovector pairing interactions for the SkP force. The RM-
SEs of the OEM staggering for Ni, Zr, and Sn isotopes are
reduced by 14.3%, 41.0%, and 30.4% respectively, compared
with those of P2, which is also extracted from infinite nuclear
matter with the BHF method but for free spectrum, instead of
the mean field spectrum. Moreover, the predictions of P1 for
Ca isotopes are almost the same as those of P2, and are better
than those of P3 by ≈5%. One should note that P3 is obtained
by fitting to the experimental OEM staggering. In addition,

TABLE II. RMSE of the OEM staggering of Ca, Ni, Zr, and Sn
isotopes in units of MeV and the relative errors for the SkP force.
The OEM staggering for magic nuclei 40Ca, 48Ca, 56Ni, 78Ni, 90Zr,
100Sn, and 132Sn are neglected in the calculation of RMSE.

P1 P2
P2 − P1

P2
P3

P3 − P1

P3
P4

P4 − P1

P4

Ca 0.35 0.33 −6.1% 0.37 5.4% 1.17 70.1%
Ni 0.30 0.35 14.3% 0.30 0.0% 0.94 68.1%
Zr 0.23 0.39 41.0% 0.35 34.3% 1.00 77.0%
Sn 0.16 0.23 30.4% 0.12 −33.3% 0.89 82.0%

for Zr isotopes P1 can reduce the RMSEs of OEM staggering
by ≈34.3% compared with P3. For Sn isotopes, P1 can also
give a better description of OEM staggering than P2 by 30%,
but not as good as P3. The results seem to be consistent with
the conclusion of Ref. [6] that P3 is particularly good for Sn
isotopes together with the SkP force.

To show the predictive power of the pairing interactions,
we extend our calculations to neutron-rich nuclei 58Ca, 80Ni,
112Zr, 140Sn, which are plotted in Fig. 1 as well. We have also
calculated the OEM scattering of Ca, Ni, Zr, and Sn isotopes
with the SLy4 force [21], and found that it does not predict
the pairing gaps as well as the SkP force. Generally speaking,
it underestimates the pairing gaps compared with measured
data and doubles the RMSEs compared to the SkP force for
the three isovector pairing interactions. In Table III we list the
same RMSEs of the OEM scattering as Table II, but for the
SLy4 force. It can be clearly seen that in the SLy4 mean field
the OEM scattering results for the P1 interaction are worse
than those for the P2 and P3 interactions, mainly because of

TABLE III. Same as Table II, but for the SLy4 force.

P1 P2
P2 − P1

P2
P3

P3 − P1

P3
P4

P4 − P1

P4

Ca 0.63 0.51 −23.5% 0.60 −5.0% 0.65 3.1%
Ni 0.83 0.70 −18.6% 0.70 −18.6% 0.63 −31.7%
Zr 0.59 0.46 −28.3% 0.47 −25.5% 0.74 20.3%
Sn 0.56 0.35 −60.0% 0.33 −69.7% 0.46 −21.7%
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TABLE IV. Same as Table II, but for the SkI4 force.

P1 P2
P2 − P1

P2
P3

P3 − P1

P3
P4

P4 − P1

P4

Ca 0.78 0.65 −20.0% 0.72 −8.3% 0.70 −11.4%
Ni 0.99 0.89 −11.2% 0.90 −10.0% 0.54 −83.3%
Zr 0.70 0.54 −29.6% 0.58 −20.7% 0.55 −27.3%
Sn 0.72 0.55 −30.9% 0.50 −44.0% 0.37 −94.6%

the underestimation of the pairing gaps in comparison with
experimental data. Similar results have been obtained for the
SkI4 force [23] and our results are listed in Table IV. These
results justify the use of the SkP force in the SHF+BCS model
to check the validity of pairing interactions, which confirm
the claim of Ref. [22] that the SkP force can give better de-
scriptions of pairing gaps. Note that Skyrme force parameters
were not fitted together with the BCS pairing interactions in a
global way, so no optimal results should be expected.

IV. SUMMARY

We studied the OEM staggering of Ca, Ni, Zr, and Sn
isotopes with the effective pairing interaction P1, together
with three other types of pairing interactions for comparison,
using the SHF+BCS method with the SkP force. We showed
that P1 is suitable for the description of OEM staggering
in these isotopes, especially that it is much better than the
other pairing interactions for Ni and Zr isotopes. For example,
the pairing gaps for Zr isotopes are 41% (34%) better than
those obtained with P2 (P3). Our predictions for Ca isotopes
are comparable with those of P2 and P3, which is reason-
able since the parameters of P3 are obtained by fitting to
the experimental OEM staggering [6]. For Sn isotopes, the

predictions of P1 are almost ≈30% better than those of P2,
and are comparable with the results of P3. It is quite in-
teresting to find that, although the isospin-density-dependent
pairing interaction P1 is extracted from the bare interaction
for nuclear matter within the framework of the BHF method, it
can give reasonable description of the OEM staggering for Ni,
Zr, and Sn isotopes (better than the results obtained with P2).
The conclusions will be changed if one chooses other mean
fields, such as SLy4 or SkI4. With SkP, P1 is preferred over the
others. This is understandable because pairing interactions are
closely related to mean fields. Comparing the results shown in
Tables III and IV, it is clear that the SkP force together with
the BCS treatment of pairing correlations can yield an optimal
description of the quantities studied in the present work.

It is interesting to see that, without any tunable parameters,
P1 can give pretty good description of the OEM staggering
for the SkP force compared with measured data. For some iso-
topes, e.g., Ca and Zr isotopes (or Ni isotopes), the predictions
are even better (or comparable) than those of P3, extracted
by fitting to the experimental pairing gaps. From this point
of view, it is reasonable to say that neutron pairing gaps of
infinite nuclear matter can be a good constraint of the neutron
pairing interaction in finite nuclei. In the future, our ansatz
could also be tested for proton pairing gaps.
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