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Variational and parquet-diagram calculations for neutron matter. II. Twisted chain diagrams
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We develop a manifestly microscopic method to deal with strongly interacting nuclear systems that have
different interactions in spin-singlet and spin-triplet states. In a first step we analyze variational wave functions
that have been suggested to describe such systems and demonstrate that the so-called commutator contributions
can have important effects whenever the interactions in the spin-singlet and the spin-triplet states are very
different. We then identify these contributions as terms that correspond, in the language of perturbation theory, to
non-parquet diagrams. We include these diagrams in a way that is suggested by the Jastrow-Feenberg approach
and show that the corrections from non-parquet contributions are, at short distances, larger than all other
many-body effects.
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I. INTRODUCTION

Popular models of the nucleon-nucleon forces [1–5] rep-
resent the interaction as a sum of local functions times
correlation operators, i.e.,

v̂(i, j) =
n∑

α=1

vα (ri j ) Ôα (i, j), (1.1)

where ri j = |ri − r j | is the distance between particles i and
j and the Oα (i, j) are operators acting on the spin, isospin,
and possibly the relative angular momentum variables of the
individual particles. According to the number of operators n,
the potential model is referred to as a v̂n model potential.
Semirealistic models for nuclear matter keep at least the six
base operators and these are

Ô1(i, j; r̂i j ) ≡ Ôc = 1,

Ô3(i, j; r̂i j ) ≡ σ i · σ j,

Ô5(i, j; r̂i j ) ≡ Si j (r̂i j ) ≡ 3(σ i · r̂i j )(σ j · r̂i j ) − σ i · σ j,

Ô2n(i, j; r̂i j ) = Ô2n−1(i, j; r̂i j )τ1 · τ2, (1.2)

where r̂i j = ri j/ri j . We will omit the arguments when
unambiguous.

Besides the operators defined in Eq. (1.2) it is convenient
to introduce the projection operators

P̂S ≡ 1
4 (1 − σ1 · σ2),

P̂T + ≡ 1
6 [31 + σ1 · σ2 + S12(r̂)], (1.3)

P̂T − ≡ 1
12 [31 + σ1 · σ2 − 2S12(r̂)].

These satisfy the relations P̂iP̂j = P̂iδi j and P̂S + P̂T + +
P̂T − = 1.

If tensor forces are included, then a third set of operators,

L̂ ≡ (σ1 · r̂)(σ2 · r̂), T̂ ≡ σ1 · σ2 − (σ1 · r̂)(σ2 · r̂), (1.4)

is useful for the summation of chain diagrams [6].
The task of microscopic many-body theory is to understand

properties of macroscopic systems from no other information
than the properties of the underlying Hamiltonian, the particle
statistics, and the macroscopic geometry of the system. For
simple, state-independent interactions as appropriate for elec-
trons or quantum fluids, the Jastrow-Feenberg ansatz [7] for
the wave function

�0 =
N∏

i, j=1
i< j

f (ri j )�0 (1.5)

and its logical generalization to multiparticle correlation
functions [8–12] has been extremely successful. �0 is, for
fermions, a Slater determinant of single-particle orbitals, and
f (ri j ) is the Jastrow-Feenberg correlation function whose
primary purpose is to model short-ranged correlations. The
method has therefore been applied in both semianalytic calcu-
lations [7] as well as early Monte Carlo calculations [13,14]
and is still being used as an importance sampling function for
diffusion and Green’s functions Monte Carlo computations
[15,16].

One of the reasons for the success of the wave function
(1.5) is that it provides a good upper bound for the ground-
state energy,

E0 = 〈�0|H |�0〉
〈�0|�0〉 . (1.6)

In semianalytic calculations, approximations must be made
in the evaluation of the energy expectation value (1.6). The
hierarchy of “(Fermi-)hypernetted chain [(F)HNC]” approxi-
mations [17] is singled out since it permits an unconstrained

2469-9985/2020/102(6)/064305(13) 064305-1 ©2020 American Physical Society

https://orcid.org/0000-0001-7739-1255
https://orcid.org/0000-0002-4667-3791
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevC.102.064305&domain=pdf&date_stamp=2020-12-03
https://doi.org/10.1103/PhysRevC.102.064305


E. KROTSCHECK AND J. WANG PHYSICAL REVIEW C 102, 064305 (2020)

-100

-50

 0

 50

 100

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.0

0.5

1.0

1.5

2.0

V
α(

r)
  [

M
eV

]

ψ
α(

r)

r  [fm]

S  - projection
T+ - projection
T- - projection

FIG. 1. The Reid interaction [1] in the {S, T +, T −} operator
form for the singlet (black line), triplet “+” (blue line), and triplet “–”
(red line) projections (left scale). Also shown are the corresponding
pair wave functions ψα (r) = √

1 + �
(α)
dd (r), see Eq. (2.15) at kF =

1.0 fm−1 (dashed line, same colors, right scale).

optimization of the correlation functions,

δE0

δ f
(r1, r2) = 0, (1.7)

in the sense that the Euler equations for any level of the
HNC approximation has the same structure as the exact Eu-
ler equation [7]. The method corresponds, for bosons, to a
self-consistent summation of all ring and ladder diagrams
of perturbation theory—the so-called “parquet” diagrams
[18–21]. The same is true for Fermions [22] when specific
truncation orders of exchange diagrams are followed.

The Jastrow-Feenberg ansatz (1.5) is insufficient for deal-
ing with realistic nucleon-nucleon interactions of the form
(1.1). As an example, we show in Fig. 1 the Reid v6 interaction
in the three operator channels P̂S , P̂T +, and P̂T −. Using a
correlation function that is the same in all three channels can at
its best only roughly model short-ranged correlations in these
different configurations.

A plausible generalization of the wave function (1.5) is the
symmetrized operator product [23,24],

�SOP
0 = S

⎡
⎢⎣ N∏

i, j=1
i< j

f̂ (i, j)

⎤
⎥⎦�0, (1.8)

where

f̂ (i, j) =
n∑

α=1

fα (ri j ) Ôα (i, j), (1.9)

and S stands for symmetrization. The symmetrization is nec-
essary because the operators Ôα (i, j) and Ôβ (i, k) do not
necessarily commute. The potential energy, for example, can
be written in the form

〈V 〉
N

= ρ

2

∫
d3r

∑
α

gα (r)vα (r)
1

ν2
T r12 O2

α (1, 2), (1.10)

where ν is the degree of degeneracy of the single-particle
states, T r12 indicates the trace over spin (and, when applica-
ble, isospin) variables of particles 1 and 2, and the components
of the pair distribution function are

ρ2gα (|r − r′|)

= 〈�0|
∑

i< j δ(r − ri )δ(r′ − r j )Ôα (i, j)|�0〉
1
ν2 T r12 Ô2

α (1, 2)〈�0|�0〉
. (1.11)

The need to symmetrize the operator product causes, how-
ever, severe problems which must be dealt with properly:
When the symmetrization is carried out, the components of
the pair distribution operator have the form

gα (r) =
∑
βγ

fβ (r) fγ (r)F (α)
βγ (r), (1.12)

where the F (α)
βγ (r) are coupling coefficients that are functionals

of the correlation functions fα (ri j ). Their analytic structure is
complicated and so far no summation that comes anywhere
close to the diagrammatic richness of the (F)HNC summations
for state-independent correlations has been found.

The only relevant feature for our analysis is, however,
that the coefficient functions F (α)

βγ (r) are not diagonal in the
operator labels α, β, and γ . In other words, the interaction in
operator channel α is, in the potential energy, multiplied with
correlation functions fβ (r) fγ (r) with β �= α, γ �= α.

This is a priori not a problem because the (observable)
pair distribution functions gα (r) can be thought of as the
independent quantities in the variational problem, i.e., instead
of Eq. (1.7) we may use

δE0

δgα

(r1, r2) = 0. (1.13)

Then the theory can be formulated entirely in terms of observ-
able quantities. In fact, the basic equations of the boson theory
can be derived in several ways [19,20,25,26] without ever
mentioning the auxiliary Jastrow correlation function f (r).

However, if one adopts the original idea of Jastrow theory
and uses some parameterized form of the correlation functions
fα (r), then a good parametrization is hard to find. A popular
choice [27,28] is, for example, to derive the correlation func-
tions fα (r) from a low-order constrained variational principle
(LOCV). This leads for the correlation functions to an effec-
tive Schrödinger equation of the form

− h̄2

m
∇ · [

g(α)
F (r)∇ fα (r)

] + [vα (r) − λα]g(α)
F (r) fα (r) = 0.

(1.14)

Equation (1.14) is understood in the projection operator basis
(1.3). The λα are parameters determined either by a nor-
malization condition [27,29] or by the demand that f ′

α (d ) =
0 at a healing distance d [28], and g(α)

F (r) = 1 ± 2(rkF )
are the distribution functions of noninteracting fermions, the
upper/lower sign refers to singlet/triplet states, and (x) =
3 j1(x)/x. Modern nucleon-nucleon interactions [1–5] have
rather different core sizes in the spin-singlet and the spin-
triplet cases, see, for example, Fig. 1.
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The above analysis shows that the commutator terms in
the symmetrized operator product (1.8) mix different channels
such that it is by no means clear how well the short-ranged
correlations are described by simple approximations like
(1.14). In fact, earlier nucleon-nucleon interaction [30,31]
contained hard cores with different core sizes in different
operator channels. In that case, the potential energy obtained
from correlations determined by the LOCV method diverges
already if only the simplest nontrivial commutator term is
retained.

As an alternative to variational wave functions, Smith
and Jackson [32] started from the idea of localized parquet-
diagram summations and implemented the procedure for a
fictive system of bosonic nucleons interacting via a v6 interac-
tion. It turned out that the equations derived were identical to
those one would obtain in the bosonic version of the summa-
tion method of Fantoni and Rosati [23], which simply ignored
the fact that the individual pair correlation operators f̂ (i, j)
do not commute. We have adopted in Ref. [33] the ideas of
Smith and Jackson and generalized them to Fermi systems. In
that work, we have also paid attention to different treatments
of the particle-particle and the particle-hole propagator and
have determined which approximations for these quantities
are suggested by variational wave functions.

The problem of the potential importance of commutator
diagrams does not go away in parquet summations. The fact
that the work of Ref. [32] corresponds to a variational cal-
culation where all commutators are omitted simply says that
the fully symmetrized wave function (1.8) contains more than
what is included in the parquet equations. The analysis (1.12)
shows that these non-parquet contributions are important. On
the other hand, the point of view of parquet-diagram summa-
tions promises a more straightforward procedure to deal with
these effects compared to going through the development of a
full variational procedure. The equivalence between classes of
Feynman diagrams and classes of Jastrow-Feenberg diagrams
will provide a vehicle for justifying practical procedures for
their calculation. To that end, we will in the next section
discuss, with a very simple example, how the physics of
commutator corrections is described in terms of Goldstone
diagrams and which approximations to these diagrams are
suggested by a variational wave function.

Section III B will then derive the implementation of these
“non-parquet” diagrams in a generalized Bethe-Goldstone
equation. Numerical applications will be discussed in Sec. IV,
Sec. V will provide a brief summary of our findings. The
Appendix will review earlier work [34] where the sym-
metrization problem can be examined in a relatively simple
analytic form.

II. ESSENTIALS OF PARQUET DIAGRAM SUMMATIONS
AND THE OPTIMIZED HYPERNETTED CHAIN METHOD

The basic insight, which was explained quite convincingly
in Ref. [19], is that the minimal satisfactory microscopic
treatment of an interacting system of many identical particles
requires the self-consistent summation of ring and ladder di-
agrams. This is in principle an exceedingly demanding task
because each two body vertex is a functions of two incoming

(ki, h̄ωi ) and two outgoing sets of four quantum numbers.
Energy and momentum conservation as well as isotropy lets us
reduce the number of variables to 10. Hence, approximations
must be made to make the theory practical which we review
here.

A. Ring diagrams and the induced interaction

The ring diagrams describe low-lying excitations and long-
ranged correlations. The sum of ring diagrams diverges when
the system is unstable against low-lying excitations such as
density- or spin-density fluctuations. Therefore, their inclu-
sion is important to have the correct nonanalytic density
dependence of the equation of state of a self-bound system.

These are derived from a random-phase approximation
(RPA) equation for the response function,

χ̂ (q, ω) = χ0(q, ω)

1 − V̂p−h(q)χ0(q, ω)

S(q) = −
∫ ∞

0

dh̄ω

π
Imχ (q, ω), (2.1)

in terms of a local “particle-hole” interaction V̂p−h(q). In the
case of state-dependent interactions, V̂p−h(q) is most conve-
niently represented as a linear combination of local functions
Ṽ (α)

p−h(q) and the operators (1.4). As usual we define the dimen-
sionless Fourier transform by including a density factor ρ, i.e.,

f̃ (k) = ρ

∫
d3r f (r)eik·r = ρ

∫
d3r f (r) j0(kr). (2.2)

For the tensor forces, we will also need the j2 Fourier
transform,

f̃ (k)S12(k̂) = ρ

∫
d3r f (r)eik·rS12(r̂)

= −ρ

∫
d3r f (r) j2(kr)S12(k̂). (2.3)

The second important relationship is the Bethe-Goldstone
equation which describes short-ranged correlations caused by
the strong, short-ranged repulsion of the nuclear interaction.
We shall discuss this in detail below. Summing the parquet
diagrams one supplements, among others, the bare interaction
v̂(r) in the Bethe-Goldstone equation by an induced interac-
tion ŵI (r) being defined as the set of particle-hole reducible
diagrams. Assuming a particle-hole interaction V̂p−h(q) of the
operator of the form (1.2), the sum of these diagrams is a
priori an energy-dependent quantity,

ŵI (q, ω) = V̂ 2
p−h(q)χ0(q, ω)

1 − V̂p−h(q)χ0(q, ω)
. (2.4)

The energy-dependent-induced interaction is then approxi-
mated [19,20] by an energy-independent effective interaction
ŵ(q) as follows: Calculate the static structure function

S(q) = −
∫ ∞

0

dh̄ω

π
Im

χ0(q, ω)

1 − χ0(q, ω)V̂p−h(q)

= −
∫ ∞

0

dh̄ω

π
Im

[
χ0(q, ω) + χ2

0 (q, ω)ŵ(q, ω)
]
.

(2.5)
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Now define an energy-independent interaction ŵI (q, ω̄(q)) by
demanding that it gives the same static structure function,

S(q) ≡ −
∫ ∞

0

dh̄ω

π
Im

[
χ0(q, ω) + χ2

0 (q, ω)ŵ(q, ω̄(q))
]
.

(2.6)
This energy-independent interaction ŵ(q) ≡ ŵ(q, ω̄(q))

defines the induced interaction ŵI (q) ≡ ŵ(q) − V̂p−h(q)
which is then taken as a correction to the interaction in the
Bethe-Goldstone equation. For state-dependent interactions it
is again understood that ŵI (q, ω) is a linear combination of
local functions and operators of any of the forms (1.2), (1.3),
or (1.4).

B. Localized Bethe-Goldstone equation

We review here briefly the connection between the conven-
tional Bethe-Goldstone equation and the variational approach.
We begin with the Bethe-Goldstone equation as formulated
in Eqs. (2.1) and (2.2) of Ref. [35]. As a convention, we
will label occupied (“hole”) states by h, h′, hi and unoccupied
(“particle”) states by p, p′, pi; whereas k, q have no restric-
tion. We also suppress spin variables. The pair wave function
ψ (k) in a coordinate frame centered at the origin of the Fermi
sea is given by the integral equation

〈k, k′|ψ |h, h′〉 = 〈k, k′|h, h′〉

− n̄(k)n̄(k′)
〈k, k′|V̂ ψ |h, h′〉

t (k) + t (k′) − t (h) − t (h′)
,

(2.7)

where n(k) = θ (kF − k) is the Fermi distribution, n̄(k) = 1 −
n(k) and, in the simplest case, t (k) = h̄2k2/2m. In the con-
ventional Bethe-Goldstone equation, V̂ was meant to be the
bare interaction operator v̂. In FHNC-EL or parquet-theory,
v̂ is supplemented by the induced interaction ŵI defined
in Eq. (2.6). We can also have “non-parquet” diagrams—in
(F)HNC-EL these are due to “elementary diagrams” and mul-
tiparticle correlations, while in the language of perturbation
theory these are particle-particle and particle-hole irreducible
vertices. Thus, in general, we may assume

V̂ (i, j) = v̂(i, j) + ŵI (i, j) + V̂I (i, j), (2.8)

where V̂I (i, j) is the set of irreducible diagrams. All three sets
are assumed to have the operator structure (1.1).

The pair wave function ψ is still a function of three mo-
menta. On the other hand, the variational wave function (1.8)
contains only functions that depend on the distance between
two particles. To make a connection between perturbation
theory and the variational wave function, we must therefore
approximate the pair wave function by a quantity that depends
only on the relative coordinate (or momentum), i.e., it has the
feature

〈k, k′|ψ |h, h′〉 = 1

N
ψ̃ (q).

For local interactions, we then have also

〈k, k′|vψ |h, h′〉 = 1

N
[v(r)ψ (r)]F (q),

where F stands for the Fourier transform (2.2) or (2.3). To
have such a solution, the energy denominator coefficient must
be approximated by a function of momentum transfer q. One
option is to write Eq. (2.7) as

[t (k) + t (k′) − t (h) − t (h′)][〈k, k′|ψ |h, h′〉 − 〈k, k′|h, h′〉]
= −n̄(k)n̄(k′)〈k, k′|vψ |h, h′〉, (2.9)

and then approximate the particle-hole energy differences by
their Fermi-sea average,

t (|h + q|) − t (h) ≈
∑

h n̄(|h + q|)n(h)t (|h + q|) − t (h)∑
h n̄(|h + q|)n(h)

= t (q)

SF (q)
≡ tF (q). (2.10)

This leads to[
− h̄2

m
∇2 + v(r)

]
ψ (r)

= −ρ

ν

∫
d3r′2(|r − r′|kF )v(r′)ψ (r′), (2.11)

see Ref. [33] for a different but equivalent way to write
this equation. Equation (2.11) is very similar to the Bethe-
Goldstone equation for a pair of particles whose center-of-
mass momentum is zero. In that case, one obtains [35,36][

− h̄2

m
∇2 + v(r)

]
ψ (r)

= −ρ

ν

∫
d3r′(|r − r′|kF )v(r′)ψ (r′). (2.12)

The G matrix is, in the local approximation, given by

Ĝ(q) = V̂ (q) −
∫

d3q′

(2π )3
V̂ (|q − q′|) Ĝ(q′)

2tF (q′)
. (2.13)

The convolution product is best written in coordinate space,

Ĝ(r) = V̂ (r) − V̂ (r)

[
Ĝ(q)

2tF (q)

]F
(r). (2.14)

We have above not explicitly spelled out the operator de-
pendence which is implied. The equations are the same for
state-dependent interactions, they separate in the projector
representation {P̂S, P̂T +, P̂T −}.

We stress here that the local “particle-hole” interaction
V̂p−h(q) entering the summation of ring diagrams must not be
identified with some local approximation of the G matrix. This
is seen most easily in a self-bound system like nuclear matter
by the argument that the Fermi-sea average of the G matrix
should basically be the interaction correction to the binding
energy which is negative. On the other hand, the matrix ele-
ment of the central component of V̂p−h(q) at the Fermi surface
is the interaction correction to the incompressibility which is
positive [37]. The problem is not as significant for repulsive
systems like neutron matter studied here or for electrons [38],
we see, on the other hand, no reason to make such unnecessary
approximations.

The FHNC-EL equations lead to a slightly different
form [39], but note that FHNC sums more than just the
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h1 h’1p1 p’1

q1

q2

- 2

FIG. 2. The left diagram is the second-order Goldstone diagram,
the wiggly line represents an interaction. The three diagrams on
the right-hand side are the corresponding JF diagrams, the usual
diagrammatic conventions [42] apply: The dashed line represent cor-
relation factors h(ri j ) and the oriented solid ones represent exchange
lines (ri jkF ).

particle-particle ladders. We found, however, in our numerical
applications that the numerical solutions are very close. We
shall, therefore, not elaborate on this issue any further. Dia-
grammatically we can identify the pair wave function ψ (r)
with the direct correlation function �dd(r),

ψ (r) =
√

1 + �dd(r). (2.15)

III. BEYOND PARQUET: INCLUDING
“TWISTED CHAIN” DIAGRAMS

A. Low order analysis

We now turn to the main issue of this work, which is
the diagrammatic content and the treatment of the com-
mutator terms introduced by the need to symmetrize the
operator product (1.8). For this purpose, we utilize the cor-
respondence between diagrams of the cluster expansions for
Jastrow-Feenberg wave functions and specific approximations
to Goldstone diagrams. Such a correspondence has been ob-
served a long time ago [40,41]. In a very vague language,
Jastrow-Feenberg diagrams and Goldstone diagrams can be
identified by absorbing the energy denominator in the interac-
tion which then defines a dimensionless function h(ri j ). What
remains is only the momentum flux and the Pauli operators.

The rules on how to translate a Goldstone diagrams into a
Jastrow-Feenberg diagram are then easily verified:

(i) Reinterpret each interaction line by a correlation func-
tion h(ri j ) = f 2(ri j ) − 1.

(ii) Omit all energy denominators.
(iii) Each hole line turns into an exchange line (ri jkF ),

where (x) = 3
x j1(x).

(iv) Each particle line turns into δ(ri j ) − (ri jkF ).

There cannot be an exact one-to-one correspondence be-
cause the wave function (1.5) or (1.8) is defined for any
correlation function, whereas the sum of all Goldstone dia-
grams converges toward the exact ground state. To make the
connection complete one must also include the optimization
of the correlations.

To see how this works, we consider the simple second-
order perturbation theory. To simplify the notation, we do this
for central interactions only. The left figure in Fig. 2 is the

h1 h’1

p2

p1

p’2

p’1

q1

q3

q2

h1 h’1

p1

p2

p’1

p’2

h3 p3

q1

q3

q3

q2

FIG. 3. The simplest ladder diagrams. The left diagram is the
ordinary three-rung ladder, the right one contains an induced
interaction.

second-order Goldstone diagram, and the right figure is what
would result from the above operations. Note that the first of
the JF diagrams does not appear in cluster expansions of the
Jastrow-Feenberg wave function.

Let us next see how the localization procedure (2.6) of
parquet theory works in the case of a simple ladder diagram.
Figure 3 shows the third-order ladder diagram in which the
middle rung in the left diagram is replaced by an induced
interaction in the right diagram.

The exact form of the left diagram is, for local translation-
ally invariant interactions,

1

N3

∑
qih1h′

1

ṽ(q1)
n̄(h1 + q1)n̄(h′

1 − q1)

eh1+q1 + eh′
1−q1 − eh1 − eh′

1

× ṽ(q1 − q2)
n̄(h1 + q2)n̄(h′

1 − q′
2)

eh1+q2 + eh′
1−q2 − eh1 − eh′

1

ṽ(q2). (3.1)

We can write the right diagram in Fig. 3 in a similar way,

1

N3

∑
qih1h′

1

ṽ(q1)
n̄(h1 + q1)n̄(h′

1 − q1)

eh1+q1 + eh′
1−q1 − eh1 − eh′

1

× w̃
(
q1 − q2, eh1+q1 + eh′

1−q2 − eh1 − eh′
1

)
× n̄(h1 + q2)n̄(h′

1 − q′
2)

eh1+q2 + eh′
1−q2 − eh1 − eh′

1

ṽ(q2), (3.2)

with an energy-dependent interaction,

w̃(q, h̄ω) = −ṽ2(q)
1

N

∑
h

1

eh+q − eh + h̄ω
. (3.3)

The localization procedure of parquet theory replaces the
energy-dependent-induced interaction w̃(q, h̄ω) by an energy-
independent interaction which is constructed from w̃(q, h̄ω)
by evaluating this quantity at an averaged frequency ω̄(q), i.e.,

w̃(q) = w̃(q, h̄ω̄(q)), (3.4)

see Eq. (2.6). Once w̃(q, h̄ω) has been replaced by w̃(q) =
w̃(q, h̄ω̄(q)), the combination ṽ(q) + w̃(q) can be used as an
effective interaction in the Bethe-Goldstone equation; this is
exactly the connection between the parquet-diagram and the
(F)HNC-EL view of ground-state correlations.

In the next order, shown in Fig. 4, we first see the possibil-
ity of “twisting” chain diagrams.
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FIG. 4. Fourth-order ladder diagrams, including a “twisted
chain” diagram. The left diagram is the four-body ladder, in the
middle diagram one of the interactions is replaced by an induced
interaction, and the right one the twisted version.

The left and the middle diagrams can again be combined
by introducing the energy-dependent-induced interaction
w̃(q, h̄ω) which is then, in the local approximation, replaced
by w̃(q) as in Eq. (3.4).

The third diagram, although it has the same components,
is by its very definition not a parquet diagrams, and cannot
be represented in terms of the energy-dependent interaction
w̃(q, h̄ω). Apply now the rules, discussed in connection with
Fig. 2, for how to identify Goldstone and Jastrow-Feenberg di-
agrams and re-interpret the second and third diagram shown in
Fig. 4 as Jastrow-Feenberg diagrams. We then find that these
two diagrams have indeed the same value, i.e., the Jastrow-
Feenberg wave function suggests to approximate these two
terms by the same quantity. We can therefore conclude that, if
we want to approximate the cross-going portion in the third
diagram by a static interaction, this should be the same as
the induced interaction w̃(q, ω). Moreover, the equivalence of
Jastrow-Feenberg theory and the local parquet theory shows
that the FHNC-EL approximation contains both terms.

The above analysis is valid only for state-independent
interactions or correlations or, in other words, for the
configuration-space components of this diagram. There is
no reason that the same argument should work for the
spin/isospin components. Assume therefore now that interac-
tions are state dependent. For the present purpose, it is best
to represent them in the {1, L̂, T̂ } basis, then the operators
on the interactions with momentum transfer q4 must be the
same, say, Ôα and the operator associated with the interaction
with momentum transfer q4 be Ôβ . We were above led to
the conclusion that variational wave functions suggest the
approximation that the coordinate or momentum dependence
of the subdiagrams with momentum transfer q4 are the same,
but the operator dependence has to be included more carefully.
The second diagram in Fig. 4 has then the operator structure

T r4[Ôα (14)Ôα (42)Ôβ (12)],

whereas the third diagram has the operator order

T r4[Ôα (14)Ôβ (12)Ôα (42)],

i.e., the combination of these two operators is exactly the
symmetrized product.

The way to correct the parquet equations [32] or the version
of the (F)HNC equations that ignores all commutators [23] is

therefore to add the commutator of these two terms.

1
2T r4[Ôα (14)[Ôβ (12), Ôα (42)]].

B. Twisted chains corrections to the Bethe Goldstone equation

We now turn to including the “twisted chain” diagrams in
the localized Bethe-Goldstone equation.

We have two diagrammatic elements: The bare interaction
v̂(q) which is completely irreducible and the induced interac-
tion ŵI (q), which is particle-hole reducible and comes from
the FHNC-EL equations or is constructed by means of the
“average energy” approximation (3.4). The bare interaction
comes always in combination with the induced interaction,
we will depict the sum of these two as a magenta wiggled
line. For the following calculations, we assume that both the
bare interaction v̂(i, j) and the induced interaction ŵI (i, j)
are given in the operator basis {1, L̂, T̂ }. In that basis, it is
sufficient to consider chains of two elements as shown in
Fig. 4, the longer chains left and right of the particle-hole
bubble {p4, h4} can be summed into one term.

The “cross-going” diagrams, i.e., those of the topology of
the third diagram shown in Fig. 4 must all be particle-hole
reducible, we will depict these as blue wiggled lines. As
we have shown above, the Jastrow-Feenberg wave function
suggests that configuration space of the second and the third
diagram in Fig. 4 are the same and all we need to do is to
include the commutators.

Let us assume that the operator connected with the in-
teraction line v̂ + ŵI in Fig. 4 is Ôv (i, j). The operator
connected with the induced interaction is Ôw(i, j). These
operators are either L̂(i, j) = σα (i)t (L)

αβ (r̂)σβ ( j), t (L)
αβ = r̂α r̂β or

T̂ (i, j) = σα (i)t (T )
αβ (r̂)σβ ( j), t (T )

αβ = r̂α r̂β − δαβ . We will also
need the same set of operators in momentum space, the unit
vector r̂ is then replaced by q̂. We label the external points
with a, b and the internal points with numbers. The correction
to the unsymmetrized operator product is then given by the
commutator

1
2T r1[Ôw(a, 1)[Ôv (a, b), Ôw(1, b)]], (3.5)

where the Ôw are the spin-operators associated with the in-
duced interaction ŵI and Ôv are those associated with v̂ + ŵI .
The commutator with the central operator is evidently zero. In
what follows, we will also need the relationships

L̂2 = P̂S + P̂T + + P̂T − = 1, (3.6a)

T̂ 2 = 4P̂S + 4P̂T − = 21 − 2L̂, (3.6b)

L̂T̂ = 2P̂S − 2P̂T − = −T̂ . (3.6c)

For both the longitudinal and the transverse operators, we
have

∑
β tαβtβμ = tαμ, we get therefore for (3.5)

T r1
[
σα (a)t (w)

αβ σβ (1)σγ (a)t (v)
γ δ σδ (b)σλ(1)t (w)

λμ σμ(b)
]

− νOv (a, b)Ow(a, b)

= −2νOv (a, b)Ow(a, b) + 2νt (w)
αβ t (v)

αβ .

We must now distinguish three cases:

064305-6



VARIATIONAL AND PARQUET-DIAGRAM CALCULATIONS … PHYSICAL REVIEW C 102, 064305 (2020)

FIG. 5. Examples where the reducible induced interaction
crosses more than one rung. The magenta line represents the sum
v̂ + ŵI . The rungs can all be summed to the G matrix.

(i) Both Ôv (a, b) = Ôw(a, b) = L̂(a, b). Use Eq. (3.6a):

−2νL̂2(a, b) + 2νt (L)
αβ t (L)

αβ = 0. (3.7)

(ii) Ôv (a, b) = L̂(a, b) and Ôw(a, b) = T̂ (a, b). Use
Eq. (3.6c):

−2νL̂(a, b)T̂ (a, b) + 2νt (L)
αβ t (T )

αβ = 2νT̂ (1, 2). (3.8)

(iii) Both Ôv (a, b) = Ôw(a, b) = T̂ (a, b). Use Eq. (3.6b):

−2νT̂ (a, b)2 + 2νt (T )
αβ t (T )

αβ = 4νL̂(a, b). (3.9)

So far we have only considered the simplest process. Next,
consider the series shown in Fig. 5. The summation of these
diagrams is necessary to deal with short-ranged correlations.

The diagram with n rungs and one crossing has the spin-
operator structure

T r1
[
Ôw(a, 1)Ôv1 (a, b) . . . , Ôvn (a, b)Ôw(b, 1)

−Ôv1 (a, b) . . . , Ôvn (a, b)Ôw(a, 1)Ôw(b, 1)
]

where the Ovi are the spin-operators connected to the n rungs.
These are a priori from the set {1, L̂, T̂ }. We rewrite the

FIG. 6. The summation of more than one cross-going lines.

product Ôv1 (a, b), . . . , Ôvn (a, b) in terms of the projection
operators (1.3). All of these operators have, in coordinate
space, the same spatial argument r̂. They are therefore idem-
potent and, hence, the product Ôv1 (a, b), . . . , Ôvn (a, b) can be
rewritten as a linear combination of the projection operators
(1.3) which, at the end, is transformed to a linear combination
of the set {1, L̂, T̂ }. The conclusion is that sum of all magenta
lines in Fig. 5 can be represented by the G matrix.

Similarly, we can calculate the set of diagrams shown in
Fig. 6. Note that we can here, according to the above, inter-
pret the magenta wavy line as a component of the G matrix.
Then the operator form of a diagram with n crossing rungs in
Fig. 6 is

T r1...n
[
Ôw1 (a, 1) · · · Ôwn (a, n)Ôv (a, b)Ôw1 (1, b) · · · Ôwn (n, b)

−Ôv (a, b)Ôw1 (a, 1)Ôw1 (1, b) · · · Ôwn (a, n)Ôwn (n, b)
]
.

(3.10)

To evaluate this expression, we use

Ôv (a, b) = 1

ν
T rn+1[Ôv (a, n + 1)Ôv (n + 1, b)]. (3.11)

Therefore, Eq. (3.10) can be rewritten in the form

1

ν
T r1...n+1

[
Ôv (n + 1, b)Ôw1 (a, 1)Ôw1 (1, b) . . . Ôwn (a, n)Ôwn (1, n)Ôv (a, n + 1)

]
−T r1...n

[
Ôv (a, b)Ôw1 (a, 1)Ôw1 (1, b) . . . Ôwn (a, n)Ôwn (n, b)

]
= νn

ν
T rn+1

[
Ôv (n + 1, b)Ôw1 (a, b) . . . Ôwn (a, b)Ôv (a, n + 1)

]
−νn

[
Ôv (a, b)Ôw1 (a, b) . . . Own (a, b)

]
. (3.12)

We can now use the same argument as above to show that
the product Ôw1 (a, b) · · · Own (a, b) can be written as a linear
combination of the operator set {1, L̂, T̂ }. Summing over all
the blue lines in Fig. 6 gives just another Bethe-Goldstone
equation in which the v̂ + ŵ is replaced by the ŵ. This defines
a modified G matrix, say, Ĝ(w), where all the rungs are just
induced interactions.

Summarizing, the Bethe-Goldstone Eq. (2.13) with the ef-
fective interaction (2.8) is supplemented by a second equation
that sums the rungs containing only induced interaction lines

Ĝ(w)(q) = ŵI (q) −
∫

d3q′

(2π )3
ŵI (q − q′)

Ĝ(w)(q′)
2tF (q′)

. (3.13)

Along with the calculation of the G matrix we obtain the
pair wave function ψ̃ (q), Eq. (2.11) and an analogous quantity
ψ̃ (w)(q) corresponding to G̃(w)(q).

The above integral Eqs. (2.13) and (3.13) sum the two types
of ladder diagrams. The purpose of the summations shown in
Figs. 5 and 6 was to demonstrate that we can replace the sum
of all magenta wavy line by Ĝ(r) and the sum of all blue lines
by Ĝ(w)(r).

C. The irreducible part of the interactions

Equations (2.13) and (3.13) are solved in the
{PS, PT +, PT −} basis, we obtain therefore the operators in
the representation

Ĝ(r) = GS (r)P̂S + GT +(r)P̂T + + GT −(r)P̂T −

=
∑

α

Gα (r)P̂α, (3.14)
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and the same form for Ĝ(w)(r). To calculate the correction
V̂I (q) we now go back to the analysis of Fig. 4. We first rewrite
both quantities in the basis {1, L̂, T̂ }. We can then use the
coupling coefficients derived in Eqs. (3.7)–(3.9). We can then
write

V̂I (q) = −
∑
α,β

∫
d3q′

2(2π )3ρ
G̃α (|q − q′|) G̃(w)

β (q′)

2tF (q′)

× T r1[Ôβ (a, 1)[Ôα (a, b), Ôβ (1, b)]], (3.15)

where it is implied that the operators Oα (a, b) are from the set
{1, L̂, T̂ }. Of course, the commutator with the central operator
1 is zero. Using Eqs. (3.7)–(3.9) gives V̂I (r) in the same basis,
we must therefore transform back to {PS, PT +, PT −} basis.
From Eqs. (3.14) we finally obtain Ĝ(r) and Ĝ(w)(r) in the
projector basis {PS, PT +, PT −}.

V (S)
I (r) = − 1

8 GS (r)
[ − 3ψ

(w)
S (r) + 2ψ

(w)
T + (r) + ψ

(w)
T − (r)

]
− 1

4 GT +(r)
[
ψ

(w)
S (r) − ψ

(w)
T − (r)

]
− 1

8 GT −(r)
[
ψ

(w)
S (r) − 2ψ

(w)
T + (r) + ψ

(w)
T − (r)

]
,

(3.16a)

V (T +)
I (r) = − 1

8 GS (r)
[
ψ

(w)
S (r) − ψ

(w)
T − (r)

]
+ 1

8 GT −(r)
[
ψ

(w)
S (r) − ψ

(w)
T − (r)

]
, (3.16b)

V (T −)
I (r) = − 1

8 GS (r)
[
ψ (w)

s − 2ψ
(w)
T + (r) + ψ

(w)
T − (r)

]
+ 1

4 GT +(r)
[
ψ

(w)
S (r) − ψ

(w)
T − (r)

]
− 1

8 GT −(r)
[
ψ

(w)
S (r) + 2ψ

(w)
T + (r) − 3ψ

(w)
T − (r)

]
.

(3.16c)

Equations (3.16a)–(3.16c) show exactly the conclusion
drawn from the analysis of the symmetrized operator product
wave function: The process described by diagrams of the kind
discussed in Figs. 5 and 6 mix interaction components in
different channels. Self-consistency is obtained by inserting
the irreducuble terms V (α)

I (r) in the effective interaction (2.8)
and repeating the process to convergence.

IV. RESULTS

We have chosen in this work to study neutron matter for a
number of reasons. Neutron matter is, apart from the compli-
cations arising from the state dependence of the interactions,
one of the simplest systems of interest. As opposed to liquid
3He and nuclear matter, neutron matter is not self-bound. A
self-bound Fermi system has necessarily at least two spinodal
points below saturation density. An immediate consequence of
that is that the equation of state is a nonanalytic function of the
density. Therefore, any expansion of the equation of state in
powers of the density cannot converge up to equilibrium den-
sity. This complication does not exist in neutron matter and
we can focus on the problem at hand, which is the treatment
of operator-dependent correlations.

A consequence of the simplicity of neutron natter is, of
course, that relatively primitive approximations can lead, for
some quantities, to reasonable results. This is particularly true

for the equation of state because the error in the energy is
of second order in the error in the wave function. We must
therefore look at quantities that depend sensitively on the
quality of the treatment of the many-body problem. These
are mostly effective interactions which are the essential input
for studying pairing properties (see Refs. [43–45] for review
articles) and the density response of neutron matter which
have been discussed for decades [46–48].

We have carried out calculations for the Reid v6 inter-
action [3] and the v6 version of the Argonne interaction
[4]. The results are very similar and no insight is gained
from comparing these two interactions. We therefore report
results for the Reid potential only in the density regime
0.25 fm−1 � kF � 1.8 fm−1. The calculations to be presented
here refer to what we called in Ref. [33] the “parquet//1”
version. The approximation goes beyond Jastrow-Feenberg
in the sense that propagator corrections are included in both
the particle-particle and the particle-hole channels. The notion
“//1” refers to the inclusion of first-order exchange diagrams.
These are necessary to have a reasonably good agreement with
the long-wavelength limit V̂p−h(0+) and the Fermi-Liquid
parameters from hydrodynamic derivatives, see Refs. [39] and
[33] for a discussion. Our calculations to be presented here
go beyond the work of Ref. [33] by including diagrams that
would correspond to non-parquet diagrams in the language
of perturbation theory, or to commutator diagrams in the lan-
guage of the variational Jastrow-Feenberg method.

A. Interaction corrections

One expects the most pronounced consequence of includ-
ing “twisted chain” diagrams in coordinate space at short
and intermediate distances. Figure 7 shows, at kF = 1.0 fm−1,
the G matrix in the local approximation (2.13), the induced
interaction wI (r), and the “twisted chain” correction VI (r).
We also show the individual components that were spelled out
in Eqs. (3.16a)–(3.16c). For example [G(S)ψ (w)](r) shows the
contribution from the first line in Eq. (3.16a), [G(T +)ψ (w)](r)
the one from the second line and [G(T −)ψ (w)](r) the last
term. The corresponding information for the T + and the T −
projections is shown in the second and third figure, note that
[G(T +)ψ (w)](r) has no component in the T + channel.

In all three channels we observe the same features: The
induced interaction wI (r) is rather smooth and relatively long-
ranged, whereas the non-parquet diagram contributions are
localized at short and intermediate distances; this is similar to
the contribution from “elementary diagram” and three-body
correlations in quantum fluids. The reason for this is simply
the fact that VI (r) falls off roughly like the product of the
interaction and ψ (w)(r).

In the singlet channel, the non-parquet corrections prac-
tically double the repulsive induced interaction around the
potential minimum, it appears that this is a direct consequence
of the large hard core of the triplet channel potentials that is
mixed into the singlet channel. What is more important is that
VI (r) is in all three channels comparable to the induced inter-
action. On the other hand, the effect is practically irrelevant
in the triplet channels because all many-body corrections are
overwhelmed by the larger core size of the bare interaction.
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FIG. 7. The figures show, for the Reid v6 interaction at kF =
1.0 fm−1 the “twisted chain” correction VI (r) (red) to the effective
interactions, the induced interaction wI (r) (dark blue), the G matrix
(black dashed) in the local approximation (2.13) and the individual
components of VI (r) (light blue, beige, and dark blue lines) in the
projector channels S, T +, and T −. We also show for reference the
bare interaction in the same channels (red dashed lines).

-150

-100

-50

 0

 50

 100

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Reid  v6  interaction, kF  = 0.5 fm-1

V
I(S

) (r
) 

  [
M

eV
]

r  [fm]

VI
(S)(r)

wI
(S)(r)

[G(S)ψ(w)](r)
[G(T+)ψ(w)](r)
[G(T-)ψ(w)](r)

G(S)(r)

VS(r)

FIG. 8. Same as Fig. 7 for kF = 0.5 fm−1. Only the singlet chan-
nel is shown.

The situation changes rather drastically at lower densities.
We show in Fig. 8 the individual components of the interaction
for kF = 0.5 fm−1. In the singlet channel, the VI (r) is much
larger than the induced interaction wI (r) and is, therefore, the
dominant many-body effect. The G matrix becomes signifi-
cantly more attractive in the spin-singlet channel. The reason
for this is found in the fact that the bare S-wave interaction
is, with a scattering length of a0 ≈ −18.7 fm [49], rather
attractive and close to a bound state. As a consequence, the
pair wave function ψ (r) can change substantially if the in-
teraction is only slightly changed, this is the reason for the
rather large nearest-neighbor peak seen in Fig. 1. The large
nearest-neighbor peak has, in turn, the consequence that the
G matrix becomes significantly more attractive than the bare
interaction. Of course, many-body effects and the Pauli princi-
ples still play the dominant role in determining the pair wave
function: The zero-energy S-wave scattering function has a
nearest-neighbor peak of about 12, it is therefore nowhere
close to the in-medium pair wave function.

On the other hand, the correction from both the induced
interaction ŵI (r) and the “twisted chain” diagrams in the
triplet channels is again overwhelmed by the large core size
of the bare interaction and therefore not shown.

B. Correlation functions

To document the sensitivity of the pair correlations to the
treatment of many-body correlations, we show in Fig. 9 the
pair wave function ψα (r) in the three channels {S, T +, T −}.
By adding the non-parquet contributions to the irreducible
interaction, the peak in the pair wave function is reduced
by about 10% . The effect is easily understood by the fact
that the irreducible diagrams mix a part of the more repul-
sive spin-triplet interactions into the spin-singlet channel. The
change is visible but much more moderate in the spin-triplet
channels which is consistent with our findings on the effective
interactions in Figs. 7 and 8. The effect becomes larger at low
densities because the attractive induced interaction becomes
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FIG. 9. The figures show, for the Reid v6 interaction at kF =
0.5 fm−1, the pair wave function ψα (r) in the three projector chan-
nels S (red), T + (black), and T − (blue). The dashed lines show
the parquet//1 case. Each corresponding solid line represents what
is obtained if non-parquet diagrams are included.

weaker whereas the repulsive non-parquet corrections remain
roughly the same.

The strongly attractive S-wave interaction has led to dis-
cussions of a potential BCS-BEC crossover in low-density
neutron matter [43,50], our findings would suggest that many-
body effects can somewhat reduce such a crossover. It must
be kept in mind, however, that the repulsive interaction in the
spin-triplet channels must not be neglected; it is responsible
for stabilizing neutron matter. A model system of nucleons
interacting in all channels with the S wave interaction would
have a very low density spinodal point and would be unstable
at any density that might be of interest for the structure of
neutron stars.

C. Effective interactions

Figures 10 shows the full particle-hole interaction in the
three projections {S, T +, T −} with and without VI(r). The
total effect of adding “beyond parquet” corrections is in all
three channels a reduction of the short-ranged repulsion; the
effect is strongest in the S-channel, this is partly due to the
strong nearest-neighbor peak of the pair wave function, see
Fig. 1. We also observe a reduction of the attraction between
distances of 0.5 and 1 fm. In general we observe that the
many-body effects are comparatively weak despite the fact
that VI (r) is the dominant effect.

We conclude this section by remarking that the importance
of non-parquet diagrams is much less visible in momentum
space, this is basically caused by the fact that the long-
wavelength limit of both the particle-hole interaction and the
induced interaction are determined by Fermi-liquid param-
eters which come out reasonably well even in the ordinary
FHNC-EL or parquet theory.
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FIG. 10. The figures show, for the Reid v6 interaction the
coordinate-space representation of the particle-hole interaction with-
out (black lines) and with (red lines) the “twisted chain” corrections
as a function of the Fermi wave number in the projector channels S,
T +, and T −.

V. SUMMARY

We have in this paper developed a procedure to go beyond
parquet-diagram calculations in a nuclear many-body Hamil-
tonian. The essential aspect of that Hamiltonian is the state
dependence of the interaction. We have analyzed the sym-
metrized operator product form of the wave function of the
type (1.8) and have come to the conclusion that commutator
corrections, which have so far been ignored, can massively
compromise the vailidity of low-order methods, and can be
very important in cases where the interactions in spin-singlet
and spin-triplet states are very different. The problem largely
removed in parquet theory that can be formulated in terms of
physical observables and has no need for introducing varia-
tional correlation functions.
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FIG. 11. The figure shows the essential processes are included
in the “twisted chain” interaction correction. The red wavy lines
are either spin-singlet or spin-triplet interactions, the magenta line
may be either of the two, and the blue lines represent the induced
interaction ŵI .

The physical mechanism for why this is the case is made
clear by looking at the relevant processes from the point of
view of diagrammatic perturbation theory. The relevant mech-
anism is summarized in Fig. 11. In the left diagram, a pair of
particles that enter the process in a specific (singlet or triplet)
state will always remain in that state. The red wavy lines
therefore describe interactions in the same channel. This is
not changed by the exchange of a spin-fluctuation despite the
fact that the blue lines may be singlet or triplet interactions.

In the right diagram, a spin is absorbed, transported
through a spin-fluctuation (described by the chain of two blue
wavy lines), and reabsorbed at a later time. Therefore, the
magenta wavy line may be a triplet interaction whereas the
red lines are singlet interactions or vice versa. Evidently, this
makes little difference if the interactions are the same in spin-
singlet and spin-triplet states. On the other hand, there is no
reason that this is a valid approximation if the interactions are
very different which is the case for modern nucleon-nucleon
interactions [1,4].

On the technical side we have utilized techniques from
both variational Jastrow-Feenberg theory and perturbation
theory. The analysis of the symmetrized operator product form
of the variational wave function has indicated the potential
importance of commutator corrections. The correspondence
between Jastrow-Feenberg and Goldstone diagrams has then
revealed that these commutator corrections correspond to
Goldstone diagrams outside the parquet class, it also sug-
gested a way to calculate these corrections that would not be
immediately obvious from just looking at, for example, the
third diagram in Fig. 4.

To deal with this effect, we have utilized experience from
both variational and perturbation theory. We have used the
correspondence between Jastrow-Feenberg and Goldstone di-
agrams to conclude that these processes are not described
by parquet diagrams. The practical implementation of these
terms utilized again the view of variational wave functions to
identify approximations for those non-parquet diagrams that
would not be obvious from a purely perturbative point of view.

From the analysis of the commutator diagrams one might
have expected a larger effect on the energetics of the system.
The reader is reminded that the argument applies only when
the correlation functions fα (r) are determined by some low-
order methods and commutator corrections are included. We

have shown in previous work [34], which is briefly outlined
in the Appendix, that this effect can be drastic. FHNC-EL
completely eliminates the need for introducing correlation
functions fα (r) and is formulated entirely in terms of the
pair distribution function or the direct correlation function
�dd(r), parquet theory never even introduces such correlation
functions. That way, the problem of potentially divergent con-
tributions never occurs which can otherwise only be solved by
omitting them.

The results have been described in Sec. IV, there is no need
for repetition. The effect of the non-parquet contribution on
the short-ranged correlations and the effective interactions in
the spin-singlet channel at low densities is enhanced by the
relatively strong attraction. We have commented on this effect
in earlier work [51].

The strong S-wave interaction has led to discussions of a
potential BCS-BEC crossover in low-density neutron matter
[43,50], our findings would suggest that many-body effects
can suppress such a crossover. It must be kept in mind, how-
ever, that the repulsive interaction in the spin-triplet channels
is responsible for stabilizing neutron matter. A model system
of nucleons interacting in all channels with the S wave in-
teraction would have a very low density spinodal point and
be unstable at any density that might be of interest for the
structure of neutron stars.

We have shown here only the most essential results, namely
effective interactions which are input to calculations of pairing
phenomena or low-lying excitations. For recent review articles
on pairing phenomena, see Refs. [43] or [44] and a collection
of papers describing recent research [45]. Most recently [52],
we have applied the methods developed here for the calcula-
tion of pairing gaps in neutron matter. We found indeed that
the corrections arising from the “beyond-parquet” diagrams
are important and lead to results that agree quite well with
quantum Monte Carlo data [53].

Similarly important is the response of neutron matter
which has been discussed over the years [46–48]. A particular
promising route appears to be the extension of the pair exci-
tation theory [54,55] to nuclear cases which have provided
a quantitative understanding of the full dynamic structure
function of quantum fluids [56–58]. The method may be un-
derstood as a correlated version of what is called in nuclear
physics “second RPA [59–64],” being built on a correlated
ground state instead of a model state of single-particle wave
functions, the approach avoids the usual problems caused by
strong, short-ranged correlations. Another important further
extension of our methods is, of course, the inclusion of spin-
orbit forces which are of quantitative importance [65]. Work
in this direction is in progress.
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APPENDIX: A SIMPLE EXAMPLE

We review in this section a somewhat simpler case where
the effect of the symmetrization can be studied explicitly.
Consider a fictitious system of bosons with spins [34]. We
keep only the Ôc = 1 and Ô3(i, j) = σ i · σ j . In that case,
the cluster expansions can be simplified by assuming a sym-
metrized operator product for the square of the wave function,

�2
0 = S

{∏
i< j

[
f 2
c (ri j ) + f 2

σ (ri j )σi · σ j
]}

. (A1)

The distribution functions then have the general form

gc(r) = f 2
c (r)Fcc(r) + f 2

σ (r)Fcσ (r)

gσ (r) = f 2
c (r)Fσc(r) + f 2

σ (r)Fσσ (r). (A2)

where the Fi j are multidimensional integrals involving
hc(ri j ) = f 2

c (ri j ) − 1 and hσ (ri j ) = f 2
σ (ri j ). If one ignores

all commutators, a set of HNC equations can be derived in
much the same way as for spin-independent correlations. The
coefficient functions Fαβ (r) become

Fcc(r) = 1
4 [3eNσ (r) + e−3Nσ (r)]eNc (r)

Fcσ (r) = 3
4 [eNσ (r) − e−3Nσ (r)]eNc (r) = 3Fσc(r) (A3)

Fσσ (r) = 1
4 [eNσ (r) + 3e−3Nσ (r)]eNc (r),

where the Nc,σ (r) are the sums of chain diagrams. Defining
the sets of nonnodal diagrams

Xc(r) = gc(r) − 1 − Nc(r), Xσ (r) = gσ (r) − Nσ (r), (A4)

the nodal diagrams Nc,σ (r) are given in momentum space,

Ñc,σ (k) = X̃ 2
c,σ (k)/[1 − X̃c,σ (k)]. (A5)

In the next step, the parallel connections of all possible
chains are symmetrized with the appropriate combinatorial
factors. One then obtains a different set of coupling coeffi-
cients [34,66]

Fcc(r) = [cosh (Nσ (r)) + Nσ (r) sinh(Nσ (r))]eNc (r)

Fcσ (r) = [2 sinh (Nσ (r)) + Nσ (r) cosh (Nσ (r))]eNc (r)

= 3Fσc(r)

Fσσ (r) = [
cosh(Nσ (r)) + 1

3 Nσ (r) sinh (Nσ (r))
]
eNc (r).

(A6)

Equations (A3) and (A6) look, at the first glance, innocuous.
To demonstrate our point we rewrite the pair-distribution func-
tions in the singlet and triplet channels,

g(r) = gs(r)P̂s + gt (r)P̂t , (A7)

where

gs(r) = gc(r) − 3gσ (r), gt (r) = gc(r) + gσ (r), (A8)

are the distribution functions and nodal quantities in these
channels. In this representation we have, for the unsym-
metrized version (A3)

gs,t (r) = f 2
s,t (r)eNs,t (r), (A9)

i.e., the distribution functions are indeed proportional to the
correlation functions in the spin-singlet and spin-triplet chan-
nels. On the other hand, such a simple relationship can not be
derived if the simplest nontrivial commutators are included
as in Eqs. (A6). The pair distribution functions gs,t (r) are
combinations of f 2

s (r) and f 2
t (r) whose detailed structure is

not illuminating.
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