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Isobaric analog state energy in deformed nuclei: A toy model
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A formula to evaluate the effects of a general deformation on the Coulomb direct contribution to the energy
of the isobaric analog state (IAS) is presented and studied via a simple yet physical model. The toy model gives
a reasonable account of microscopic deformed Hartree-Fock-Bogoliubov (HFB) calculations in a test case, and
provides a guidance when predicting unknown IAS energies. Thus, deformed HFB calculations, to predict the
IAS energies, are performed for several neutron-deficient medium-mass and heavy nuclei which are now planned
to be studied experimentally.
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I. INTRODUCTION

Isospin is one of the most important (approximate) sym-
metries in nuclei. The validity of isospin symmetry has been
established by the experimental observation of isobaric analog
states (IAS) by charge-exchange reactions. Recently, these
states have been investigated extensively in connection with
the symmetry energy, in particular to determine the so-called
slope parameter L [1–3]. The nuclear symmetry energy is
one of the fundamental ingredients to describe the nuclear
equation of state (EoS) when dealing with isospin-asymmetric
matter. Its determination may entail profound consequences
in our understanding of various physical observables; the
symmetry energy governs not only properties of nuclei, but
also numerous facets of astrophysics like neutron stars and
supernovae [4–6]. The nuclear EoS and symmetry energy
have been discussed in many different contexts, in which both
the strong and Coulomb interactions play a role. It should
be noticed, however, that our knowledge of the strong inter-
action, even in its realistic form employed in ab initio type
calculations, has some room to be improved for reaching a
more robust understanding of the nucleus and of the nuclear
EoS. On the other hand, the IAS is essentially governed by the
well-established Coulomb force, which is an advantage when
trying to elucidate the EoS in asymmetric nuclear matter.

Up to now, theoretical studies of IAS have been mainly
focused on spherical nuclei such as 48Ca, 90Zr, and 208Pb.
The only few exceptions, to the best of our knowledge, are
the Skyrme calculations by Yoshida [7] and by the Madrid
group [8,9]. However, a large number of deformed nuclei exist
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in wide regions of the mass table, and play an important role
for various nuclear structure problems. While experimental
data of IAS exist in some deformed nuclei, the informa-
tion on deformation effects on the IAS is still missing in a
transparent way besides only a few theoretical studies. The
IAS in neutron-rich nuclei have been considered in most of
the previous studies since the large isospin values of these
nuclei make it easier to observe experimentally the IAS as
an isolated narrow resonance. On the other hand, neutron-
deficient nuclei have some advantages since the differences
between the proton and neutron densities (i.e., the size of
the neutron skin) is relatively small and, consequently, their
absolute errors are smaller. This allows evaluating the density
differences �ρnp = ρn − ρp with a better systematic accuracy
from charge-exchange reactions. Another interesting aspect
is that most neutron-deficient isotopes in the medium- to
heavy-mass regions may have large isospin mixing, which
will have a noticeable impact on the IAS energy and its
systematics.

In this paper, we derive a general formula for the deforma-
tion effects on the Coulomb direct contribution to the energy
of the IAS and provide a simple albeit physical model. In
addition, we estimate the deformation effects using a mi-
croscopic Hartree-Fock-Bogoliubov (HFB) model and test
both the general formula and the proposed toy model. Then,
we study several neutron-deficient medium-mass and heavy-
nuclei, which are now planned to be studied experimentally in
RCNP, Osaka within the LUNESTAR project [10].

The paper is organized as follows. In Sec. II, the theoretical
model is introduced. In Sec. III, we test the general formula to
account for deformation effects on the IAS energy and the toy
model by comparing them with HFB results. We also provide
and discuss deformed HFB predictions for experimentally
accessible neutron-deficient nuclei. Conclusions are drawn in
Sec. IV.
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II. MODEL

A. Definition of the IAS energy

The isobaric analog state (IAS) energy EIAS can be defined
as the energy difference between the analog state |A〉 and
the parent state |0〉. The parent state is an eigenstate of the
Hamiltonian H with N neutrons and Z protons and the analog
state can be defined as [11]

|A〉 ≡ T−|0〉
〈0|T+T−|0〉1/2

, (1)

where T+ = ∑A
i t+(i) and T− = ∑A

i t−(i) are the isospin rais-
ing and lowering operators, respectively, that follow the usual
SU(2) algebra

[T+, T−] = 2Tz, [Tz, T±] = ±T±. (2)

Tz = ∑A
i tz(i) and tz has eigenvalues −1/2 for protons and 1/2

for neutrons. Hence,

EIAS = 〈A|H|A〉 − 〈0|H|0〉 = 〈0|T+[H, T−]|0〉
〈0|T+T−|0〉 . (3)

Assuming good isospin in the parent state T+|0〉 = 0, Eq. (3)
is rewritten as

EIAS = 1

N − Z
〈0|[T+, [H, T−]]|0〉. (4)

It is important to note that the latter formula can be only
applied to nuclei with N > Z . If isospin mixing is considered,
namely if T+|0〉 �= 0, Eq. (4) should be corrected as in Eq.
(A6) of Ref. [12]. A simple approximate expression for that
correction is [11] (cf. also Appendix A in Ref. [12])

E IM
IAS ≈ −170ε2 N − Z + 2

N − Z
A−1/3, (5)

where ε is the isospin mixing in the parent state. Specifically,
if the parent state wave function is |0〉 = ∑

n an|T0 + n, T0〉,
and the states |T0 + n, T0〉 have good isospin, then ε ≡ a1: the
admixture of states with total isospin T > T0 + 1 is expected
to be very small and can be neglected. Under this assumption,
we can define

ε2 ≡ 〈0|T−T+|0〉
N − Z + 2

, (6)

where, for our purposes here, it is accurate to evaluate the nu-
merator on a Bardeen-Cooper-Schrieffer (BCS) ground state
wave function and assuming spherical symmetry.1 This will
give the simple and closed expression

ε2 ≡ 1

N − Z + 2

∑
np, nn

lp=ln
jp= jn

(2 jp + 1)v2
pu2

nO2
np (7)

1It is important to note here that deformation would be a correction
to isospin mixing which is a correction to the IAS energy. The
approximate character of Eq. (5) is consistent with the fact that we
are dealing with a second-order, small effect.

with the overlap factor between the neutron (n) and proton
(p) radial part Rn,l (r) of the considered single particle wave
function

Onp ≡
∫ ∞

0
drr2Rnp,lp (r)Rnn,ln (r). (8)

In these expressions, n is the principal quantum number, and
l and j are the orbital and total angular momentum quantum
numbers, respectively, while v and u correspond to the occu-
pation factors. As a test, we have confirmed that the estimation
in Eq. (6) calculated within the Tamm-Dancoff approximation
coincides within a very good accuracy (1% or below) with the
expression in Eq. (7).

B. Contributions to the IAS energy

Due to the structure of Eq. (3), EIAS depends only on
isospin symmetry breaking (ISB) parts of H. In nuclear
physics, the main isospin breaking term is known to be due
to the Coulomb interaction. Therefore, the bulk contribution
to Eq. (3) will be due to the difference in the expectation
value of the Coulomb matrix elements between proton and
neutron distributions. That is, for the direct Coulomb (Cd)
term, assuming an independent particle model, one has

ECd
IAS = 1

N − Z

∫
[ρn(r) − ρp(r)]U direct

C (r)dr, (9)

where U direct
C (r) is the direct part of the Coulomb potential

generated by the electric charge distribution ρch(r),

U direct
C (r) =

∫
e2

|r′ − r|ρch(r′)dr′. (10)

Under the same assumption and adopting, in addition, the
local density approximation (LDA), the Coulomb exchange
contribution can be also conveniently written as a function of
the neutron and proton density distributions as

ECx
IAS = 1

N − Z

∫
[ρn(r) − ρp(r)]U exch,LDA

C (r)dr, (11)

where U exch,LDA
C (r) is the Coulomb exchange part of the

Coulomb energy potential generated by the electric charge
distribution ρch(r) within the LDA,

U exch,LDA
C (r) = −e2

[
3

π
ρch(r)

]1/3

. (12)

This contribution will be much smaller than the Coulomb
direct part. In what follows we will approximate ρch(r) by
ρp(r). This approximation produces a negligible effect for
our purposes here, but should be dropped if one wishes a
precise value of the IAS energy [2,3]. QED corrections in the
fine-structure constant to the Coulomb potential and Coulomb
correlation effects will be also neglected in the present study.

Other ISB effects than Coulomb force come from the
nuclear strong interaction. Those terms can be parametrized
by simple effective interactions solved at the Hartree-Fock
level as it has been recently shown [2,3,13,14]. For ex-
ample, assuming a charge symmetry breaking (CSB) and
charge independence breaking (CIB) effective interaction
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written as

VCSB(r1, r2) = 1
2 [tz(1) + tz(2)]s0(1 + y0Pσ )δ(r1 − r2),

VCIB(r1, r2) = 2tz(1)tz(2)u0(1 + z0Pσ )δ(r1 − r2), (13)

in analogy to the well-known Skyrme interaction and where
Pσ is the exchange operator in spin-space, one finds the fol-
lowing contributions to Eq. (4):

ECSB
IAS = −1

4

s0(1 − y0)

N − Z

∫
dr

[
ρ2

n (r) − ρ2
p(r)

]
, (14)

ECIB
IAS = −1

2

u0(1 − z0)

N − Z

∫
dr[ρn(r) − ρp(r)]2. (15)

Hence, the total IAS energy can be accurately estimated by
taking into account all these contributions [2,3]. In the present
study, we will focus only on the terms that are commonly in-
cluded in current EDFs, that is, Coulomb direct and Coulomb
exchange. In addition, since we will base our microscopic
calculations on a Hartree-Fock-Bogoliubov (HFB) approach,
we should correct for the spurious isospin mixing. To do that
we will resort to the approximate formula given in Eq. (5).

Finally, the IAS energy will be estimated from Eqs. (5), (9),
and (11) as

EIAS = ECd
IAS + ECx

IAS + E IM
IAS. (16)

C. Deformation effects to the IAS energy

In the following we explicitly evaluate Eqs. (9) and (11)
assuming the neutron and proton densities, ρn(r) and ρp(r),
can be deformed and relating this result to the spherical case.
To this end, we will follow the approach given in Ref. [15].

We start by introducing some notation and writing the
square of the distance vector R of a deformed system (el-
lipsoid) as R2 = (x/a)2 + (y/b)2 + (z/c)2, where x, y, and
z are Cartesian coordinates and a, b, and c dimensionless
quantities such that abc = 1 and, thus, the length of each
semi-axis is aR, bR, and cR. The spherical case is recovered
for a = b = c = 1. The relation between the modulus of the
deformed distance vector R and the modulus of the spherical
distance vector r is

R2 = r2

(
sin2 θ cos2 φ

a2
+ sin2 θ sin2 φ

b2
+ cos2 θ

c2

)

≡ r2S(θ, φ). (17)

We are considering a general family of deformations that
conserve the volume. dR = dRd
 = drd
 = dr since the
Jacobian of the transformation is 1. Then,

∫
drρα (R) =∫

dRρα (R) = ∫
drρα (r) or, in other words, integrals that de-

pend on an arbitrary power α of the density will not depend
on deformation, as long as one does not introduce an explicit
dependence on r. Therefore, the result of Eqs. (11)—as well
as those in Eqs. (14) and (15)—is independent of deformation
effects. Only the Coulomb direct contribution shown in Eq. (9)
will display some dependence on deformation.

To deal with the direct Coulomb contribution, we will
compare the result of Eq. (9) between a spherical nucleus
with densities ρn(r) and ρp(r) and a deformed nucleus as-
suming that the neutron and proton densities satisfy an ≈ ap,

bn ≈ bp, and cn ≈ cp and have the same functional form of
the corresponding spherical nucleus but depending on R2

n ≡
r2Sn(θ, φ) and R2

p ≡ r2Sp(θ, φ). That is, we shall write ρn(Rn)
and ρp(Rp).

In order to evaluate Eq. (9) for a deformed nucleus within
the conditions above described, we will first perform a Fourier
transform

ECd
IAS = e2

N − Z

1

2π2

∫
dRndR′

p

×
∫

dq[ρn(Rn) − ρp(Rp)]
eıQnRn e−ıQpR′

p

q2
ρp(R′

p). (18)

By defining Q ≡ (aqx, bqy, cqz ) in analogy with
R ≡ (x/a, y/b, z/c), that is, Q2

n = q2/Sn(θ, φ) and
Q2

p = q2/Sp(θ, φ) and by taking into account that dRn = dr
and dRp = dr, we can write

ECd
IAS = 8

e2

N − Z

∫
dq
q2

∫
dR′

pR′
p

2
ρp(R′

p) j0(QpR′
p)

×
{∫

dRnR2
nρn(Rn) j0(QnRn)

−
∫

dRpR2
pρp(Rp) j0(QpRp)

}
. (19)

Since QnRn = QpRp, the last expression can be written as

ECd
IAS = 8

e2

N − Z

∫
dq
q2

∫
dR′

pR′
p

2
ρp(R′

p) j0(QpR′
p)

×
∫

dRpR2
p[λ3ρn(λRp) − ρp(Rp)] j0(QpRp), (20)

where

λ ≡ Qp

Qn
=

[
Sn(θ, φ)

Sp(θ, φ)

]1/2

(21)

depends only on the angles, and λ3ρn(λR) corresponds to
a volume conserving scaling of the neutron density ρn(R).
For λ = 1 we obtain the result for equally deformed neutron
and proton density distributions. Equation (22) can be further
developed as

ECd
IAS = 8

e2

N − Z

∫
d


Sp(θ, φ)

∫
dQpdR′

pR′
p

2
ρp(R′

p) j0(QpR′
p)

×
∫

dRpR2
p[λ3ρn(λRp) − ρp(Rp)] j0(QpRp). (22)

We now perform the following manipulations: (i) change of
variables R̃p = λRp in the integral that goes with ρn,∫

dR̃pR̃2
pρn(R̃p) j0

(
Qp

λ
R̃p

)
;

(ii) expand j0 for λ → 1 assuming similar neutron and pro-
ton deformations—as previously stated—and keep the lowest
order in λ,

j0

(
Qp

λ
R̃p

)
≈ j0(QpR̃p) + [ j0(QpR̃p) − cos(QpR̃p)](λ − 1)

≈ λ j0(QpR̃p) − (λ − 1) cos(QpR̃p);
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(iii) perform the change of variables Rp = R̃p,

λ

∫
dRpR2

pρn(Rp) j0(QpRp)

−(λ − 1)
∫

dRpR2
pρn(Rp) cos(QpRp).

By substituting the last expression in Eq. (22), we find

ECd
IAS = ECd,sph

IAS

1

4π

∫
d


λ

Sp(θ, φ)

+ 8
e2

N − Z

∫
d


1 − λ

Sp(θ, φ)

∫
dQp

×
{ ∫

dR′
pR′

p
2
ρp(R′

p) j0(QpR′
p)

×
∫

dRpR2
p[ρn(Rp) cos(QpRp) − ρp(Rp) j0(QpRp)]

}
,

(23)

where ECd,sph
IAS corresponds to the result assuming spherically

symmetric neutron and proton densities. Neglecting the term
in λ − 1 that should be close to zero under our assumptions,
we finally obtain

ECd
IAS = ECd,sph

IAS

1

4π

∫
d


λ

Sp(θ, φ)
,

ECd
IAS = ECd,sph

IAS

1

4π

∫
d


[Sn(θ, φ)]1/2

[Sp(θ, φ)]3/2
. (24)

The last expression differs from the result obtained assuming
spherical symmetry of the neutron and proton density distri-
butions by a factor

1

4π

∫
d


[Sn(θ, φ)]1/2

[Sp(θ, φ)]3/2
. (25)

Assuming equally deformed neutron and proton distributions
(λ = 1) the factor would be

1

4π

∫
d


S(θ, φ)
, (26)

where we have dropped the subindex for obvious reasons.
These expressions are valid for any deformation that

preserves the volume, and where the neutron and proton
distributions are deformed in a similar way. To a good approx-
imation, this is the case for most deformed nuclei according to
available microscopic calculations [16]. Hence, the usefulness
of Eq. (24).

In order to give some example in terms of the parameters
commonly used in nuclear physics, one should better write
S(θ, φ) in terms of spherical harmonics,

S(θ, φ)−1/2 =
∑
lm

αlmYlm(θ, φ) + C, (27)

taking care of renormalizing the expression so that the volume
is preserved by determining the proper value of the constant

C. That is, by imposing∫
drρ(r) =

∫
dRρ(R) ⇒ 1 = 1

4π

∫
d


S(θ, φ)3/2
. (28)

As an example, if we assume quadrupole deformation defining

[S(θ, φ)]−1/2 = 1 + β2Y20 + C, (29)

where α20 ≡ β2, the value of C is now −β2
2/4π . Hence, it is

easy to evaluate the effect on the energy of the IAS as

ECd
IAS = ECd,sph

IAS

[
1 − β2nβ2p

4π
+ (β2n − β2p)(β2n + β2p)

4π

+ (β2n − β2p)2

4π

]
. (30)

For the special case β2n = β2p this reduces to

ECd
IAS = ECd,sph

IAS

[
1 − β2

2

4π

]
, (31)

where we have neglected the terms in β4
2 . From the result in

Eq. (30), one should expect that the larger the quadrupole
deformation the smaller the IAS energy. In order to have a
qualitative idea about the effect of deformation on the IAS
energy, Eq. (31) predicts a relative difference that goes as
−β2

2/4π , which means, for very deformed nuclei with β2 ≈
0.8, a relative reduction of EIAS of about 5% with respect to
the spherically symmetric case. So, in general, deformation
effects to the IAS energy are expected to be small, about a few
% at most.

Since it will be useful for testing purposes in the next
section, let us use Eq. (31) to define an effective quadrupole
deformation assuming as known the Coulomb direct energies
of an axially deformed nucleus and its spherical counterpart,

βeff
2 ≡ 4π

(
1 − ECd

IAS

ECd,sph
IAS

)1/2

. (32)

D. Toy model

In order to understand in simple terms the relation between
the EIAS, the nuclear quadrupole deformation and the neu-
tron skin thickness of a spherical system �rsph

np ≡ 〈r2
n〉1/2

sph −
〈r2

p〉1/2
sph , we evaluate ECd,sph

IAS as in Refs. [2,3] within a simple
yet physical model. Within such model that assumes a uni-
form neutron and proton spherical distributions (sharp sphere
approximation) [2], one finds

ECd
IAS ≈

(
1 − β2

2

4π

)
ECd,sph

IAS

≈ 6

5

√
3

5

Ze2
(
1 − β2

2/4π
)

〈
r2

p

〉1/2

sph

⎛
⎝1 − 1

2

N

N − Z

�rsph
np〈

r2
p

〉1/2

sph

⎞
⎠,

(33)

that is, the IAS energy should decrease with both increasing
neutron skin thickness and nuclear quadrupole deformation.
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For simplicity, within our toy model, we will assume β2n =
β2p.

It is interesting to note that the effect of quadrupole defor-
mation on the mean square radius is

〈r2〉 =
∫

drr2ρ(R)

=
∫

drr2ρ

(
r

[
1 + β2Y20 − β2

2

4π

]−1
)

=
(

1 + 5

4π
β2

2

)
〈r2〉sph. (34)

From the latter result, it is clear that the effect of deformation
on the energy of the IAS cannot be accounted for only by
taking into account the deformation effects on the rms radii
of protons and neutrons, although this will produce the largest
effect. By using the result in Eq. (34) we can rewrite Eq. (33),
to order β2

2 , as follows:

ECd
IAS ≈ 6

5

√
3

5

Ze2
(
1 + 3

8π
β2

2

)
〈
r2

p

〉1/2

(
1 − 1

2

N

N − Z

�rnp〈
r2

p

〉1/2

)
. (35)

This expression allows one to directly use experimentally
known rms radii and deformations to estimate ECd

IAS. It should
be noticed that the deformation increases the numerator, while
the charge radius in the denominator is increased even more
by the deformation than the numerator. The net effect of
deformation decreases the IAS energy (35), consistently with
Eq. (33).

Within this model we can also derive a simple formula for
the Coulomb exchange contribution of Eq. (11). The result
reads as follows:

ECx
IAS = −

√
3

5

(
3

2π

)2/3 e2Z1/3〈
r2

p

〉1/2

(
1 − 3

N

N − Z

�rnp〈
r2

p

〉1/2

)
.

(36)

III. RESULTS

A. Deformation effects on a test nucleus

In this subsection, we have performed different axially
deformed constrained HFB calculations for the 120Sn nucleus,
from β2 = 0 to β2 = 0.5. We have slightly modified the code
HFBTHO [17] to use the SAMi interaction and calculate the
displacement energies shown in this paper. The number of
oscillator shells of the basis is 20, and we calculate pairing
correlations with particle number projection after variation,
with a density dependent pairing interaction of the type

V (r1, r2) = V0

[
1 + x

(
ρ
( r1+r2

2

)
ρ0

)]
δ(r1 − r2) (37)

with x = 0.5 (mixed pairing). The strength V0 is fixed as V0 =
−432.5 MeV fm3 in order to reproduce the neutron pairing
gap in 120Sn when the pairing cut-off energy is 60 MeV.

FIG. 1. Upper panel: βeff
2 in Eq. (32) as a function of the mass

deformation β2m. The gray line corresponds to the limit βeff
2 = β2m.

Lower panel: ECx
IAS as a function of β2m. The gray zone is just for a

guide to eyes. All calculations have been performed with the SAMi
functional.

In Fig. 1, the upper panel, we show (βeff
2 )2 from Eq. (32)

as a function of β2
2m, where

β2q =
√

π

5

Q2q〈
r2

q

〉
Nq

(38)

with q = n, p, m, and

Q2m = Q2n + Q2p (39)

from the HFB calculations. Note that β2
2m is obtained from

the HFB densities and could be different from the parame-
ter defining the deformation of the HFB potential. This is a
consistency test of Eq. (31), or a consistency test between den-
sities and Coulomb potentials. Results in the upper panel of
Fig. 1 do not deviate substantially from Eq. (31), i.e., from the
grey solid line. This result suggests that our model evaluation
of deformation effects on the IAS is quite acceptable. Note
that we have assumed β2n = β2p to define βeff

2 while HFB
calculations give some difference for the axial quadrupole
deformation of neutrons and protons.

In the lower panel of the same figure, we check numeri-
cally the contribution to the IAS energy from the Coulomb
exchange term in LDA approximation. The grey area delimits
the numerical variation of the Coulomb exchange (within
Slater approximation) with deformation. As we discussed in
the previous subsection, in principle this variation should be
zero. Numerically we find an error of few keV which is also
quite acceptable.

B. Toy model test: The Sn isotopic chain

In Fig. 2, we compare the HFB results for the Coulomb
direct and exchange contributions in Eqs. (9) and (11), re-
spectively, with their corresponding toy model counterparts,
that is, the direct and exchange ones in Eqs. (35) and (36),
respectively.

064303-5



X. ROCA-MAZA, H. SAGAWA, AND G. COLÒ PHYSICAL REVIEW C 102, 064303 (2020)

FIG. 2. Comparison of the HFB results (empty squares) with
the toy model results (plus symbols) as predicted by the SAMi
interaction along the Sn isotopic chain. Experimental data are also
shown when available [18]. In the insets, the absolute deviation of
the Coulomb direct term between HFB (9) and the toy model (35)
are shown in the upper panel, and those between the Coulomb ex-
change of HFB (11) and the toy model (36) are shown in the lower
panel.

In Table I we first show the isospin mixing probabilities,
both without and with pairing correlations. Those have been
calculated as in Eq. (7), from the overlap of the ground state
single-particle neutron and proton wave functions. The latters
have been evaluated within the HF-BCS approach, using the
same type of pairing interaction and model space as in the
HFB calculations so that to reproduce the neutron pairing
gap in 120Sn. This approximation is not expected to signi-
ficatively change the numerical value of ε and, thus, it is
enough for our purposes here to estimate the isospin mixing

TABLE I. Isospin mixing probability ε2 in the Sn isotopes. The
energy E IM

IAS is calculated by using (5), with the mixing probability ε2

in the case with pairing included. Energies are in MeV. Some calcu-
lations without pairing did not reach convergence, and correspond to
the entries in the table that are left blank.

ε2 (%) ε2 (%)
A (w/o pairing) (with pairing) E IM

IAS (MeV)

102 2.161 2.363 −1.719
104 1.513 1.576 −0.854
106 1.238 1.148 −0.549
108 0.886 −0.395
110 0.700 0.715 −0.304
112 0.593 0.597 −0.245
114 0.546 0.512 −0.205
116 0.436 0.453 −0.177
118 0.418 −0.160
120 0.393 0.403 −0.152
122 0.392 0.400 −0.149
124 0.395 0.402 −0.148
126 0.402 0.407 −0.148
128 0.411 0.412 −0.148
130 0.421 0.420 −0.150

in the wave function. In connection to that, it is also important
to remind the approximate character of our estimate of the
isospin mixing contribution to the energy of the IAS by means
of Eq. (5). Hence, the values in Table I should be taken
as semi-quantitative results. More precise results removing
spurious mixings by using the quasiparticle random phase
approximation—that exactly restore spurious contributions—
will be discussed in a future publication. As it is expected,
the isospin mixing probabilities are larger in neutron-deficient
nuclei and smaller in neutron-rich nuclei. As previously in-
vestigated [8,19], pairing may enhance the effect of isospin
impurities as it is actually found in our case as well. The
effect of the isospin mixing on the IAS energy amounts to
−1.7 MeV in 102Sn at the largest, and −150 keV in 120Sn at
the smallest.

The differences between the microscopic HFB calculations
and the macroscopic toy model are shown in the insets of
Fig. 2. Our toy model is quite reasonable in the description
of the Coulomb direct part (with an error of 1% at most),
and it reproduces the correct trend of the IAS energy, while
the estimate of the Coulomb exchange term is satisfactory
only for stable and neutron-rich nuclei. The reason might be
twofold: sharp sphere approximation in the toy model; and the
larger relevance of surface effects in the Coulomb exchange
term when compared to the Coulomb direct one. The latter can
be seen from Eqs. (35) and (36) where the surface correction
predicted by the toy model—term that goes with the neutron
skin—is 6 times larger for the Coulomb exchange.

In summary, the toy model deviation from the self-
consistent HFB calculations is about 5% for 102Sn and
decreases smoothly up to 1% for 130Sn as it an be seen from
Fig. 2.

C. Neutron-deficient medium- and heavy-nuclei
and IAS energies

In Table II, we show the results of deformed HFB cal-
culations as predicted by SAMi for several neutron-deficient
nuclei which are now planned to be studied experimentally
by the LUNESTAR project [10]. EHFB

IAS is the sum of the
direct Coulomb, exchange Coulomb, and the isospin mix-
ing contributions in Eqs. (5), (9), and (11). The deformation
effect on the IAS energy has been estimated in different
ways: from the HFB calculations �EHFB

IAS ≡ EHFB
IAS (β2n, β2p) −

EHFB
IAS (β2n = 0, β2p = 0); by using HFB calculations to in-

put the quantities appearing in the right-hand side (r.h.s.) of
Eq. (30); and by using HFB calculations to input the quantities
appearing in the r.h.s. of Eq. (31). The deformation effect
varies from −212 keV in 168Yb at the maximum to zero when
the nucleus is not deformed like, for example, in the case of
142Nd. In general, the deformation effect is small, nevertheless
it might be important—together with other neglected contri-
butions not object of this study—for a precise prediction of
the IAS energy.

The IAS of these nuclei are planned to be measured
by charge-exchange (3He, t ) reaction at Elab = 420 MeV at
RCNP, Osaka University, under the LUNESTAR project [10].
This projectile energy is very selective to excite isospin
states with respect to spin-isospin states. The experimental
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TABLE II. Results of deformed HFB calculations with the SAMi EDF. All energies are in MeV and proton rms radii and neutron skin
thickness in fm. EHFB

IAS is the sum of the direct Coulomb, exchange Coulomb and the isospin mixing contributions in Eqs. (5), (9), and (11). The
deformation effect on the IAS energy has been estimated in different ways: from the HFB calculations [�EHFB

IAS ≡ EHFB
IAS (β2n, β2p) − EHFB

IAS (β2n =
0, β2p = 0)]; by using HFB calculations to input the quantities appearing in the r.h.s. of Eq. (30); and by using HFB calculations to input the
quantities appearing in the r.h.s. of Eq. (31) (for the Coulomb direct term in both cases).

E exp
IAS �EIAS �EIAS

Nucl. β2n β2p β2m 〈r2
p〉1/2 �rnp EHFB

IAS Ref. [18] �EHFB
IAS [Eq. (30)] [Eq. (31)]

102
46 Pd 0.186 0.174 0.180 4.421 0.042 13.061 −0.162 −0.054 −0.036
106
48 Cd 0.255 0.256 0.256a 4.514 0.033 13.561 −0.089 −0.072 −0.074
112
50 Sn 0.192 0.199 0.195b 4.563 0.046 13.905 14.019(20) −0.001 −0.032 −0.044
120
52 Te 0.039 0.045 0.042 4.620 0.074 14.237 −0.001 −0.005 −0.002
124
54 Xe 0.000 0.000 0.000c 4.677 0.063 14.697 0.000 0.000 0.000
130
56 Ba 0.000 0.000 0.000 4.744 0.069 14.954 0.000 0.000 0.000
136
58 Ce 0.126 0.158 0.140d 4.819 0.075 15.057 −0.081 −0.026 −0.024
138
58 Ce 0.040 0.047 0.043 4.820 0.087 15.067 −0.010 −0.006 −0.002
142
60 Nd 0.000 0.000 0.000 4.864 0.079 15.540 0.000 0.000 0.000
144
62 Sm 0.000 0.000 0.000 4.893 0.061 16.008 16.075(15) 0.000 0.000 0.000
156
66 Dy 0.201 0.225 0.211 5.066 0.072 16.499 −0.003 −0.016 −0.061
158
66 Dy 0.197 0.217 0.205 5.076 0.087 16.444 −0.028 −0.020 −0.057
162
68 Er 0.348 0.378 0.360e 5.207 0.076 16.743 16.861(16) −0.112 −0.111 −0.181
164
68 Er 0.346 0.377 0.359f 5.220 0.089 16.668 16.778(9) −0.110 −0.107 −0.178
168
70 Yb 0.385 0.413 0.396 5.293 0.086 16.860 −0.212 −0.156 −0.223
174
72 Hf 0.304 0.319 0.310 5.289 0.091 17.426 −0.091 −0.103 −0.138
176
72 Hf 0.267 0.276 0.271 5.281 0.104 17.341 17.388(7) −0.086 −0.087 −0.105
180
74 W 0.278 0.299 0.286 5.334 0.093 17.718 −0.101 −0.073 −0.120
184
76 Os 0.335 0.355 0.343 5.418 0.085 18.035 −0.171 −0.126 −0.176
190
78 Pt −0.147 −0.141 −0.145 5.359 0.106 18.468 −0.037 −0.025 −0.032
196
80 Hg −0.180 −0.187 −0.183 5.437 0.105 18.736 −0.070 −0.058 −0.051

aDeformed secondary energy minimum for β2 ∼ 0.15 at �E ∼ 1 MeV.
bSpherical secondary energy minimum at �E ∼ 1.5 MeV.
cFlat energy surface up to β2m ∼ 0.2 with �E ∼ 1.5 MeV.
dSpherical secondary energy minimum at �E ∼ 1 MeV.
eDeformed secondary energy minimum for β2m ∼ 0.2 at �E ∼ 1 MeV.
fDeformed secondary energy minimum for β2m ∼ 0.2 at �E ∼ 1 MeV.

campaign will give us new information of IAS states outside
of the valley of stability. Specifically, it is planned to inves-
tigate the available most neutron deficient stable nuclei, and
the (3He, t ) reaction will lead to unstable daughter nuclei.
Using (3He, t ) ensures the best spectral resolution and the
most precise determination of the IAS excitation energy in
the daughter nucleus. The mass of the daughter nucleus will
be measured by a Penning trap experiment. The two experi-
ments, (3He, t ) and the mass measurement, will be combined
to extract the excitation energy of IAS with high accuracy. The
results shown in Table II reproduce the few experimentally
known IAS energies within an error of about 100 keV and,
thus, may give a good guide for experimental search of new
IAS states of these neutron-deficient nuclei.

The nuclei listed in Table II have relatively small neutron
skin size, so that accurate experimental cross section measure-
ments will not only provide the neutron skin size (small) but
also the radial dependence of skin density �ρnp = ρn − ρp.
Then, the deformation effect may play an important role to

establish the link between �ρnp and the symmetry energy in
these unstable nuclei, while the contributions to the absolute
IAS energy are rather small.

IV. SUMMARY

We have studied the isobaric analog state in spherical and
deformed nuclei in the medium- and heavy-mass region. We
propose a general formula [Eq. (24)] to account in a simple
way for the effects of deformation on the energy of the IAS
and a toy model based on such formula to explore both,
deformation effects on IAS energy and its dependence with
the neutron skin thickness. We examine the validity of the
presented model by comparing it with deformed HFB calcu-
lations in Sec. III. We have found that the expression (24)
describe well deformation effects and that the toy model
works well to describe the Coulomb direct contribution—
that is, the main contribution—to the IAS energy, within an
accuracy at the 1% level. The toy model expression for the
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Coulomb exchange within the Slater approximation gives also
a good account in the stable Sn isotopes, but it shows non-
negligible differences for Sn isotopes with N ∼ Z .

We have also performed deformed HFB calculations of
many neutron-deficient nuclei outside the valley of stability.
Our model reproduces well the empirical IAS energies, for
those nuclei whose IAS energies have been already measured.
Thus, our HFB results may provide a reasonable guide for
future experiments in the neutron-deficient nuclei proposed in
the LUNESTAR project at RCNP, Osaka University [10].
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