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Unitary ambiguity of NN contact interactions and the 3N force
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We identify a redundancy between two- and three-nucleon contact interactions at the fourth and fifth orders
of the chiral expansion, respectively. In particular, we show that tensor-type and spin-orbit three-nucleon contact
interactions effectively account for that part of the two-nucleon interaction which depends on the total center-
of-mass momentum and is unconstrained by relativity. This might give the chiral effective field theory enough
flexibility to successfully address A = 3 scattering observables already at N3LO.
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I. INTRODUCTION

The modern understanding of nuclear interactions is based
on the chiral effective field theory (ChEFT) framework [1–5].
Compared to more phenomenological approaches, a low-
momenta power counting allows us in principle to improve
systematically the accuracy of the theoretical description, pur-
suing the perturbative expansion to higher orders, and at the
same time to assess the theoretical uncertainty introduced by
the truncation of the series [6,7]. This is made possible by
the approximate chiral symmetry of the underlying quantum
chromodynamics (QCD), whose dynamical breakdown is re-
sponsible for the emergence of pseudo-Goldstone bosons, the
pions, that interact weakly at low energy and are much lighter
than all other hadrons. Pion exchanges among nucleons deter-
mine the longest range component of the nuclear interaction,
while the dynamics at shorter distances, unresolved by the
effective theory, is described in terms of multinucleon contact
interactions. The associated low-energy constants (LECs), be-
ing unconstrained by chiral symmetry, need to be determined
from experimental data. Their number increases as the per-
turbative series is pushed to higher orders, but their impact
should decrease, provided the expansion is well behaved. Ob-
viously, in order to fully exploit the predictive power of the
theory and to put it to a more stringent test, it is important to
identify a minimal set of such LECs.

In this paper, we concentrate on a redundancy between
two-nucleon (NN) contact couplings which arise at the fourth
order of the low-energy expansion (N3LO) and the subleading
three-nucleon (3N) contact interactions, which were classified
in Ref. [8] as consisting of 13 independent operators. The
latter arise at the fifth order (N4LO) in the ChEFT [9–17],
and as such they should be considered in conjunction with
recent accurate versions of the NN interaction developed at
N4LO and beyond [7,18–21]. The relevance of these opera-
tors has been repeatedly highlighted, in particular for solving
long-standing discrepancies in low-energy N − d elastic scat-
tering, like the well-known Ay puzzle [22–24]. As we are

going to show, five of these operators are equivalent to a
suitable redefinition of the short-range NN potential, realized
by specific unitary transformations of the nuclear Hamilto-
nian. Such unitary ambiguities are a common feature in all
reductions from a quantum-field theoretical Lagrangian to
quantum mechanics and affect also pion-mediated interac-
tions [25–27]. They are systematically exploited in the unitary
transformation approach to nuclear forces and electroweak
currents [28,29] to enforce the renormalizability of nuclear
potentials and transition operators [30,31]. We single out in
particular two additional transformations that can be used to
drop total momentum (P)-dependent NN interactions. Such
interactions, which vanish in the center of mass frame, can-
not be determined from NN scattering data alone. However,
dropping these terms induces 3N contact interactions mostly
of tensor and spin-orbit type.

The paper is organized as follows. In Sec. II, we classify the
most general NN contact unitary transformation at the O(p2)
level. In Sec. III, we relate two of these transformations to
the P-dependent component of the NN interaction and show
that the latter depends on two extra LECs, unconstrained by
relativity. In Sec. IV, we study the impact of this transfor-
mation at the 3N level and obtain a reduced form of the
subleading 3N contact interaction. Finally, the consequences
of the above findings on the structure and convergence of the
chiral expansion for 3N observables are discussed in Sec. V.

II. NN CONTACT UNITARY TRANSFORMATIONS
AT O(p2 )

Following Ref. [19], we write the most general uni-
tary transformation as U = exp(

∑
n αnTn) with αn being real

parameters and Tn being a complete set of anti-Hermitian op-
erators respecting all underlying symmetries. Since we are in-
terested in purely nucleonic interactions, the generators Tn will
only involve local products of nucleon fields, ordered in the
low-energy expansion, according to the number of gradients.
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The first nontrivial case will consists of two-nucleon operators. Rotational, isospin, parity, and time-reversal symmetry require
the presence of at least two gradients. At this level, a complete set consists of the following operators:

T1 =
∫

d3xN†←→∇ i
N∇i(N†N ) ∼ k · Q, (1)

T2 =
∫

d3xN†←→∇ i
σ jN∇i(N†σ jN ) ∼ k · Qσ1 · σ2, (2)

T3 =
∫

d3x[N†←→∇ i
σ iN∇ j (N†σ jN ) + N†←→∇ i

σ jN∇ j (N†σ iN )] ∼ k · σ1Q · σ2 + k · σ2Q · σ1, (3)

T4 = iεi jk
∫

d3xN†←→∇ i
NN†←→∇ j

σ kN ∼ iP × Q · (σ1 − σ2), (4)

T5 =
∫

d3x[N†←→∇ i
σ iN∇ j (N†σ jN ) − N†←→∇ i

σ jN∇ j (N†σ iN )] ∼ (P · σ1k · σ2 − P · σ2k · σ1)/2, (5)

where N†←→∇ i
N = N†(∇iN ) − (∇iN†)N , and N (x) denotes

the nonrelativistic nucleon field operator. We have also intro-
duced the dependence on the initial and final relative momenta
p and p′, or k = p′ − p and Q = (p + p′)/2, and on the total
momentum P = p1 + p2 of a two-nucleon system. The last
two generators, which were not considered in Ref. [19], vanish
in the two-nucleon center of mass frame. Their relevance will
be clear in the following. In addition, we can also define
the corresponding isospin-dependent Tn′ operators, involving
τ1 · τ2, but using the anticommuting nature of nucleon fields
and Fierz reshuffling of spin and isospin indeces, one can
express them in the chosen basis:

T1′ = −2T1 − T2, (6)

T2′ = −3T1, (7)

T3′ = −2T1 + 2T2 − 3T3, (8)

T4′ = −2T5 − T4, (9)

T5′ = −2T4 − T5. (10)

When transforming a nuclear Hamiltonian H by the above
unitary transformation, one gets additional interactions

H → U †HU = H +
∑

n

αn[H, Tn] + · · ·

≡ H +
∑

n

αnδnH + · · · (11)

that amount to a shift of existing LECs, since H already
contains all possible interactions allowed by the assumed
symmetries. Thus, from the one-body kinetic energy,

H0 = − 1

2m

∫
d3xN†∇2N, (12)

one gets, e.g., using the canonical anticommutation relations1

δ1H0 = 1

2m

∫
d3x[∇i(N†←→∇ i←→∇ j

N )∇ j (N†N )

− ∇i(N†←→∇ i
N )∇ j (N†←→∇ j

N )]. (13)

In the two-nucleon system, the above operator yields an
off-shell contribution ∼(p2 − p′2)2. In Ref. [19], the unitary

1It is convenient to use the identity [AB,C] = A{B,C} − {A,C}B.

transformations corresponding to n = 1, 2, 3, were used to
absorb three of the O(p4) NN couplings, reducing their num-
ber to 12. As will be shown in Sec. IV, this also implies the
appearance of induced subleading 3N contact interactions,
which can be written as combinations of the 13 operators
introduced in Ref. [8]. The remaining transformations, cor-
responding to n = 4, 5, generate total momentum-dependent
interactions which vanish in the center of mass frame, e.g.,
δ4H0 ∼ i(p2 − p′2) P × (p + p′) · (σ1 − σ2), and will be dis-
cussed in the next section.

III. P-DEPENDENT NN CONTACT INTERACTIONS

Total momentum-dependent interactions are strongly con-
strained by Poincaré symmetry. In the instant form of
relativistic dynamics [32], the three-momentum and angular
momentum are the same as in the free theory, described by the
Dirac Lagrangian starting from the energy-momentum tensor

T μν = (i/2)ψ̄γ μ←→
∂

ν

ψ , while the Hamiltonian H and boost
generators K contain the interactions

H = H0 + HI , K = K0 + KI . (14)

Since the free generators already satisfy the Poincaré commu-
tation relations, the interaction terms must satisfy[

Ji, K j
I

] = iεi jkKk
I , (15)[

Ki
I , P j

] = iδi jHI , (16)[
Ki

I , H0
] + [

Ki
0, HI

] + [
Ki

I , HI
] = 0, (17)[

Ki
0, K j

I

] + 1
2

[
Ki

I , K j
I

] − i ↔ j = 0. (18)

The first relation qualifies the interacting boost generator as
a vector. The remaining ones are less trivial to satisfy. In the
low-energy theory, a nonrelativistic reduction can be used to
express these operators in terms of the nonrelativistic nucleon
field N (x) as a series containing increasing powers of soft
momenta. For example, the free Hamiltonian and boost gen-
erators are expanded as

H0 = H (0)
0 + H (2)

0 + H (4)
0 + · · · ,

K0 = K(−1)
0 + K(1)

0 + K(3)
0 + · · · , (19)
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where the superscripts denote the assigned “soft power.” Ex-
plicitly,

H (0)
0 = m

∫
d3xN†N, H (2)

0 = − 1

8m

∫
d3xN†←→∇ 2

N, ...

K(−1)
0 = m

∫
d3x xN†N,

K(1)
0 = − 1

8m

∫
d3x x[N†←→∇ 2

N + i 	∇ · N† 	σ × ←→∇ N], ... .

(20)

Contact interactions in HI can be classified according to the
number of participating nucleons,

HI = HNN + H3N + · · · , (21)

and each component can be ordered by the same criterium as

HNN = H (3)
NN + H (5)

NN + H (7)
NN + · · · , (22)

H3N = H (6)
3N + H (8)

3N + · · · . (23)

The first term in HNN contains the two momentum-
independent interactions parametrized by the LECs CS and
CT ,

H (3)
NN = 1

2
CSHS + 1

2
CT HT

≡
∫

d3x
[

1

2
CSN†NN†N + 1

2
CT N† 	σN · N† 	σN

]
. (24)

Starting with the following order, we can have P-indepedent
or P-dependent interactions. In H (5)

NN , the formers are
parametrized by the LECs C1,...,7, while the latters are unam-
biguously fixed in terms of the leading LECs CS and CT as
relativistic 1/m corrections [33]. At the following order, H (7)

NN
contains P-independent interactions depending on the LECs
D1,...,15 and a set of P-dependent ones which have not yet

been considered in the literature. Most of them take the form
of relativistic corrections to lower order interactions, and as
such they are fixed unambiguously in terms of the lower order
LECs. Instead, we will be concerned with those P-dependent
contributions to H (7)

NN which are unconstrained by relativity
and depend on extra LECs. As for the 3N interactions, their
low-energy expansion starts with a momentum-independent
term, H (6)

3N parametrized by the LEC cE [15],

H (6)
3N = cE

2F 4
π �χ

∫
d3xN†NN†τ aNN†τ aN, (25)

with the pion decay constant Fπ and the chiral symmetry
breaking scale �χ meant to provide the correct scaling based
on naive dimensional analysis [34], and proceeds with the
two-derivatives contact interactions parametrized by the LECs
E1,...,13 introduced in Ref. [8],

H (8)
3N =

∫
d3x

13∑
i=1

EiOi, (26)

where the explicit expressions for the operators Oi can be read
from Eqs. (14) and (16) of Ref. [8].

In order to satisfy the relation (16), a given interaction in
HI implies a corresponding term in KI which we denote as W,
such that

HI =
∫

d3xHI (x) 
⇒ W =
∫

d3x xHI (x). (27)

The most general form of the interacting part of the boost
generator can be written as KI = W + δW, i.e., as the sum
of the “minimal” boost W and of an additional term δW
which is translationally invariant ([Pi, δW j] = 0) and will be
denoted as “intrinsic,” since it is independent of the interacting
Hamiltonian. Its low-energy expansion starts with δW(4). At
this order, one can list three such operators,

δW i
1 =

∫
d3x

−→∇ · (N† 	σN )N†σ iN, (28)

δW i
2 = iεi jk

∫
d3x[N†←→∇ j

σ kNN†N + N†σ jNN†←→∇ k
N], (29)

δW i
3 = iεi jk

∫
d3x[N†←→∇ j

σ kNN†N − N†σ jNN†←→∇ k
N], (30)

since the operators involving τ1 · τ2 are Fierz related to the ones above. These intrinsic boosts were ignored in Ref. [33], since
they do not play a role at the order considered there, respectively O(p4) and O(p3) for the relations (17) and (18),[

K(−1)
0 , H (5)

I

] + [
K(1)

0 , H (3)
I

] + [
W(4), H (0)

0

] + [
δW(4), H (0)

0

] + [
W(2), H (2)

0

] = 0, (31)[
K (−1)i

0 ,W (4) j
] + [

K (1)i
0 ,W (2) j

] + [
K (−1)i

0 , δW (4) j
] − i ↔ j = 0. (32)

Indeed, in the first of the above equations, δW is irrelevant, since it commutes with H (0)
0 . Moreover, as found in Ref. [33],

Eq. (32) without the commutators involving δW is valid as a consequence of Eq. (31). This means that we must have[
K (−1)i

0 , δW (4) j
] − i ↔ j = 0, (33)

which rules out δW3. In other words, only the P-independent intrinsic boosts δW1 and δW2 are allowed, and we can write
the most general intrinsic boost δW(4) in terms of two constants, δW(4) = ∑2

i=1 βiδWi. The two independent intrinsic boost
generators are related to the transformations T4 and T5 of the previous section by the following relations:[

K(−1)
0 , T5

] = −4δW1,
[
K(−1)

0 , T4
] = −2δW2. (34)
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They start to play a role at the orders O(p6) and O(p5) respectively,

0 = [
W(6), H (0)

0

] + [
W(4), H (2)

0

] + [
K(1)

0 , H (5)
I

] + [
W(2), H (4)

0

] + [
K(3)

0 , H (3)
I

] + [
δW(4), H (2)

0

] + [
K(−1)

0 , H (7)
I

]
, (35)

0 = [
K (−1)i

0 ,W (6) j
] + [

K (1)i
0 ,W (4) j

] + [
K (1)i

0 , δW (4) j
] + [

K (3)i
0 ,W (2) j

] − i ↔ j, (36)

which again involve only two-nucleon terms. From these equations the relativistic corrections in H (7)
I can be identified, following

the steps of Ref. [33]. Indeed, the interactions in H (7)
I , with corresponding minimal boosts W(6), must satisfy the above

constraints. Considering Eq. (35), the first term vanishes, the second and third terms represent 1/m corrections to the interactions
involving Ci, and the fourth and fifth terms represent 1/m3 corrections to the interactions involving CS and CT . Ignoring these
1/m corrections, we are left either with P-independent terms in H (7)

I , which commute with K(−1)
0 , and thus satisfy Eq. (35) with

δW(4) = 0 (these are the operators multiplied by D1, ..., D15) or with P-dependent terms whose commutator with K(−1)
0 must

be compensated by the terms involving δW(4). Thus, there is a one-to-one correspondence between the possible forms of the
intrinsic boost δW(4) (which we already classified as δW1 and δW2) and the allowed P-dependent interactions of H (7)

I . It is
possible to show that Eq. (36) then follows from Bianchi identities.

In view of Eqs. (34), the above statement can be immediately understood: A unitary transformation involving T4 and T5

will generate from H0 some P-dependent interaction terms of H (7)
I . At the same time, as is clear from Eq. (34), from the free

boost generator K0 one gets the interacting intrinsic boosts that exactly compensate for these terms, such that the Poincaré
commutation relations (35) and (36) remain satisfied, as they should by unitarity. This means that there are two P-dependent NN
contact interactions in H (7)

I which are completely unconstrained, depending on two free LECs. A possible parametrization of the
resulting P-dependent NN potential is in terms of two extra LECs, D16 and D17, such that

VNN (P) = iD16k · Q Q × P · (σ1 − σ2) + D17k · Q (k × P) · (σ1 × σ2)

= i[(D16 − D17) + D17τ1 · τ2]k · Q Q × P · (σ1 − σ2), (37)

where the last equality follows from the Fierz identities. These interactions change the spin of the NN system and they are both
linear in P. They act differently in the two isospin channels.2

The P-dependent potential (37) bears some resemblance with the Thomas precession term [35–37], which is a relativistic
P-dependent interaction determined by the center of mass potential v as

δvTP = i

8m2
[(σ1 − σ2) × P · p, v] (38)

and is part of the terms discussed in the previous paragraph. We emphasize once more that the P-dependent interaction (37) is
of a different nature, and the corresponding LECs are not fixed as 1/m corrections to lower order interactions. For example, if
we take for v in Eq. (38) the subleading two-nucleon contact potential, defined as customary

v = C1k2 + C2k2τ1 · τ2 + C3k2σ1 · σ2 + C4k2σ1 · σ2 τ1 · τ2 + C5S12(k) + C6S12(k)τ1 · τ2 + iC7S · Q × k, (39)

with S12(k) = 3σ1 · k σ2 · k − k2σ1 · σ2 and S = (σ1 + σ2)/2, then the induced Thomas precession potential is

δvTP = i

8m2
P × k · (σ1 − σ2){k2[C1 − C3 + C5 + (C2 − C4 + C6)τ1 · τ2]

− 4Q2[C3+3C4 − C5 − 3C6+(C3 − C4 − C5+C6)τ1 · τ2]}+ 3i

4m2
[P · Q k × Q · (σ1 − σ2) − k · Q P × Q · (σ1 − σ2)]

× [C5+3C6+(C5−C6)τ1 · τ2]− iC7

16m2
P × Q · k Q · (σ1 − σ2)(1 − τ1 · τ2). (40)

Thus, we see that part of the interactions in Eq. (37) are indeed also generated by the Thomas precession, with fixed
coefficients, while the LECs D16 and D17 are completely unconstrained. They cannot be determined from NN scattering data, but
only in A > 2 systems, or as a high-order contribution to the two-nucleon electromagnetic current. Their contribution vanishes
on shell and, similarly to the three combinations of the Di already identified in Ref. [19], they can be absorbed by a unitary
transformation. However, in so doing, one obtains at the same time an induced 3N interaction, as will be discussed in the next
section.

2Notice that, away from the center of mass system, the usual relation (−1)L+S+T = −1 between the orbital angular momentum L, the spin S,
and the isospin T of the NN pair is not necessarily satisfied, due to the presence of the angular momentum associated to the overall motion.
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IV. IMPACT ON THE 3N SECTOR

If H in Eq. (11) is a two-nucleon operator, then the unitary transformations defined in Sec. II generate three-nucleon operators.
At the leading order, we have the following contributions induced by the transformations of HS and HT appearing in Eq. (24):

δ1HS = −4
∫

d3x∇i(N†N )∇i(N†N )(N†N ), (41)

δ1HT = −4
∫

d3x∇i(N†σ jN )∇i(N†N )(N†σ jN ), (42)

δ2HS = δ1HT , (43)

δ2HT = 4
∫

d3x[iεi jk∇l (N†σ iN )N†←→∇ l
σ jNN†σ kN − ∇ j (N†σ iN )∇ j (N†σ iN )N†N], (44)

δ3HS = −4
∫

d3x[∇i(N†σ jN )∇ j (N†N )N†σ iN + ∇i(N†σ iN )∇ j (N†N )N†σ jN], (45)

δ3HT = 4
∫

d3x[iεi jk∇i(N†σ lN )(N†←→∇ l
σ jN )N†σ kN + iεi jk∇l (N†σ lN )N†←→∇ i

σ jNN†σ kN

−∇i(N†σ jN )∇ j (N†σ iN )N†N − ∇i(N†σ iN )∇ j (N†σ jN )N†N], (46)

δ4HS = 4iεi jk
∫

d3x[∇i(N†N )N†←→∇ j
NN†σ kN − ∇i(N†N )N†←→∇ j

σ kNN†N], (47)

δ4HT = −4
∫

d3x[iεi jk∇i(N†σ lN )N†←→∇ j
σ kNN†σ lN + iεi jk∇i(N†σ jN )N†←→∇ k

NN†N

+N†←→∇ i
NN†←→∇ j

σ iNN†σ jN − N†←→∇ i
σ iNN†←→∇ j

NN†σ jN], (48)

δ5HS = 0, (49)

δ5HT = −4
∫

d3x[iεi jk∇i(N†σ lN )N†←→∇ l
σ jNN†σ kN − iεi jk∇l (N†σ lN )N†←→∇ i

σ jN · N†σ kN

+∇i(N†σ iN )∇ j (N†σ jN )N†N − ∇i(N†σ jN )∇ j (N†σ iN )N†N]. (50)

These operators can be expressed in terms of the basis {Oi} defined in Eq. (26), using the identities derived in Ref. [8]. As a
result, the general unitary transformation of the two-nucleon Hamiltonian in Eq. (24) produces the following contribution,[

HNN ,

5∑
n=1

αnTn

]
=

∫
d3x

13∑
i=1

δEi Oi, (51)

with

δE1 = α1(CS + CT ) + α2(CS − 2CT ), (52)

δE2 = 3α2CT + 2α3CT − 4α4CT + 2α5CT , (53)

δE3 = 2α1CT + α2(2CS − CT ) + 2
3α3(2CS − CT ) + 4α4CT − 2α5CT , (54)

δE4 = 2
3α1CT + 1

3α2(2CS − 7CT ) − 2
3α3CT + 4

3α4CT − 2
3α5CT , (55)

δE5 = 2α1CT + 2α2(CS − 2CT ) + 2
3α3(2CS − CT ) + 4α4CT − 2α5CT , (56)

δE6 = 2
3α1CT + 2

3α2(CS − 2CT ) − 2
3α3CT + 4

3α4CT − 2
3α5CT , (57)

δE7 = 8α4CT , (58)

δE8 = 1
3δE7, (59)

δE9 = 3α1CT + 3α2(CS − 2CT ) + 2α3(CS − 2CT ) − α4(CS − 5CT ) − 4α5CT , (60)

δE10 = α1CT + α2(CS − 2CT ) − 1
3α4(3CS − 7CT ), (61)

δE11 = 3α1CT + 3α2(CS − 2CT ) + 2α3(CS − 2CT ) + α4(CS − 5CT ) + 4α5CT , (62)

δE12 = α1CT + α2(CS − 2CT ) + 1
3α4(3CS − 7CT ), (63)

δE13 = −8α4CT + 4α5CT , (64)
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which amounts to a shift of the 13 subleading LECs Ei in
Eq. (26),

H (8)
3N →

∫
d3x

13∑
i=1

(Ei + δEi )Oi ≡
∫

d3x
13∑

i=1

E (α)
i Oi. (65)

Therefore, for all nonzero values of CS and CT , the five pa-
rameters αn defining the unitary transformation can be chosen
so that five of the 13 subleading LECs can be eliminated, i.e.,
E (α)

i = 0. The sum in Eq. (26) can then be restricted, e.g., to
i = 2, ..., 9. This happens at the price of considering a more
elaborate NN interaction, comprising all of the N4LO LECs
D1,...,15 as well as the ones parametrizing the P-dependent NN
interaction.

Another point of view can be adopted. It is gener-
ally accepted that the 3N interaction is parameter-free at
N3LO [16,17], the LECs Ei of Eq. (26) contributing only at
N4LO. However, the (N3LO) effect of the P-dependent or the
off-shell component of the NN interaction is equivalent to the
above contact 3N interaction. Thus, the shifts δEi in Eq. (65)
are to be regarded as an effect at N3LO. In other words, the
five LECs parametrizing the N3LO NN off-shell interaction
can be fitted to observables of the 3N system and interpreted
as a 3N interaction.

We emphasize in particular the role of the P-dependent
NN interaction, which has never been taken into account,

since it cannot be determined from the NN scattering data.
Even if the complete NN interaction (including all of the
LECs D1,...,15) is used in 3N calculations, the necessity to
discard the P-dependent terms leads to the appearance of a
subleading 3N contact interaction already at N3LO. The exact
form of this interaction can be read from Eqs. (52)–(64) by
inspecting the terms proportional to α4 and α5, which can be
regarded as a sort of LECs. In other words, supplementing
the NN interaction with its P-dependent component, Eq. (37),
the corresponding interactions can be absorbed by a unitary
transformation with parameters

α4 = −m

8
D16, α5 = −m

4
D17, (66)

i.e., by the transformation of the kinetic energy operator of
Eq. (12),

[H0, α4T4 + α5T5] = −VNN (P), (67)

that in turn generates the 3N couplings Ei’s according to
Eqs. (52)–(64).

Thus, we can say that, contrary to the commonly accepted
wisdom, the 3N force is not parameter-free at N3LO, but
depends on five LECs. Three of them are combinations of the
LECs D1,..., D15, if one removes them from the NN potential,
as done in Ref. [19]. Two more correspond to the new LECs
D16 and D17, which can be viewed as contributions to the
subleading 3N contact potential,

V3N = m

8
D16

[
CS (O9 + O10 − O11 − O12) − CT

(
4O3 + 4

3
O4 + 4O5 + 4

3
O6 + 8O7 + 8

3
O8 + 5O9 − 7

3
O10

− 5O11 − 7

3
O12 − 8O13

)]
− m

2
D17CT

(
O2 − O3 − 1

3
O4 − O5 − 1

3
O6 − 2O9 + 2O11 + 2O13

)
. (68)

Due to the fact that, on phenomenological grounds, CS � CT , the main effect of the new P-dependent NN interactions amounts
in this limit to the first line of the above equation and involves a single LEC mD16. On the other hand, the large numerical
coefficients multiplying CT in δE7, i.e., most notably for the spin-orbit operator O7, might explain its instrumental role in the
resolution of the Ay puzzle of low-energy N − d scattering [22–24,38].

Notice that the order mismatch between N3LO and N4LO is removed in the Weinberg counting, i.e., m ∼ O(�2
χ/p) [19].

On the other hand, if one explicitly includes a factor of 1/m in the contact LECs parametrizing the NN potential, in order to
give the latter the same scaling as the kinetic energy, then the unitary transformation becomes independent of m, as in Eq. (66),
corresponding to the possibility of removing the m dependence from the nonrelativistic theory altogether. The potential in
Eq. (68) would also scale as 1/m in this case, and no enhancement would be formally obtained as compared to the leading 3N
contact interaction, provided a factor of 1/m is also attached to cE in Eq. (25).

The same unitary transformation also affects another class of contributions to the 3N interaction, with one pion
exchange/contact topology, of the same type as the so-called cD term [15]. Indeed, if H in Eq. (11) is the πN Hamiltonian,

HπN = gA

2Fπ

∫
d3xN†∇πa · στ aN, (69)

the induced Hamiltonian is a πNN coupling, which gives rise to a 3N potential of the following form:

V3NF = − gA

Fπ

∑
i 
= j 
=k

kk · σk τ i · τk

k2
k + m2

π

{
α1k j · kk kk · σ i + α2[k j · kk kk · σ j + 2ik j · (Qi − Q j ) kk · σ i × σ j]

+ (α3 + α5)
[
k2

k k j · σ j − 2ik j · σ j kk · Qi × σ i + 2iQ j · σ j kk · k j × σ i
]

+ (α3 − α5)[k j · kk kk · σ j + 2ik j · σ j kk · Q j × σ i − 2iQi · σ j kk · k j × σ i]

− 2α4[kk · σ i kk · Q j × σ j − 2ikk · Qi (kk · Qi Q j · σ i − kk · Q j Qi · σ i )]
}
. (70)
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Similarly to the purely contact ones, these contributions,
which are nominally N4LO, are enhanced by a factor of m,
and therefore promoted to N3LO. To the best of our knowl-
edge, they were not considered in the literature before. It will
be interesting to study their effects in 3N scattering observ-
ables.

It is worth mentioning that no genuine three-nucleon uni-
tary transformation can be used to the same purpose. For
instance, taking

T3N = i
∫

d3xN† 	σN × N† 	σN · N† 	σN, (71)

then [H0, T3N ] = 0, due to the antisymmetry with respect to
the nucleon labels.

V. CONCLUDING REMARKS

By examining the most general NN contact unitary trans-
formation, we have identified the precise relation between
the subleading contact 3N interaction and specific off-shell
or P-dependent components of the NN interaction. Provided
the full NN interaction up to O(p4) is determined from exper-
imental data, including the off-shell components encoded in
the LECs Di and the P-dependent contributions (which might
require considering electromagnetic observables depending

on the same LECs), then five of the 3N subleading LECs Ei

become redundant. Alternatively, one can disregard these con-
tributions in the two-nucleon systems, at the price of a more
involved 3N contact interaction. We have identified in partic-
ular the two unitary transformations that allow us to drop the
free LECs parametrizing the P-dependent component of the
NN interaction, Eq. (37), which cannot be determined from
a fit to NN scattering data alone. These interactions would
contribute in larger systems, like A = 3, together with “drift
terms” representing relativistic 1/m corrections, but they are
never considered in actual calculations. Their effect can be
traded with two specific combinations of the subleading 3N
contact operators, which can be read from Eqs. (52)–(64) as
the contributions proportional to α4 and α5, the latter given
in turn by Eqs. (66). We notice that these unitary trans-
formations reshuffle the individual terms of the low-energy
expansion. In particular, by absorbing the N3LO NN contact
LECs Di’s, their effect is attributed to the N4LO 3N contact
LECs Ei’s and give rise additionally to a 3N force of one pion
exchange/contact type. Therefore, we argue that this proce-
dure could modify the expected convergence pattern of the
chiral series and explain the difficulty of the N3LO 3N chiral
interactions to address the A = 3 scattering observables [39],
justifying the observed prominent role of the spin-orbit and
tensor 3N contact interactions [24].
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