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Estimate of the location of the neutron drip line for calcium isotopes from
an exact Hamiltonian with continuum pair correlations
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Background: The region of the neutron-rich calcium isotopes chain of the nuclei chart is, nowadays, of great
activity. The experimental assessment of the limit of stability is of interest to confirm or improve microscopic
theoretical models.
Purpose: The goal of this work is to provide the drip line of the calcium isotopes from the exact solution of the
pairing Hamiltonian which incorporates explicitly the correlations with the continuum spectrum of energy.
Method: The modified Richardson equations, which include correlations with the continuum spectrum of energy
modeled by the continuum single particle level density, is used to solve the many-body system. Three models
are used, two isospin independent models with core 40Ca and 48Ca, and one isospin dependent model.
Results: One- and two-neutron separation energies and occupation probabilities for bound and continuum states
are calculated from the solution of the Richardson equations.
Conclusions: The one particle drip line is found at the nucleus 57Ca, while the two neutron drip line is found at
the nucleus 60Ca from the isospin independent model and at 66Ca from the isospin dependent one.
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I. INTRODUCTION

The Lego-like construction of isotopes for a given atomic
nucleus, sooner or later faces the particle continuum. For
example, the last observed bound fluorine is 31F [1], while
the last bound oxygen is 24O [2–5]. This simple comparison
between two elements which defer only in a single proton,
shows the complicated character of drip lines systems, posing
a big challenge to nuclear structure models. Interaction [6],
continuum [7], and many-body correlations [8], all together
collude in this kingdom [9,10].

The isotopic chain of calcium is currently under scrutiny
from both the theoretical and experimental aspects. A handful
of nuclei 59Ca and 60Ca have been recently observed [11], they
are the heaviest calcium isotopes discovery up to today and
both were found to be bound. Their masses are not known
yet, the more recent measured atomic mass is that of 57Ca
[12]. The calcium chain is also interesting because it allows
the investigation for existence of doubly magic nuclei and the
evolution of the charge radius [13–20].

This paper focuses on the stability limit of the calcium
isotopes. We have to wait for updating [21] or finishing some
facilities to get masses for isotopes of calcium beyond 57Ca.
For example, the Facility for Rare Isotope Beams (FRIB) [22]
will measure the key nucleus 60Ca, recently discovered at
RIKEN [11]. Meanwhile, different theoretical approaches are
implemented to predict the calcium drip line. Some formalism
predicts it as soon as around 60Ca [8,23–25], while others
predict the drip line at 68Ca [26,27], or even 70Ca [9,11,28].

Pairing encompasses an important part of the short-range
interaction between the neutrons [7,29]. Various approaches

have been developed in the last 50 years [30] to incorporate
pairing in finite nuclei. The Gorkov field theory approach
[31,32] properly account for the pairing correlations in many-
body systems. Its application to finite nuclei was recently
developed [33,34] and applied to the calcium isotopes [25,35].
Exact results are important in many-body systems, the alge-
braic Gorkov solution for the separable interaction was given
in Ref. [36], while in this paper we study the calcium chain
from the exact solution of the pairing Hamiltonian [37–39].
The correlations with the continuum spectrum of energy is
included through the continuum single particle level density
[40].

In Sec. II we give the theoretical tools used in this paper
with the outline of the method for solving exactly the many-
body system with pairing in the continuum for even nuclei, in
Sec. II A. In Sec. II B we relate the calculated magnitudes with
the occupation probabilities and the binding energy for even
and odd isotopes. In Sec. III we develop the application to the
calcium isotope chain. In Sec. III A we deal with the isospin
independent model, while in Sec. III B the isospin dependent
approach is used to determine the neutron drip line. The last
section, Sec. IV, is reserved for discussions and conclusions.

II. FORMALISM

A. Exact pairing solution

The Hamiltonian of a many-body system which includes
pair scattering to the continuum may be written in terms of
a set of negative and positive energy states, corresponding
to bound and scattering states, respectively. For a constant
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pairing interaction the Hamiltonian is given by

H =
∑

α

εac†
αcα − G

∑
amα

∑
cmζ

c†
αc†

ᾱc
ζ̄
cζ , (1)

where εa are the discrete energies with degeneracy ĵ2
a = 2 ja +

1, α = {a, mα} = {na, la, ja, mα} and c†
ᾱ = (−1) ja−mα c†

a,−mα
.

Following the derivation of Ref. [41], we may take the
limit of the size of the spherical box to infinity, and keep only
the physical relevant part of the single particle level density
[42]. In this way, for a system with N particles, we end up
with Npair = N/2 couple equations, which take into account
continuum correlations [39,43],

1 − G

2

B∑
b

ĵ2
b

2εb − Ei
− 1

2

∫ ∞

0
dε

Gg(ε)

2ε − Ei

− 2G

Npair∑
j �=i

1

Ej − Ei
= 0 (2)

for i = 1, . . . , Npair , where εb are the bound energy levels with
quantum numbers {nb, lb, jb}, Ei are the Richardson energies
which are parameters of the formalism, related to the many-
body energy E of the system [37,44] by

E (Npair ) =
Npair∑
i=1

Ei (3)

and g(ε) is the continuum single particle level density
(CSPLD) [42],

g(ε) =
lmax∑

c

ĵ2
c

π

dδc

dε
, (4)

where lmax is an upper limit for the number of partial waves.
Notice, in Eq. (2), that while the correlations between

bound states are the same for all shells, the strength between
continuum states is modulated by the CSPLD [39,40].

The solution of the Npair Richardson equations with the
boundary conditions

lim
G→0+

Ei = 2εi (5)

with i = 1, . . . , Npair the lowest states, determine the ground-
state energy of the pairing Hamiltonian of the N = 2Npair

nucleus, where the pair degeneracy ĵ2
i /2 of the level εi must

be taken into account [39]. For example, the isotope 44Ca,
considered as a core 40Ca plus four neutrons, corresponds to
solve two algebraic couple equations (2) with the boundary
conditions, limG→0+ E1 = 2ε1 and limG→0+ E2 = 2ε1, where
ε1 = ε f7/2 . In this case, the single particle energy limits are
the same because the pair degeneracy of the shell f7/2 is
four. Then, the ground-state energy is given by Eq. (3), i.e.,
E = E1 + E2.

We will consider the independent and dependent isospin
cases [45,46],

G = χ1

A
(1 − χ2I ), (6)

where I = N−Z
A .

B. One and two-neutron separation energies

The drip line becomes defined by the conditions Sn � 0
and S2n � 0. Let us consider A = Acore + N , where Acore is
the inert core from where the mean-field Hamiltonian is set
up, and N = 2Npair. Then, the two-neutron separation energy
from the Richardson formalism is given by

S2n(A) = E (Npair − 2) − E (Npair ) (7)

with E (Npair ) from Eq. (3). While the one-neutron separation
energy is calculated from the approximate equation [47,48]

Sn(A + 1, Z ) = −λF + ∂λF

∂N
− 
 (8)

with λF and 
 the Fermi level and pairing gap, respectively,
calculated in the blocking approximation, i.e., λF (2Npair ) and

(2Npair ), while ∂λF

∂N is calculated in Sec. III B 3.
From the Richardson formalism, the Fermi level and

the pairing gap can be calculated by combining the
Bardeen-Cooper-Schrieffer (BCS) equations with continuum
spectrum [40]


 = 
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N = Nb + Nc =
B∑
b

ĵ2
b
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[
1 − εb − λF√
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2

]

+
∫ εmax
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g(ε)
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[
1 − ε − λF√
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]
,

(10)

and the occupation probabilities

v2
b = −G2 d

dG

[Npair∑
ν=1

1

2εb − Eν

]
, (11)

v2(ε) = −G2 d

dG

[Npair∑
ν=1

1

2ε − Eν

]
, (12)

where we have extended the definition [38] to the continuum
spectrum of energy, and we have introduced a cutoff εmax.

For a given nucleus N = 2Npair, we solve the Richardson
equations (2) for many strengths G. Then, from Eqs. (11)
and (12) we calculated the occupation probabilities by finite
differences. By substituting these results in Eq. (9), we obtain
the pairing gap. Finally, with this value of 
, we fit λF from
Eq. (10). In this way, the Fermi level and the pairing gap have
been obtained for each even nucleus. Using these parameters
in Eq. (8) we get the one-neutron separation energy Sn for the
A + 1 nucleus.

In the applications we also will show the binding energy for
the even A = Acore + 2Npair and odd A + 1 isotopes given by

EBin(A) = EBin(Acore ) + E (Npair ), (13)

EBin(A + 1) = EBin(A) + Sn(A + 1), (14)

where EBin(Acore ) will be taken from experimental data.
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TABLE I. Strength for the Woods-Saxon (MeV) and spin-orbit
(MeV fm) mean fields for the two model cores, with the error in
parenthesis, and with r0 = 1.28 fm and a = 0.75 fm.

Core Potential V
40
20Ca20 Woods-Saxon 51.39(0.94)

Spin-orbit 16.56(3.31)
48
20Ca28 Woods-Saxon 45.39(1.47)

Spin-orbit 18.36(6.03)

III. RESULTS

A. Isospin independent model

We begin with the calculation of the drip line for the cal-
cium isotopes in the isospin independent approximation.

1. Single particle representation

Even when the solution of the reduced pairing Hamilto-
nian does not require the single-particle wave function of
the mean-field but only the energies, in our formulation we
make use of the single particle density Eq. (4), which requires
the continuum eigenfunctions, and so, we need to define a
mean-field. The Woods-Saxon and spin-orbit parameters were
constrained by experimental data and χ2 optimization.

In this section we consider fixed strengths for the mean-
field of the cores 40Ca and 48Ca. We will take the same
reduced radius and diffuseness for both cores, in preparation
for Sec. III B, where the strengths of both cores will be joined
smoothly. The reduced radius r0 = 1.28 fm is extracted from
the experimental neutron root-mean-square rn = 3.555 fm for
48Ca [49] and the relation rn = √

3/5R. For the diffuseness
we take a = 0.75 fm in order to get into consideration the
enhancement of the nuclear size reported in Ref. [17] which
is justified by and increase in the surface diffuseness of the
neutron density distribution. Finally, the strengths are opti-
mized by χ2 using the Levenberg-Marquardt algorithm [50].
Due to the fragmentation of the single particle states in the
nuclei 41Ca and 49Ca, we take as experimental energies, the
average of the fragmented levels weighted with its respective
spectroscopic factor [51]. The optimized strength with their
errors are shown in Table I.

The left and center panels of Fig. 1 compare the average
experimental neutron levels of 41Ca and 49Ca [52], with that
calculated using the code GAMOW [53] with the parameters of

TABLE II. Parameters for isospin independent (χ2 = 0) pairing
strength of Eq. (6). The experimental binding energies are from
Ref. [57].

Core Nucleus E exp
Bin [MeV] ECal

Bin [MeV] χ1 [MeV]

40Ca 50Ca −427.508(1) −427.508 22.850
48Ca 54Ca −445.36(4) −445.367 23.274

Table I. The right panel shows the continuum single-particle
level density g(ε) Eq. (4) with lmax = 15. The scattering states
were calculated using the code ANTI [54,55]. The peaks are
manifestation of the single particle resonances, which are
labeled following the usual convention for bound-state shells.
We observe that resonances move to the continuum threshold
while they became narrower when changing from 41Ca to
49Ca. The figure shows a near degeneracy of the levels 1g9/2

and 2d5/2 for both nuclei [56], which manifest as a single peak
in the 49Ca. In Sec. III B we will show the evolution of the
single particle levels with A.

2. Binding energy

Using the two single particle model spaces for the cores
40Ca and 48Ca, formed by the bound and continuum states of
Fig. 1, we solve the Richardson equations (2) for the calcium
isotopes. Then, using Eqs. (3) and (13) we calculate the bind-
ing energy of the even isotopes.

The pairing strength G is parametrized by Eq. (6) with
χ2 = 0. The reduced pairing strength χ1, for each core, were
fixed in order to reproduce the experimental binding energy
of two nuclei, one for the core 40Ca, and another for the
core 48Ca. Table II shows the value of the parameter χ1 and
compare the calculated and the experimental binding energy
of the nuclei 50Ca and 54Ca used as reference.

Using the reduced pairing strength χ1 of Table II, we cal-
culate the binding energy of the calcium chain for each one of
the model spaces, i.e., the one defined by the core 40Ca and
the other by the core 48Ca. The results are shown in Fig. 2.
The two-neutron separation energy, calculated using Eq. (7),
is shown in the inset. The results of both model spaces follow
the experimental energy till the nucleus 54Ca, and then, the
solutions using the core 40Ca does a better job. Both model
spaces found the two-neutron drip line at the nucleus 60Ca, in
concordance with Refs. [8,23–25,58].

FIG. 1. (Left and center) Calculated and experimental [52] levels of 41Ca and 49Ca, respectively. The dotted line shows the continuum
threshold. (Right) Continuum single particle level density. The bumps are manifestation of the single particle resonances, labeled following
the usual notation as for bound states.
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FIG. 2. Binding energies of the even calcium isotopes calculated
using the isospin pairing strength of Table II for each one of the two
model spaces. The experimental data were taken from [57]. The inset
shows the two-neutron separation energies.

Since the selection of the nuclei 50Ca and 54Ca (Table II) to
fix the reduced pairing strength was arbitrary, we considered
a second pair of reference nuclei, 44Ca and 52Ca, for the
model spaces with core 40Ca and 48Ca, respectively. With
the new pair of reduced pairing strengths χ1 we calculate the
binding energy, and compare them with the previous one in
Fig. 3. The new calculations found the two-neutron drip line
at 60Ca, for both model spaces, in agreement with the previous
parametrization.

Motivated by the analysis of Ref. [11] and other theoretical
predictions [27,28], we consider, in the next section, the de-
pendence of isospin on the mean field and on the pairing force
for the determination of the drip line.

B. Isospin dependent model

In this section we will consider the solution of the Richard-
son equations from the core 48Ca, with an isospin dependent
single-particle model space and isospin dependent pairing
strength.

1. Single particle representation

The single particle bound states and the CSPLD will
change smoothly from isotope to isotope according to the
following isospin dependent Woods-Saxon and spin-orbit
strengths [59]:

V0 = η0 − η1I, (15)

VSO = ηSO
0 − ηSO

1 I (16)
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]

χ1 from Table II.

χ1 = 19.536 MeV.

50 52 54 56 58 60 62 64

A

χ1 from Table II.

χ1 = 22.620 MeV.

FIG. 3. Binding energies of the even calcium isotopes for the
model space with the core 40Ca (left) and the model space with the
core 48Ca (right), for the two set of parametrization of the pairing
strength as described in the text.

with I = N−Z
A . The four parameters η, shown in Table III,

were fixed using the four strengths of Table I optimized by
χ2 minimization in the previous section.

The evolution of the bound levels of Fig. 1 and the real part
energy of the resonances 2d5/2 and 1g7/2, as a function of A
up to 73Ca, are shown in Fig. 4. They were calculated using
the code GAMOW [53] with r0 = 1.28 fm, a = 0.75 fm and
the isospin dependent strength Eqs. (15) and (16), with the
parameters of Table III. From the figure can be appreciated
the inversion [23] and the near degeneracy [56] of the levels
2d5/2 and 1g7/2. The figure shows the transition of the state
g9/2 from a resonance to a bound state. This behavior seems to
be a consequence of the increasing of the effective spin-orbit
strength with l , and the enhancement of the centrifugal barrier,
which is proportional to l (l + 1). These two factors are more
pronounced for the g9/2 shell. Figure 4 also shows two gaps
between the shells 2p3/2-2p1/2 and 2p1/2-1 f5/2, which are
consistent with the shell closure of the nuclei 52Ca and 54Ca
[12,18,19,28,60]. The weakening of shell closure at 60Ca,
due to the tendency of the shell g9/2, is in agreement with
Ref. [28], but we do not find a shell closure at 70Ca [28].

The continuum spectrum of energy enters the many-
body calculation through the continuum single particle level

TABLE III. Parameters for the isospin dependent Woods-Saxon
and spin-orbit strengths.

Woods-Saxon [MeV] spin-orbit [MeV fm]

η0 51.389 16.564
η1 36.005 −10.759
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FIG. 4. Evolution of the bound levels and the real part of the
resonances 2d5/2 and 1g7/2, as a function of A using r0 = 1.28 fm,
a = 0.75 fm, and the isospin dependent strength with the parameters
of Table III.

density, which also smoothly changes from isotope to isotope.
In Fig. 5 we show, as an example, how the CSPLD profile
changes from the nucleus 49Ca to the nucleus 65Ca. The reso-
nant peaks move to the continuum threshold for increasing A.

2. Two-neutron separation energy

In this section we solve the Richardson equations (2) for
the even isotopes from 50Ca to 74Ca. The core is taken to
be the nucleus 48Ca, with the model space as described in
the previous Sec. III B 1. The isospin pairing strength G is
modeled by Eq. (6) with the parameters χ1 and χ2 optimized
to reproduce the experimental binding energy of the nuclei
54Ca and 58Ca, Table IV.

The calculated binding energy of the even isotopes and
the two-neutron separation energy is shown in Fig. 6. The

10 20 30

ε[MeV]

-1

0
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3

4

5

6

g
(ε

)[
M

eV
−1

]

1i13/2

1g7/2 + 1h11/2

2d5/2 + 1g9/2

49
20Ca29
65
20Ca45

FIG. 5. Two examples of the continuum single particle level den-
sity used to solve the Richardson equations. The mean field is the
same as that used to construct Fig. 4.

TABLE IV. Reduced isospin strengths χ1 and χ2 optimized with
the experimental binding energy of the nuclei 54Ca and 58Ca.

Nucl E exp
Bin (MeV) ECal

Bin (MeV) χ1 (MeV) χ2 (MeV)

54Ca −445.36(4) −445.363 16.314 −1.108
58Ca −454.4(4) −454.400

figure shows that the last even isotope is 66Ca. This result is
consistent with that of Ref. [27] which found the nuclei 66Ca
and 68Ca to be bound with a probability 67%–84%. Reference
[28] finds a pronounced smoothing of the binding energy for
the isotopes 66Ca - 70Ca with the drip line at the nucleus 70Ca.

Since the pair of nuclei used to fix the reduced pairing
strengths χ1 and χ2 have nothing of particular, we repeated
the calculation fixing the reduced pairing strengths using the
experimental binding energy of the nuclei 52Ca and 56Ca.
Figure 6 shows the calculation with the new pair of χ1 and χ2.
We observe a difference in the binding energy using the two
different set of parameters, while there is a good agreement for
two-neutron separation energy. The second parametrization
also finds the drip line at the nucleus 66Ca.

3. Pairing in the continuum

By solving the Richardson equations for the pairing
strength with the parameters of Table IV, we calculate the
occupation probability v2

b and v2(ε) for the bound and con-
tinuum states from Eqs. (11) and (12), respectively. Figure 7
shows some examples; it can be observed how the occupation
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χ1 = 18.414 MeV and χ2 = −0.506 MeV.

Experimental Data.

FIG. 6. Binding energies and two-neutron separation energies
from the model space and pairing strength isospin dependent. The
result for two different sets of reduced pairing strengths χ1 and χ2

are given. The experimental data was taken from [57].
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FIG. 7. Occupation probability for some selected even calcium
isotopes. The lines correspond to fitted curves using the BCS
[61] distribution. The vertical dashed line indicates the continuum
threshold.

probabilities of the continuum levels, ε > 0, monotonically
increase as the number of particles increases.

With the calculated occupation probabilities we get the dis-
crete 
b and continuum 
c gap parameters from Eq. (9) with
εmax = 100 MeV. Figure 8 shows the total gap 
 discriminate
by the discrete and continuum parts. The profile of the total
gap is the usual for a strong pairing. Using the three-point
formula [62] with the experimental binding energies from
Ref. [57], we calculate the experimental gap 
exp, except for
the nucleus 52Ca, our gaps are greater than the experimental
one. The figure shows that 
c increases while 
b remains
more or less constant up to the isotope 64Ca, where both
suddenly change, but the total pairing gap 
 remains smooth.
The abrupt change of 
b and 
c is due that the state 1g9/2

becomes a bound state, as it can be seen in Fig. 4.
Finally, with the calculated gap 
, we determine the cor-

responding Fermi level by optimizing the parameter λF in
Eq. (10) using Levenberg-Marquardt algorithm [63]. Figure 9
shows the optimized values with their errors.
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FIG. 8. Pairing gap (9) discriminated by bound 
b and contin-
uum 
c contributions. The experimental gap was calculated using
the three-point formula [62], with binding energies from Ref. [57].
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FIG. 9. Fermi level for even calcium isotopes calculated as de-
scribed in the text. The lines were obtained by linear regression.

For the determination of the one-neutron separation energy
Eq. (8), we also need ∂λF /∂N . Using linear regression we get
(in unit of MeV),

∂λF

∂N
=

⎧⎪⎨
⎪⎩

0.55(11) 50 � A � 54

0.41(5) 56 � A � 60

0.27(3) 62 � A

. (17)

Since the Fermi level measures the change of energy with N ,
it shows that this magnitude is smaller approaching to the drip
line.

4. One-neutron separation energy

To complete the determination of the drip line we will
calculate the one-neutron separation energy from Eqs. (8)
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FIG. 10. Binding energy of the even and odd calcium isotopes.
The experimental data was taken from [57].
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and (17) and the magnitudes of the previous subsection.
Then, using Eq. (14) we evaluate the binding energy for the
odd calcium isotopes, which is shown in Fig. 10. The usual
staggering, mounting onto the parabola-like curve, can be
observed. The inset shows the one-neutron separation energy,
the comparison with the experimental data shows a good
agreement. We found that the one-neutron drip line happens
to be at 57Ca, in agreement with ab initio models [8,23], and
the Gamow shell model [28], but in disagreement with the
experimental result of Ref. [11] which found that the nucleus
59Ca is also bound.

IV. DISCUSSION AND CONCLUSIONS

We have calculated the one- and two-neutron separation
energy of the calcium isotopes from the exact solution of the
pairing Hamiltonian. While the two-neutron separation en-
ergy is obtained straightforward from the Richardson solution,
the one-neutron separation energy was calculated using the
pairing gap 
 and Fermi level λF , borrowed from the BCS
formalism. The occupation probabilities needed to calculate

 and λF were obtained from the exact solution of the pairing
Hamiltonian by finite difference. The correlations with the
continuum spectrum of energy was taken into account through
the single-particle density. Outcomes from isospin indepen-
dent and dependent mean-field and pairing were investigated.

The evolution of the single particle levels shows an inver-
sion of the shells 2d5/2 and 1g9/2 at the beginning of the chain,
as reported in Ref. [23], and then, a near degeneracy, as the
one reported in [56] for deformed nuclei. Finally, the original
order is reversed to the usual shell ordering with the shell
1g9/2 becoming a bound state, at the time that the shell 2d5/2

remains in the continuum. The displacement of the single

particle levels shows a shell closure for the calcium isotopes
with N = 32 and N = 34. The intrusion of the shell 1g9/2

from the continuum slightly hinders a closure for N = 40,
and prevents a closure at N = 50. The influence of defor-
mations upon the level structures in very rich neutron nuclei
is expected to be important, in particular, more experimental
structure information on the calcium isotopes is expected in
the near future.

Our calculation found the nucleus 57Ca as the last bound
odd isotope, in agreement with [28], but in disagreement with
the experimental finding reported in Ref. [11], probably due
and overestimation of the pairing gap.

The results from the isospin independent formulation
shows that 60Ca is the last bound calcium isotope. Similar
result was found using Bogoliubov perturbation formalism
[24] and self-consistent Green’s function [25]. By including
the isospin dependence in the mean-field and pairing strength,
drip line is extended to 66Ca. This result is smaller than the
predictions from the Bayesian model averaging [27] and the
Gamow shell model [28], which allocate the drip line around
68Ca - 70Ca.

The outcome of this paper shows the ability of the exact
pairing formalism to describe one and two neutron drip lines
in the calcium isotope chain. In the current state of knowledge,
all three models reproduce the known data equally well. This
places an uncertainty in our prediction for the two neutron drip
line with 60Ca or 66Ca depending on whether the independent
or dependent isospin model is considered.
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