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E1 moments from a coherent set of measured photoneutron cross sections
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Recently, the E1 photoneutron cross sections were measured consistently using quasimonochromatic laser
Compton-scattering γ -ray beams at NewSUBARU (Japan) for a set of ten odd-even nuclei, spherical as well
as deformed, covering relatively widely light to heavy species and at energies ranging between the neutron
threshold and 40 MeV. This consistent set of experimental photoneutron cross sections allow us to estimate the
total E1 photoabsorption cross sections, through validated theoretical models, by excluding the quasideuteron
component and by including the missing low-energy and charged-particle emission contributions. In turn, the
total E1 photoabsorption cross sections are used to derive the three main moments of the E1 distributions,
namely the integrated cross section, the centroid energy, and the polarizability. These so-called model-dependent
experimental moments follow a rather smooth trend with atomic mass, as theoretically expected, except for the
specific case of 209Bi which presents a surprising 10% increase of both the integrated strength and the polarizabil-
ity with respect to its even-even spherical neighbor 208Pb. A rather consistent value for the enhancement factor
of the E1 energy-weighted sum rule could be extracted from the present experimental data. The experimentally
derived moments are compared for the ten odd-even systems with calculations based on the mean-field plus
quasiparticle random phase approximation (QRPA). Spherical as well as axially deformed predictions based
on the Skyrme and Gogny interactions are considered to discuss the results. Special attention is also paid to
the approximate treatment of odd systems of nucleons in this context. It is found that in general theoretical
predictions can rather well describe the data for the full set of nuclei, except for 209Bi presenting a kink in
all the three main E1 moments with respect to the well-studied 208Pb case. Such an experimental determination
cannot be explained by mean-field plus QRPA calculations. New measurements of photoabsorption cross section
on 208Pb and 209Bi in the 14–19 MeV range as well as future theoretical calculations, in particular of odd-even
systems, may help to solve such a mystery. The present data are also used to reinvestigate the correlation between
the nuclear matter symmetry energy and its slope at saturation density. The analysis based on both Skyrme and
Gogny Hartree-Fock-Bogolyubov (HFB) plus QRPA calculations confirm previous results, though quantitatively
larger variations of the correlation parameters are found.

DOI: 10.1103/PhysRevC.102.064309

I. INTRODUCTION

Photoneutron cross sections play a key role in the theoret-
ical modeling of nuclear reactions and in our understanding
of many properties of both nuclei and nuclear matter. For
this reason, they are also important for a wide range of
fields such as nuclear structure, nuclear astrophysics, medical
isotope production, and fission and fusion reactor technolo-
gies. They represent a close measure of the so-called photon
strength function (PSF) describing the average response of
the nucleus to an electromagnetic probe, including both the
photoexcitation and deexcitation of the atomic nucleus by γ -
ray absorption or emission [1–3]. Reaction theory relates the
PSF to the total photoabsorption cross section that is known
to be dominated by the electric dipole (E1) radiation, at least

in the high γ -ray energy region of 10–20 MeV characterizing
the well-known giant dipole resonance (GDR).

Isovector nuclear excitations are also among the most
promising observables to extract properties of the so-called
symmetry energy and its energy dependence, which play a
critical role in nuclear physics and astrophysics [4–8]. Those
have been extensively studied from both theoretical and ex-
perimental perspectives. Since the symmetry energy cannot
be directly measured, many experiments have been designed
to extract information about this fundamental quantity from
closely related observables. Such experiments include in par-
ticular photoabsorption cross section and the resulting electric
dipole polarizability of nuclei [9–12].

Photoneutron cross sections (γ , xn) with x = 1–4 were
recently measured for ten odd-even nuclei at energies ranging
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between the neutron threshold and 40 MeV using quasi-
monochromatic laser Compton-scattering (LCS) γ -ray beams
[13–15]. A new method of direct neutron multiplicity sorting
was applied [16], which, in combination with several to tens
of MeV LCS γ -ray beams, allows complete mapping of the
photoneutron reaction cross sections within the GDR energy
range. The nuclei include 59Co, 89Y, 103Rh, 139La, 159Tb,
165Ho, 169Tm, 181Ta, 197Au, and 209Bi.

Different mean-field approaches, such as the Hartree-
Fock-Bogolyubov (HFB) plus quasiparticle random phase
approximation (QRPA), the quasiparticle-phonon model, and
some of their improved variants, have been developed and
successfully applied to the description of giant multipole
resonances in both the nonrelativistic [12,17–35] and rel-
ativistic [36–44] mean-field frameworks. When compared
with experimental data and considered for practical applica-
tions, all mean-field plus QRPA calculations need, however,
either some improvement from microscopic many-body the-
ory or some phenomenological corrections. These corrections
should include the broadening of the QRPA strength to
take into account the damping of collective motion, as well
as a shift of the strength to lower energies; both are due
to correlations beyond the one-particle–one-hole or two-
quasiparticle level, and in particular to the interaction between
the single-particle and low-lying collective vibrational de-
grees of freedom that can also be considered in a fully
microscopic framework [27–35,43,44]. In addition, most of
the mean-field plus QRPA calculations assume spherical sym-
metry. Deformed QRPA needs to be adopted or, once again,
some phenomenological correction included in order to prop-
erly describe the splitting of the giant dipole resonance in
deformed nuclei. Essentially all such calculations are per-
formed on even-even nuclei, so that estimates in a system
with an odd number of nucleons include approximations.
As already mentioned, state-of-the-art calculations including
those effects beyond the one-particle–one-hole excitations and
phonon coupling are available [27–35,43,44], but they remain
restricted to spherical even-even systems and are computa-
tionally intractable for large-scale applications. Despite these
difficulties, mean-field plus QRPA calculations are well suited
to estimate the various moments of the E1 strength distri-
butions that, in turn, can provide insight into the effective
interaction, and, more particularly, constrain observables like
the symmetry energy at the saturation density J , the corre-
sponding slope parameter L, or the neutron skin thickness
[8,11,12].

In the present study, the above-mentioned set of ten coher-
ently measured photoneutron cross sections, including nuclei
as light as 57Co and as heavy as 209Bi, is considered to extract
the main E1 moments. In Sec. II, the experimental techniques
used to estimate the partial and total photoneutron cross
sections are described. In Sec. III we estimate the total E1
photoabsorption cross sections and the associated main three
moments by excluding the quasideuteron component and in-
cluding the missing low-energy and charged-particle emission
contributions from validated theoretical models. The nonrel-
ativistic mean-field plus QRPA calculations using Skyrme
and Gogny interactions considered in the present study are
detailed in Sec. IV and their predictions compared with

TABLE I. List of targets used for (γ , xn) cross section measure-
ments. The natural abundance of the targets is 100% except for 139La
(99.911%) and 181Ta (99.988%). Whenever more than one target
thickness is listed, thinner targets were used in (γ , n) cross section
measurements below the 2n threshold, while thicker targets were
used in (γ , xn) cross section measurements above the 2n threshold.

Target Chemical purity Diameter Areal density
(%) (mm) (g/cm2)

59Co 99.35 20 5.68
89Y 99.9 10 1.87, 8.99
103Rh 99.9 a 8.40
139La 99.9 12.5 3.66, 7.51
159Tb 99.9 20 3.44, 6.74
165Ho 99.9 20 3.52, 3.64, 7.28
169Tm 99.9 20 3.78, 7.40
181Ta 99.99 15 3.34, 6.68
197Au 99.95 20 3.88, 7.75
209Bi 99.9 20 3.95
209Bi 99.9999 12.5 6.97, 9.80

aThe Rh target consisted of 67 pieces of 1×1 cm2 foil. The areal
density of each foil was 0.1253 ± 0.0010 g/cm2.

experimental E1 moments. In Sec. V, the impact of our study
on our understanding of nuclear matter properties, and most of
all the symmetry energy, is discussed together with the special
case of 209Bi for which the various moments present a clear
deviation from the smooth expected trends. The deviations
seen in 169Tm as well as the rather consistent experimental de-
scription of the energy-weighted sum rule are also discussed
in Sec. V. Finally, conclusions are drawn in Sec. VI.

II. EXPERIMENTAL DATA

A Coordinated Research Project (CRP) was launched with
the code F41032 by the International Atomic Energy Agency
(IAEA) in 2016 to update the preceding photonuclear data
library [45]. This IAEA-CRP partially addressed the long-
standing discrepancy between the Livermore and Saclay data
of total and partial photoneutron cross sections that was
left as an unresolved issue in the 2000 library. A series of
experiments were also performed to measure the partial pho-
toneutron cross sections for the ten nuclei listed in Table I
at the NewSUBARU synchrotron radiation facility within the
so-called PHOENIX (photoexcitation and neutron emission
cross sections) Collaboration with the Horia Hulubei National
Institute for Physics and Nuclear Engineering, Lomonosov
Moscow State University, and Shanghai Institute of Applied
Physics.

The measured photoneutron cross sections are available
in the IAEA Photonuclear Data Library 2019 [3] and at
the IAEA Evaluated Photonuclear Data Library website
[46]. The key experimental elements in the IAEA-CRP are
quasimonochromatic γ -ray beams produced in the inverse
Compton scattering of laser photons with relativistic electrons
and the methodology of direct neutron-multiplicity sorting
with a flat-efficiency detector [16]. Since experimental de-
tails are available in the literature [3,13,14,16], we briefly
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summarize the key experimental elements and, in addition,
describe multiple firings of photoneutron reactions and sec-
ondary γ rays generated by the LCS γ -ray beam in passing
through a thick target that affect the data reduction.

A. Laser Compton-scattering γ-ray beam

The past measurements carried out in the 20th century at
Livermore and Saclay utilized γ -ray beams produced in the
positron annihilation in flight. While this γ -ray source had
unprecedented features of being quasimonochromatic and en-
ergy variable that are suited to excite the GDR and to measure
the neutron-decay cross sections, it has the drawback of being
accompanied by positron bremsstrahlung produced in a low-
Z annihilation target. The positron bremsstrahlung with the
end-point energy at the kinetic energy of the positron beam K
extended close to the energy of the γ -ray annihilation at K +
3mc2/2. The complication required two separate measure-
ments for background subtraction, one with the positron beam
producing annihilation γ rays plus bremsstrahlung and the
other with the electron beam producing only bremsstrahlung.

The LCS produced quasimonochromatic and energy-
variable γ -ray beams in the energy range from the neutron
threshold up to 40 MeV to fully cover the GDR region.
It is accompanied by electron synchrotron radiation which,
however, concentrates mostly in the keV region far below
the quasimonochromatic γ -ray peak [46]. The energy spread
of the LCS γ -ray beam was 1% to 3% in the full width at
half maximum under good conditions of the electron beam
emittance. The energy of the LCS γ -ray beam was precisely
calibrated in the order of 10−5 [47]. The absolute flux for
pulse γ -ray beams was determined with the Poisson-fitting
method [48,49]. The capability of the precise energy and flux
calibrations of the LCS γ -ray beam is an experimental basis of
photoneutron cross section measurements at NewSUBARU.

B. Direct neutron-multiplicity sorting
with a flat-efficiency detector

Low energy LCS γ -ray beams were produced with
1064 nm photons from the Nd:YVO4 INAZUMA laser and
used to measure (γ , n) cross sections below the 2n threshold
by counting the number of neutrons. Above the 2n threshold,
LCS γ -ray beams were produced with 532 nm photons. The
first measurement for 209Bi [13,14], was limited by the min-
imum operating frequency 16 kHz of the INAZUMA laser;
the INAZUMA laser was operated in the second harmonics
(532 nm) at 16.66 kHz to produce LCS γ -ray beams with
60 μs pulse intervals. The laser frequency was downscaled
by blocking seven out of eight consecutive laser pulses with
a Pockels cell and a polarizer to extend the pulse interval to
480 μs. Measurements for nine nuclei from 59Co to 197Au
were carried out with a newly introduced Q-switch Talon
laser operated at 1 kHz with 1 ms pulse intervals. For the
209Bi measurement, we investigated the effect of the limited
time interval of 480 μs on neutron moderation-time curves of
the single, double, triple, and quadruple neutron-coincidence
events by using GEANT4 simulations [50]. We found that the
fraction exceeding the 480 μs time interval amounts to 4%

for quadruple events and 1% for single events [13]. Thus,
the limited time interval of the 209Bi measurement could not
seriously affect the final cross sections.

A flat-efficiency neutron detector (FED) was developed
based on the methodology of direct neutron-multiplicity
(DNM) sorting as a key experimental element for the IAEA-
CRP [16]. In the DNM sorting with FED, one can write a
set of equations N = F · R with the number of i-fold neutron
events Ni and the number of (γ , xn) reactions Rx (i, x = 1, 2,
3, and 4). Here, Ni = ∑4

x=i FixRx and Fix = xCi ε
i (1 − ε)x−i

with the flat neutron detection efficiency ε, which amounts to
36.5 ± 1.6% (one standard deviation) over the neutron kinetic
energy from 10 keV to 5 MeV. One can determine the nondi-
rect experimental observable R from the direct experimental
observable N by solving the set of equations R = F−1 · N.

C. Multiple firings and secondary γ rays

The DNM sorting method described above operates under
the condition that all neutrons detected during a γ -pulse inter-
val have been associated with a single reaction induced by the
given photon pulse. To meet this single-firing condition, the
DNM sorting experiments require low reaction rates, which
are achieved by appropriate combinations of target thickness,
incident γ -ray flux, and reaction cross sections. Still, as the
number of photons in an LCS γ -ray pulse follows the Poisson
distribution with a typical average value of 10, the incidence
of multiple firings can only be minimized, but not completely
removed. Experimentally, multiple firings were observed as
non-negligible threefold and fourfold neutron events below 3n
thresholds. Thus, a multiple firing correction is applied to the
DNM sorting results, taking into account the target charac-
teristics, incident photon multiplicity, and neutron detection
efficiency. The multiple firing correction mostly affects ris-
ing and decaying cross sections above the neutron threshold.
Multiple firings in a strong decaying channel affect a weak
channel on its rising slope of the cross section. The correction
amounts up to ≈2% for the peak cross sections of all channels
measured.

The (γ , xn) experiments made use of thick targets, as
listed in Table I, to compensate the relatively low incident
photon flux and partial photoneutron cross sections to be mea-
sured. Thus, significant fractions of the incident LCS γ -ray
beams underwent electromagnetic interactions (pair produc-
tion, Compton scattering, and photoelectric absorption) in
the thick targets. The interactions produce secondary γ rays,
which can most efficiently induce photroneutron reactions in
the GDR peak energy region generally governed by the (γ , n)
channel. Using the GEANT4 package, we simulate the transport
of the incident LCS γ -ray beams through the irradiated sam-
ples. Photons are tracked along their paths inside the targets to
generate a photon energy vs track length histogram which si-
multaneously accounts for the self attenuation of the incident
photon beam, and the production yield and energy spectra of
the secondary photons. Details of handling the multiple firings
and secondary γ rays in the data reduction can be found in a
separate paper [15].

The resulting total photoneutron cross sections σγ =∑4
x=1 σ(γ ,xn) are shown in Fig. 1 for the ten odd-even nuclei
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FIG. 1. Measured E1 photoneutron cross sections as a function of the photon energy obtained at newSUBARU for the ten odd-even nuclei
of interest in the present study.

of interest in the present study, listed in Table I. These cross
sections represent a significant set of coherently obtained
measurements including nuclei as light as 59Co and as heavy
as 209Bi, with different shape properties, namely spherical
(89Y, 139La, 209Bi), slightly deformed (103Rh, 197Au), well-
deformed (159Tb, 165Ho, 169Tm, 181Ta), or soft vibrational
(59Co) nuclei. All of them are odd-even nuclei.

III. EXTRACTION OF THE E1 MOMENTS

While the experimental data described in Sec. II provide
the full description of the total and partial photoneutron cross
sections from the neutron threshold up to 40 MeV, most of the
present microscopic mean-field plus QRPA theories cannot
provide a detailed account of the PSF, at least without addi-
tional corrections. These calculations may, however, provide
rather reliable predictions of the main moments of the E1 dis-
tributions. For this reason, we restrict our theoretical analysis
of experimental data to the comparison of the three important
E1 integrated properties, namely

(i) the integrated cross section �TRK defined in terms
of the Thomas-Reiche-Kuhn (TRK) sum rule σTRK =
60NZ/A mb MeV, i.e.,

�TRK = 1

σTRK
×

∫ ∞

0
σabs(ω)dω, (1)

(ii) the centroid energy

Ec =
∫ ∞

0 σabs(ω)dω∫ ∞
0 σabs(ω)/ω dω

, (2)

(iii) and the polarizability

αD = h̄c

2π2e2

∫ ∞

0

σabs(ω)

ω2
dω. (3)

From the photoneutron cross sections, it is possible to
extract the total E1 photoabsorption cross section σabs over

the whole energy region of interest, i.e. up to 40 MeV,
provided three model-dependent corrections are applied,
namely

(1) The inclusion of a low-energy strength: the photoneu-
tron cross section is measured above the neutron
separation energy Sn and is therefore missing at en-
ergies below Sn. Also just above Sn, typically about
1–1.5 MeV above the neutron threshold, the pho-
toneutron cross section is sensitive to the neutron
channel and may consequently not be representative
of the photoabsorption cross section [2]. For this rea-
son, two photon strength function models have been
considered to provide the low-energy extrapolations
below Sn + 1.5 MeV, namely the simple modified
Lorentzian (SMLO) model [51,52] and the Gogny-
HFB plus QRPA model (based on the D1M interaction
and referred to as D1M+QRPA) [2,24]. Both mod-
els have been extensively tested and validated on the
bulk of experimental PSF data [2]. In the case of
209Bi, as an example, the low-energy correction does
not contribute for more than 5% to the polarizabil-
ity. The differences between SMLO and D1M+QRPA
predictions are used to estimate a model uncertainty
associated with this low-energy missing strength.

(2) The exclusion of the high-energy quasideuteron con-
tribution: in the high-energy region above typically
20 MeV the experimental dipole strength may be
dominated by the nonresonant process in the preequi-
librium mode, the so-called quasideuteron component.
For a proper comparison with theoretical estimates,
this component needs to be subtracted from the ex-
perimental cross section. It is estimated through the
standard expression [45,53]

σQD(Eγ ) = LNZ

A
σd (Eγ ) f (Eγ ), (4)
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TABLE II. Experimental integrated cross sections �TRK, cen-
troid energies Ec, and polarizabilities αD with their estimated
uncertainties (Err) for the ten nuclei considered in the present analy-
sis plus 208Pb on the basis of the data from Ref. [10].

Z A �TRK Err Ec (MeV) Err αD (fm3/e2) Err

27 59 1.15 0.01 19.65 0.23 2.84 0.08
39 89 1.13 0.02 18.35 0.31 4.73 0.14
45 103 1.28 0.01 17.71 0.21 6.90 0.17
57 139 1.31 0.02 16.38 0.20 10.78 0.23
65 159 1.33 0.01 15.83 0.17 13.63 0.27
67 165 1.32 0.03 15.22 0.30 15.11 0.38
69 169 1.25 0.02 15.78 0.20 13.56 0.36
73 181 1.31 0.03 15.03 0.33 16.40 0.65
79 197 1.32 0.02 15.10 0.24 18.04 0.50
82 208 1.29 0.03 14.53 0.29 19.82 0.49
83 209 1.53 0.02 14.93 0.24 22.64 0.51

where σd is the experimental deuteron photodis-
integration cross section, f (Eγ ) the Pauli-blocking
function, and L the so-called Levinger parameter. In
the case of 209Bi, as an example, the PSF at energies
above 20 MeV does not contribute for more than 6%
to the polarizability.

(3) The inclusion of the missing charged-particle emission
component: the NewSUBARU detection system is not
sensitive to the charged-particle emission from the tar-
get. For light targets in particular, this charged-particle
emission component may contribute significantly to
the photoabsorption cross section, especially in the
GDR region. To estimate such a contribution, we have
made use of the detailed evaluation based on the
EMPIRE reaction code [54], which has been carefully
adjusted on the present photoneutron cross sections
and published in Ref. [3]. For our lightest target 59Co,
the charged-particle emission contributes to an in-
crease of the polarizability by 15%, but already no
more than 4% for 89Y and even less for the heavier
nuclei considered here.

The uncertainties related to each of these model-dependent
corrections have been considered and added quadratically
to the experimental errors. The final experimental integrated
cross sections �TRK, centroid energies Ec, and polarizabilities
αD with their estimated uncertainties are given in Table II. For
the sake of comparison, we also include here the relatively
well documented case of 208Pb [10]. It will be seen in par-
ticular that our determination of the 208Pb polarizability is in
good agreement with the results of 19.6 ± 0.6 fm3/e2 derived
in Ref. [12].

IV. THEORETICAL PREDICTIONS

The electric dipole strength R(ω; E1) is evaluated within
the (Q)RPA framework using the dipole operator

D = Z

A

N∑
n=1

rnY1M (r̂n) − N

A

Z∑
p=1

rpY1M (r̂p), (5)

where N , Z , and A are the neutron, proton, and mass num-
bers, respectively; rn(p) indicates the radial coordinate for
neutrons (protons); and Y1M (r̂) is the corresponding spherical
harmonic. The different E1 moments can be estimated with
such a definition of the electric dipole strength R(ω; E1). In
particular the polarizability can be expressed as

αD = 8πe2

9

∫ ∞

0
ω−1R(ω; E1)dω (6)

and the centroid energy from the ratio of the first- and zeroth-
order moments

Ec = m1(E1)

m0(E1)
=

∫ ∞
0 ωR(ω; E1)dω∫ ∞
0 R(ω; E1)dω

. (7)

Details about the (Q)RPA framework have been ex-
tensively published. Here, we restrict ourselves to two
frameworks, namely the axially-symmetric-deformed QRPA
calculations based on HFB calculations using the finite-range
Gogny interaction [22–24,26,55] and the spherical Skyrme-
HFBCS plus QRPA calculation [27,56]. Since all the ten
nuclei of interest here are odd-even systems, approximations
to the mean-field plus QRPA methods are inevitable. The way
odd systems have been treated in the Gogny-HFB+QRPA
calculations is discussed below.

A. Treatment of odd systems

As mentioned in the Introduction, a consensus in the com-
munity about an exact QRPA formulation for odd nuclei is
still missing. In a way, this does not impact significantly the
main conclusions that the research carried out in the present
paper aims to reach. The main moments of the strength dis-
tributions (see Sec. III) are not expected to be too sensitive to
the addition or removal of a single nucleon; in other words,
bulk properties of the strength function are expected to be a
smooth function of the nucleon number.

We provide in this subsection some details about the cur-
rent treatment of the response of odd nuclei in the case of our
Gogny-HFB+QRPA calculations, together with some hints
for future improvements. We start from the ground-state de-
scription. While even-even nuclei are described within HFB,
the ground-state of the neighboring odd system is considered
as a one-quasiparticle (qp) excitation on top of the HFB
vacuum. In the so-called blocking approximation, the occupa-
tion probability of the one-qp orbital is imposed. In practice,
one needs to select the qp excitation that minimizes the to-
tal energy. In the present Gogny-HFB+QRPA calculations,
assuming axial symmetry around the z axis and reflection
symmetry around the xy plane, the good quantum numbers are
the z projection K of the total angular momentum J and the
parity π . Thus, the HFB states for odd nuclei with spin-parity
Jπ are obtained by selecting qp orbitals with Kπ

1 = Jπ (both
quantities are half-integers).

On top of the HFB calculations with blocking, axially sym-
metric QRPA calculations are performed. A main difference
with respect to even-even nuclei is the non-zero value of
the ground state spin K1. In the following, K2 corresponds
to the final state. We remind that the QRPA matrix can be
separated in blocks of 2-qp excitations with a given value of
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K ≡ K2 − K1 (we omit parity from here on, for the sake of
simplicity). More details can be found in Refs. [55,57]. It has
to be stressed here that we exclude from the QRPA valence
space the qp orbital which is blocked in the HFB ground
state.

Starting from the set of axially symmetric QRPA solutions,
states having good angular momentum J and z projection M
in the laboratory frame can be obtained through projection
techniques. Two different cases should be distinguished. On
the one hand, if the nucleus is deformed, projection onto good
angular momentum generates a rotational band on top of each
QRPA state. On the other hand, if the nucleus is spherical,
angular momentum is a good quantum number and only one

J value is possible for each QRPA state. Both cases are dis-
cussed in more detail below and the results are presented in
Sec. IV B.

1. Deformed odd nuclei

An exact projection has been proposed in Ref. [58] and yet
never implemented in a systematic way. For well-deformed
nuclei, the so-called needle approximation, in which one as-
sumes that the overlap between the wave functions associated
with different orientations is negligible, should be reliable.
Within such an assumption, the strength function in the labo-
ratory frame is obtained using QRPA reduced matrix elements
that read

〈J2||Oλ||J1〉 =
√

(2J1 + 1)(2J2 + 1)

[
(−)J2−K2

(
J2 λ J1

−K2 μ K1

)
〈
K2 |Oλμ|
K1〉

+(−)J2−K2

(
J2 λ J1

−K2 μ′ −K1

)
(−)J1−K1 〈
K2 |Oλμ′ |
−K1〉

]
. (8)

Here, O is the transition operator for a given multipolarity λ

[in the case at hand, λ = 1 and the operator is the isovector
dipole operator of Eq. (5)]. 
 are the intrinsic wave func-
tions that are solutions of HFB plus QRPA. This formula
has been proposed in Refs. [39,40,55] for even-even nuclei,
where K1 = 0 and the global time-reversal symmetry implies
that both terms give the same contribution. In the present
case of odd nuclei, sticking to λ = 1, the second term of the
above equation only contributes for K1 = 1/2 and μ′ = 0,+1,
or K1 = −1/2 and μ′ = −1, 0 (following the 3 j symbols
selection rules). For technical reasons, it remains extremely
complex to evaluate this extra component, which has conse-
quently not been included in the present Gogny-HFB+QRPA
calculation although it may be relevant for 103Rh and 169Tm
targets that have a ground-state spin J = 1/2.

For a given spin J1, by imposing a unique K1 = J1 value,
the E1 moments are obtained by the sum over all (J2, K2)
possible contributions. Taking into account all of them with
their respective coefficients, the E1 moments of odd deformed
systems are finally calculated by summing up the intrinsic
results for K = −1, 0, 1 blocks.

2. Spherical odd nuclei

In the spherical case, the QRPA ground state has already
good angular momentum J1 = K1. This is also true for all
QRPA excited states, so that |J2(K2)〉 ≡ |
K2〉, where J2 can
be determined elsewhere, since a state with spin J2 is one of
the solutions in all |K2| � J2 blocks but not in the K2 = J2 + 1
block. In this case, the reduced transition probability can be
obtained from the intrinsic expression

〈J2||Oλ||J1〉 = (−)1−J2−K2

√
2J1 + 1

(
J2 λ J1

K2 μ −K1

)−1

〈
2|Oλμ|
1〉.

(9)

Following the 3 j symbol selection rules and using occur-
rences of a J2 given state in all |K2| � J2 blocks of the QRPA
calculations, the E1 moments are obtained by summing up
the intrinsic contributions from all QRPA states of the three
K = −1, 0, 1 QRPA blocks, i.e., K2 =K1−1, K1, and K1 + 1,
respectively.

B. Axially deformed Gogny-HFB+QRPA calculations

Axially deformed Gogny-HFB plus QRPA predictions
obtained with the three D1M, D1S, and D1N interactions
[22–24,26,55], including corrections for odd systems (see
Sec. IV A), are compared with experimental data in Fig. 2.
Clearly, the D1S E1 strength is rather shifted to higher en-
ergies with respect to D1M and even more to D1N. This
confirms the well-established correlation between these E1
moments and the nuclear symmetry energy, D1S leading to
the softest equation of state of neutron matter, but the highest
symmetry energy at saturation (see in particular Figs. 4 and 5
of Ref. [59]). D1N predictions give the best agreement with
experimental values of the moments, especially for elements
heavier than Rh. D1M overestimates the integrated cross sec-
tions and centroid energies, but not significantly more than
D1N underestimates them. However, none of the present
Gogny-HFB+QRPA calculations can explain the relatively
large 209Bi integrated cross section and polarizability, nor the
low moments found experimentally for 169Tm relative to the
global trend found with the neighboring nuclei.

To check the coherence of the Gogny-HFB plus QRPA
predictions for the three moments considered here, we also
investigate the impact of an energy shift to the QRPA strength.
It is well known that the contribution beyond the one-
particle–one-hole excitations and the interaction between the
single-particle and low-lying collective phonon degrees of
freedom, both neglected by the present QRPA calculations,
tend to shift the strength to lower energies [27–29]. In partic-
ular, it was found that the Gogny-HFB+QRPA calculations
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FIG. 2. Comparison between experimental and Gogny-
HFB+QRPA predictions based on the D1M, D1S, and D1N
interactions (a) for the integrated cross section �TRK, (b) the centroid
energy Ec, and (c) the polarizability αD.

based on the D1M interaction tend to overestimate the experi-
mental centroid energies by typically 1 to 2 MeV, as shown
in Fig. 10 of Ref. [24]. Figure 3 shows the D1M+QRPA
predictions together with those obtained by shifting the QRPA
strength down in energy by 1 or 2 MeV. While a 2 MeV shift
is clearly not favoured by experiments, it can be seen that
a systematic shift of 1 MeV down gives rise to moments in
rather good agreement with experimental determinations, ex-
cept for the integrated cross section and polarizability of 209Bi,
as well as the integrated cross section of the lightest 59Co and
89Y. At least this comparison shows that, provided some extra
correction to go beyond the standard QRPA is included, the
three moments can be described rather coherently.

For the three spherical nuclei, 89Y, 139La, and 209Bi, we
have tested the impact of the odd number of protons by
estimating the three E1 moments also on their two respec-
tive even-even neighboring isotones. The results are given in

FIG. 3. Comparison between experimental and D1M+QRPA
predictions without any energy shift or with a systematic shift � of
1 or 2 MeV (a) for the integrated cross section �TRK, (b) the centroid
energy Ec, and (c) the polarizability αD.

Table III for the D1M interaction. It can be seen that with
our treatment of the odd systems (see Sec. IV A) the moments
of the three odd-Z nuclei do not lie systematically within the
range spanned by their neighboring even-Z isotones. We can
see that �TRK of the odd-Z nucleus is systematically about
2% smaller than the one of its even-Z isotones. Similarly, the
centroid energy of the odd-Z is about 1% smaller. Concerning
the polarizability, the odd-Z nucleus presents a value rather
close to its Z − 1 isotone, but about 1.5% smaller than the
Z + 1 isotone. The corresponding staggering is seen to in-
crease with increasing mass number with a negligible one for
89Y. This comparison may be used to estimate the moments
of the present odd-Z nuclei on the basis of QRPA calcula-
tions performed in neighboring even-even nuclei, as discussed
in Sec. IV C. Note that the odd-even staggering obtained in
Table III is also observed, though sometimes with an un-
clear pattern, in the experimental GDR properties, including
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TABLE III. D1M+QRPA predictions of �TRK, centroid energies
Ec, and polarizabilities αD for the three spherical odd-even nuclei
of interest in the present study and their even-even neighboring
isotones.

Z A �TRK Ec (MeV) αD (fm3/e2)

38 88 1.446 19.298 5.131
39 89 1.413 19.080 5.205
40 90 1.447 19.198 5.338

56 138 1.451 17.647 9.473
57 139 1.417 17.550 9.456
58 140 1.454 17.696 9.636

82 208 1.446 15.470 18.491
83 209 1.415 15.370 18.464
84 210 1.447 15.467 18.764

in particular the energy at the peak cross section (related to
the centroid energy) and the integrated photoabsorption cross
section �TRK [52]. This is true not only along an isotopic
chain, but also along an isotone, e.g., along N = 82 nuclei
for which experimental data are available.

Finally, note that the integrated photoabsorption cross sec-
tion and the centroid energy can be related to the charge
mean square radius and the mean proton distance [60,61] and
similarly the polarizability is directly proportional to the mean
square radius [12]. Since mean-field models with blocking
techniques are known to reproduce rather well charge radii,
including the odd-even staggering [62,63], we can expect our
blocking approximation in the Gogny-HFB mass model to
give a fair, though not complete, representation of the E1
moments in odd-even nuclei.

C. Spherical Skyrme-HFBCS plus QRPA calculations

QRPA calculations using the spherical SKYRME_RPA code
[56] adapted to include pairing correlations within the
Bardeen-Cooper-Schrieffer (BCS) approximation [64] have
been performed. We have chosen a delta pairing interaction
Vpair (r) = V0δ(r) where the strength V0 has been fitted to re-
produce the experimental neutron pairing gap in 120Sn with a
pairing window considering the first six states above the Fermi
level. We have studied six even-even spherical and semimagic
nuclei, namely 88Sr and 90Zr, 138Ba and 140Ce, and 208Pb
and 210Po, which are neighboring isotones of the measured
89Y, 139La, and 209Bi, respectively. Since the dipole po-
larizability should be a rather smooth function of the mass
number (see Table II), the study of neighboring nuclei may
set reasonable upper and lower bounds for the polarizability
on the odd-even nucleus. Such an approximation has been
tested by the D1M+QRPA calculations performed for the
nine above-mentioned nuclei, as detailed in Sec. IV B (see
Table III). The TRK enhancement factor as well as the cen-
troid energies for the three odd-even systems 89Y, 139La, and
209Bi are expected to be lower than their even-Z neighboring
isotones by typically 1-2%, so that we have extended the
lower limit down by 1% on �TRK and 2% on Ec. For the
polarizability a good approximation is to consider the neigh-

FIG. 4. Comparison between experimental and Skyrme-HF +
BCS predictions based on a set of selected functionals (Skyrme
set shown as bars slightly shifted to the right) as well as on the
KDE0-J30 (empty circles) and SAMi-J30 (empty squares) function-
als: (a) for the integrated cross section �TRK, (b) the centroid energy
Ec, and (c) the polarizability αD. Only spherical nuclei are compared.

boring Z − 1 isotone (see Table III), though we have also
considered the Z + 1 isotone as the upper limit. Note that the
BCS approximation used in this section is known to reproduce
reasonably well HFB results for nuclei close to the valley of β

stability [65].
In Fig. 4, we compare graphically the three experimental

moments for each of the nuclei reported in Table II with
the HFBCS+QRPA calculations as discussed in the pre-
vious paragraph. All quantities have been calculated using
the same energy range of 0 to 40 MeV as defined by the
experimental analysis. Upper and lower theoretical bounds
are depicted in Fig. 4 for different Skyrme parametrizations.
More specifically, we show the individual results predicted by
the KDE0-J33 (empty circles) [66,67] and SAMi-J30 (empty
squares) [11,68] functionals as well as an overall predic-
tion (bars slightly shifted right) based on a selected set of
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Skyrme functionals of common use in nuclear physics (see
also Sec. V A). The latter functionals have been chosen be-
cause they predict a large variety of possible values for the
symmetry energy at saturation (27 � J � 33 MeV) and of the
slope parameter of the symmetry energy also at saturation
(10 � L � 75 MeV), and the dipole polarizability has been
shown to be very sensitive to J and L in medium-heavy and
heavy nuclei [12,69]. We explicitly show the limits imposed
by the KDE0-J33 functional because it is one of the very few
selected functionals able to reproduce the dipole polarizability
in different stable and exotic nuclei [12]. As seen in Fig. 4,
this functional works reasonably well from a qualitative point
of view although it fails in the quantitative description of
the experimental data presented here. The predictions of the
SAMi-J30 functional are shown because those would be com-
patible with the large dipole polarizability in 209Bi reported
here, which is slightly off the trend followed by the other
measured nuclei as a function of the mass number. However,
the SAMi-J30 functional is less accurate than KDE0-J33 in
the description of the other nuclei as well as on the centroid
energy Ec and the energy-weighted sum rule �T KR. Overall,
bounds are quite spread covering the experimental data re-
ported here, but also showing the relatively large systematic
uncertainties of current Skyrme functionals. Finally, note that
a coherence check of the Skyrme QRPA predictions of the
three E1 moments could also be performed, as done through
a constant energy shift of the PSF in the D1M+QRPA case
in Sec. IV B. Similar results are expected for Skyrme interac-
tions.

V. DISCUSSION

A. Correlation with nuclear matter properties

As already introduced in Sec. I, one of the main motiva-
tions to study the isovector dipole response of atomic nuclei is
also linked to our understanding of the nuclear symmetry en-
ergy and its density dependence. The symmetry energy S(ρ)
can be defined through the Taylor expansion of the energy per
particle in nuclear matter, E/A, as a function of the density ρ

and the isospin asymmetry β = (ρn − ρp)/ρ, i.e.,

E

A
(ρ, β ) = E

A
(ρ, β = 0) + S(ρ)β2. (10)

If this quadratic approximation in the Taylor expansion is
accurate enough, which seems to be the case in most of the
realistic calculations, S(ρ) can be viewed as the energy per
particle which is needed to change symmetric matter into
pure neutron matter at density ρ. The density dependence of
this quantity governs the physics of neutron-rich nuclei and
neutron stars, as well as many aspects of heavy-ion collisions.
For this reason, it is the subject to very intensive investigations
and recent review papers [5–7] provide a summary of the main
findings. The density dependence around saturation is mainly
encoded in the two parameters J and L corresponding, respec-
tively, to the value of the symmetry energy at the saturation
density ρ0 of symmetric matter and to its derivative at the
same density.

Isovector nuclear excitations are among the most promis-
ing observables to extract properties of the symmetry energy.

FIG. 5. The dipole polarizability times the symmetry energy at
saturation J as a function of the slope parameter at saturation L for (a)
89Y, (b) 139La, and (c) 209Bi are estimated within HFBCS+QRPA
for a selected set of Skyrme functionals. The blue dashed line corre-
sponds to a linear fit and the two shaded regions represent the 99.9%
and 70% confidence bands.

If nuclei were a piece of nuclear matter with constant density
ρ0, and the isovector GDR were a neutron-proton oscillation
mode in which the total density remains constant (so-called
Steinwedel-Jensen mode), it follows straightforwardly from
Eq. (10) that the isovector GDR energy would be proportional
to the second derivative of the energy with respect to β, i.e.,
to S(ρ0). As the atomic nucleus is not such a simple classical
system, but it has a surface and is affected by quantum shell
effects, the relationship between the symmetry energy and the
isovector dipole is not so trivial. The topic is reviewed in, e.g.,
Refs. [8,70].

Among the different features of the dipole response, the
advantage of the polarizability defined in Eq. (3) is that its
correlation with the symmetry energy is at the same time
hinted by the droplet model and obeyed by many nonrela-
tivistic and covariant energy density functionals [11]. One of
the purposes of the present work is to see if the conclusions
on the values of J and L that have been extracted from a
limited set of nuclei, mainly 208Pb and a few other magic
or semimagic nuclei, remain true when considering a larger
set of nuclei with diverse ground-state properties as stud-
ied here (and keeping a coherence within the experimental
data).

In Fig. 5, the dipole polarizability times the symmetry
energy at saturation, αDJ , is displayed as a function of the
slope parameter L in the case of the three spherical nuclei
89Y, 139La, and 209Bi. A selected set of Skyrme functionals
that cover values of J between 27 and 33 MeV and L be-
tween 10 and 75 MeV have been used for the calculations.
As in Sec. IV C, we have evaluated the dipole polarizability
in the neighboring nuclei, assuming a smooth behavior for
this observable, and have provided a range of plausible val-
ues for the odd-even systems under investigation. Within this
approximate procedure, a clear and strong linear correlation
appears for all three nuclei (r = 0.93–0.94). The constraints
on J and L based on the set of selected Skyrme models are
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(in MeV)

J = 32.5(1.0) + 0.17(0.02)L for 89Y,

J = 26.7(6) + 0.14(0.02)L for 139La,

J = 24.0(6) + 0.13(0.01)L for 209Bi .

As seen in Fig. 5, the Gogny interactions, especially D1N and
D1M, do not follow the same trend as Skyrme functionals,
the αDJ values for a given L lying significantly lower. If the
three Gogny interactions are included in the linear regression
shown in Fig. 5, the linear correlation coefficients drop to
r = 0.84–0.87 and the relation between J and L change to

J = 29.5(1.0) + 0.23(3)L for 89Y,

J = 22.5(7) + 0.23(4)L for 139La,

J = 20.9(6) + 0.19(3)L for 209Bi .

It is of some interest to compare these findings with those ex-
tracted from previous studies based on the experimental dipole
polarizability of 68Ni, 120Sn, 208Pb [11,12]. These previously
extracted correlations are based on larger set of functionals
(48), and lead to rather consistent expressions, namely

J = 25.0(2) + 0.19(2)L for 68Ni,

J = 25.4(1.1) + 0.17(1)L for 120Sn,

J = 24.5(8) + 0.17(1)L for 208Pb .

If we focus on 208Pb, the correlation between J and L obtained
with 48 models does not change at all if we add the three
Gogny forces: the Gogny results lie perfectly along the afore-
mentioned correlation (see Fig. 2 of Ref. [11]). If we restrict
to the 13 models of the present work, this correlation becomes
J = 26.6(8) + 0.158(16)L. Consequently, a difference of ≈
10% between the present results and those of [11,12] could
be expected because of a different choice of the pool of se-
lected functionals. The reason for the remaining difference
is harder to explain. We need further investigations in order
to understand to what extent the ground-state deformation,
pairing and shell effects, as well as the treatment of odd-even
systems, have an impact. In the case of 209Bi, the slope in
the correlation between J and L is very small as compared
to that of 208Pb when the Gogny results are not considered
while it becomes compatible with these results when taken
into account.

So, in summary, the correlation between J and L that can
be extracted from the analysis of the polarizability on the
basis of QRPA calculations remains sensitive to the set of
functionals and nuclei considered. The few available Gogny
interactions may be compatible with the correlations found
with the Skyrme functionals, and the analysis performed for
different nuclei gives rise to relatively similar trends of such
a correlation with an intercept J (L = 0) 	 21–32 MeV and a
slope �J/�L 	 0.13–0.23. The major uncertainties in these
correlation coefficients stem from the diverse predictions with
Skyrme or Gogny functionals. In this respect, the uncertainties
related to the treatment of odd nuclei, as detailed in Sec. IV A
(see in particular Fig. 4), remain rather negligible in compari-
son with such systematic uncertainties.

FIG. 6. Comparison between experimental E1 PSF (solid lines)
of 208Pb (blue squares) and 209Bi (red circles) and the corresponding
estimate of the strength contribution to the polarizability αD (dashed
lines).

B. The TRK sum rule

The enhancement factor of the TRK sum rule should also
be considered as an important quantity characterizing nuclei
and infinite nuclear matter. As it has been often used as a
benchmark to fit some of the widely used energy density
functionals, setting constraints on its value is certainly an
asset. Indeed, the enhancement factor is usually associated
with an exchange-force contribution or one of a similar nature,
such as nonlocal or velocity-dependent forces. Typical values
of the order of 1.20, i.e., 20% of the TRK sum rule, have been
extracted from previous experiments [71]. We can see that if
we do exclude the lightest A < 90 nuclei and the special case
of 209Bi (see below), the eight remaining spherical as well
as deformed nuclei given in Table II and shown in Figs. 2–4
provide a rather consistent value of about 31 ± 4%. Such a
quantity is particularly important to adjust phenomenological
models of the electric dipole strength [51,52,72] as well as
to improve the adjustment of effective interactions in mean-
field approaches, such as those shown in the upper panels of
Figs. 2–4. A proper description of the enhancement factor of
the TRK sum rule is particularly relevant when such interac-
tions are used directly in QRPA calculations to estimate the
PSF.

C. The special case of 209Bi

As given in Table II, the integrated cross section and polar-
izability of 209Bi are significantly higher than the one of 208Pb,
while the centroid energies differ by 0.34 MeV only. The
resulting difference in the PSF is illustrated in Fig. 6 together
with the integrated polarizability up to a given energy Eγ .
Both PSFs present a peak more or less at the same energy and
their low-energy tails are rather similar. The major difference
clearly comes from the energy range between 14 and 19 MeV,
which impacts significantly the estimate of the polarizability,
as shown in Fig. 6.
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To test further the possibility that the sudden increase of
the 209Bi polarizability with respect to 208Pb may be linked
to the neutron or proton shell closures, we also estimated the
polarizability of 58Ni to compare it with our determination
for 59Co. Based on experimental data in Refs. [73,74], we
applied the same methodology to estimate the polarizability
(as detailed in Sec. III), though without including the charged-
particle emission component.

We find for 58Ni αD = 2.17 ± 0.05 fm3/e2 with the eval-
uation of Ref. [74] up to 30 MeV and 2.45 ± 0.09 fm3/e2

with the measurements of Ref. [73] up to 40 MeV. In the latter
case, the polarizability is found to be very similar to the one
obtained for 59Co without including the contribution from the
charged-particle emission, i.e., 2.46 ± 0.07 fm3/e2, so that it
remains difficult to associate the difference between 208Pb and
209Bi values at least with the proton shell closure.

D. The case of 169Tm

As seen in Table II and Figs. 2–4, 169Tm presents an
integrated cross section and polarizability slightly lower (by
typically 5%) than found in the global trend with respect to
the neighboring nuclei 165Ho or 181Ta. In contrast, its centroid
energy is slightly higher. The 169Tm isotope has the specificity
to be a deformed nucleus with a Jπ = 1/2+ ground state.
As stressed in Sec. IV A, its polarizability should be calcu-
lated using both terms in Eq. (8). According to the sign of
the phase for each term of the aforementioned equation, the
neglected term could lower the polarizability with respect to
neighboring nuclei. It remains, however, difficult to estimate
the magnitude of this contribution, so that more studies are
needed before drawing any conclusions.

VI. CONCLUSIONS

The photoneutron cross sections have recently been mea-
sured using quasimonochromatic laser Compton-scattering
γ -ray beams at NewSUBARU (Japan) for ten odd-even nu-
clei, spherical as well as deformed, covering relatively widely
light to heavy species and in a broad energy range covering the
neutron threshold up to about 40 MeV. These cross sections
have been used here to estimate the three main E1 moments,
i.e., the integrated cross section, the centroid energy, and
the polarizability. Such a determination requires, however,
consideration of model-dependent corrections in order to ex-
clude the quasideuteron component and to add the missing
low-energy and charged-particle emission contributions. The

resulting experimental moments are found to challenge the-
ory in different respects, in particular in the treatment of
odd systems. They follow a rather smooth trend with atomic
mass, as theoretically expected, except for the specific case
of 209Bi which presents a surprising 10% increase of both the
integrated strength and the polarizability with respect to its
even-even spherical neighbor 208Pb.

We compared the experimentally derived moments for the
ten odd-even nuclei with calculations based on the nonrel-
ativistic mean field plus QRPA. Both spherical as well as
axially deformed calculations based on both the Gogny and
Skyrme interactions have been performed to discuss the re-
sults, with special attention paid to the approximate treatment
of odd systems of nucleons. It is found that, in general, theo-
retical predictions can rather well described the data for the
full set of nuclei, except for 209Bi presenting this kink in
the integrated strength and polarizability with respect to the
well-studied 208Pb case. Such an experimental pattern cannot
be explained by the present mean-field plus QRPA calcula-
tions. New measurements of photoabsorption cross sections
on 208Pb and 209Bi in the 14–19 MeV range as well as future
theoretical calculation, in particular for odd-even systems,
may help to solve such a mystery.

The present data were also used to reinvestigate the cor-
relation between the nuclear matter symmetry energy and its
slope at saturation density. The analysis based on both Skyrme
and Gogny HFB plus QRPA calculations confirm previous
results though quantitatively larger variations of the correla-
tion parameters are found. Finally, a rather consistent value
of about 31 ± 4% for the enhancement factor of the TRK sum
rule could be extracted from the experimental data of eight out
of our ten nuclei.
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