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Calculation of the 12C + 12C sub-barrier fusion cross section in an imaginary-time-dependent
mean field theory
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The 12C + 12C sub-barrier fusion cross section is calculated within the framework of a time-dependent Hartree-
Fock-based classical model using the Feynman path-integral method. The modified astrophysical S∗ factor is
compared to direct and indirect experimental results. A good agreement with the direct data is found. In the
lower-energy region where recent analyses of experimental data obtained with the Trojan horse method (THM)
lead to contrasting results, the model predicts a nonresonant S∗ factor half-way between those results. Low-
energy resonances revealed in the THM data are added to the calculation, and the relative reaction rate in the
Gamow region is calculated. In particular, including 0+ resonances result in some agreement with the THM data.
The role of different resonances is discussed in detail, and their influence on the reaction rate at temperatures
relevant to stellar evolution is investigated.
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Careful measurements of the fusion cross sections for
12C + 12C reactions are crucial to our understanding of mas-
sive stars and superbursts from accreting neutron stars [1–4].
These measurements are especially compelling at energies
close to or below the Gamow peak [4], i.e., below 2 MeV.
Direct and indirect data measurements [5–13] exhibit many
resonances, particularly, notable when the data are expressed
in terms of the modified astrophysical S∗ factor at center-of-
mass (c.m.) energy Ec.m. [9],

S∗(Ec.m.) = Ec.m.σ (Ec.m.) exp
(
87.12E−1/2

c.m. + 0.46Ec.m.

)
= S(Ec.m.) exp (0.46Ec.m.) (1)

Efforts to make direct measurements at energies below
2.1 MeV are severely impacted by the rapidly diminishing
reaction cross section at sub-barrier energies. To bypass the
experimental difficulties of low fusion cross sections at very
low energies, indirect methods have been developed [14,15].
Recently, the 12C(14N, 2H) 24Mg indirect Trojan horse method
(THM) was employed to explore the lower-energy 12C + 12C
cross section [11]. These data revealed a wealth of resonances
in S∗ at center-of-mass energies as low as 0.8 MeV. It was
concluded that the sub-barrier fusion cross section was much
greater than previously estimated [16]. A critical reanalysis of
that data, including Coulomb effects in the three-body final
channel and applying the distorted-wave Born approximation
instead of the plane-wave approximation, resulted in much
lower S∗ values by up to three orders of magnitude. These
contrasting results have yet to be resolved.

Several macroscopic and microscopic models [16–23] of-
fer a reasonable reproduction of the direct reaction data, and
they are sometime considered as determining an upper limit of
the fusion cross section [20,21]. Predictions of these models

at energies below 2.1 MeV cannot reproduce the low-energy
THM results of Ref. [11] and are way above the values ob-
tained in the Coulomb renormalization analysis of Ref. [12].

In Ref. [24], a microscopic model based on the Vlasov
equation and the Feynman path integration method (FPIM)
was proposed. It succeeded in reproducing the then avail-
able direct data for the 12C + 12C system rather well. The
approach is also quite successful when applied to heavier
nuclei [25] and spontaneous fission [26]. Before getting in-
volved into complex numerical calculations, which may or
may not be feasible at such low energies, it is instructive
to simplify the heavy-ion dynamics using a robust macro-
scopic model. In Refs. [27–29], a Neck model (NM), based
upon the time-dependent Hartree-Fock (TDHF) approach was
proposed and successfully reproduced fusion cross sections
above the barrier [27] as well as deep inelastic [28] and fission
[29] dynamics.

In the present Rapid Communication we extend the NM
to sub-barrier energies within the FPIM framework. Newton
force equations are solved assuming the collective variables
given by the center-of-mass distance R of the two colliding
nuclei and their relative momenta P. The forces acting on the
nuclei before the two nuclei touch are given by the Coulomb
and the nuclear Bass potentials [30]. After touching, the two
nuclei are described as sections of spheres joined by a cylinder
of radius rN, the neck radius. In the rebounding phase, the nu-
clear geometry is given by two half spheres joined by sections
of cones of radius rN. Volume conservation is enforced which
gives suitable relations between the neck radius and the rela-
tive distance of the two nuclei in good agreement with TDHF
calculations [27]. In such a configuration the force is given
by the surface tension times the perimeter of the neck as for a
liquid drop. During this stage nucleons are transferred through
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the neck, giving rise to one-body dissipation described by the
Randrup-window formula [31].

In order to describe the sub-barrier fusion dynamics we
go into imaginary times (FPIM) at the first (external) turning
point [24–26] when the collective momentum P = 0 fm−1.
In imaginary times, the second derivative of R with respect
to (imaginary) time gets an i2 = −1 contribution and the
Coulomb force becomes attractive whereas the nuclear part
becomes repulsive. This accelerates the two nuclei towards
each other until they come to a halt (because of the short-range
nuclear repulsion in imaginary times) at the second (internal)
turning point. At this stage we switch from imaginary to real
times again. If the nuclear force is strong enough the two
nuclei fuse and this happens always for light nuclei, such as
12C. The probability of fusion for the l th-partial wave is given
by [24]

Tl = (1 + exp{2A})−1. (2)

The action (in units of h̄) is given by A = ∫ 2
1 P dR. The

cross section is given by

σ (Ec.m.) = π h̄2

2μEc.m.

∞∑
l=0

(2l + 1)TlPl . (3)

Pl gives the probability of decay of the compound nucleus into
different channels, μ is the nuclear reduced mass. Following
Ref. [24], the present calculations have been performed only
at zero impact parameter. In order to take into account the l
dependence of the transmission probability we shift the beam
energy for each l as [32]

Tl ≈ T0

(
Ec.m. − l (l + 1)h̄2

2μ〈R2〉
)

. (4)

μ〈R2〉 is an effective moment of inertia of two touching
spheres at the internal turning point 〈R〉, and it is slowly
varying with energy. Recall that for the symmetric 12C + 12C
system because of angular momentum and parity conservation
laws, only even l values are allowed.

In order to take into account known resonances in the 24Mg
compound nucleus, we increase the Bass potential strength at
each resonance in the following way:

VB → VB[1 + g(x, γ , σ )],

where g(x, γ , σ ) = 1√
(2πσ 2 )

exp[−0.5( x−γ

σ
)
2
] is a Gaussian

probability normalized to 1, x = Ec.m./�E , γ = Eres/�E and
σ = �/�E . Eres is the energy, and � is the natural width of the
resonance taken from experimental data. �E is a characteristic
energy for the model. Below the Coulomb barrier VB, we
define it as �E = VCB − Ec.m.. This is the energy violation
during the time evolution in the classically forbidden region,
i.e., during the imaginary time propagation.

The result of our calculation is presented in Fig. 1 where
it is compared to experimental results. For the purpose of the
calculation represented in Fig. 1 known values designated as
0+ resonances in Ref. [11] are included. Although the 0.877-
MeV resonance is designated 1− in the THM work [11] its
population in the symmetric 12C + 12C reaction indicates that
it is not [12]. It is probably 0+ [13], and we include it as such.

FIG. 1. Astrophysical S∗ factor as a function of the center-of-
mass energy in 12C + 12C collisions. The calculated smooth black
curve increasing from 1016 MeV b to ∼ 1017 MeV b is obtained when
no resonances are included. The analytical result, Eqs. (1) and (5),
is given by the cyan curve [36]. The result including resonances
with their natural widths is represented by small squares (green).
Experimentally derived data are orange diamonds [7], blue triangles
[8], orange circles [11], and red squares [12]. The latter two represent
conflicting THM analyses of the same THM data [11,12]. Note that
the experimental resolution of 30 KeV, not included in the calcula-
tions, broadens the peaks. The double narrow peaks below 1 MeV are
included in the calculations assuming they are both Jπ = 0+ [11].
The resonance at 2.56 MeV [11] is not included since it is most
probably Jπ > 3− [13]. For more recent direct data see Refs. [33,34].

The resonance at 2.567 MeV, assumed to be 0+ in Ref. [11]
is not included. This is based upon the fact that there is no
evidence for its population in either the direct reaction data or
in the THM data. Our calculations would result in a huge peak
if the resonance is treated as a 0+ but this is in striking contrast
to the direct data of Ref. [8] and the more recent data of
Refs. [33,34]. The results of the R-matrix analysis of Ref. [9]
suggest that it is Jπ � 3−. Recall that the THM data are
normalized in the 2.5-MeV region to the direct data [11] and
there are no visible resonances at 2.567 MeV. The resonance
at 1.503 MeV was assigned as a 2+ in Ref. [11] but as a 0+ in
Ref. [35]. If we treat it as a 0+ we observe a strong resonance,
which seems to be confirmed by the data [11]. It disappears
if it would be a 2+ because the l = 2 angular momentum
gives no contribution at that energy. Higher angular momenta
resonances are visible at 2.095- and 2.455-MeV (2+) c.m.
energy. Higher angular momenta (l = 4) and higher-energy
resonances result on the smooth increase with respect to the
calculation with no resonances.

In Ref. [36] an analytical formula was derived for the
astrophysical S factor for Coulomb barrier penetration and a
sharp cutoff at RN = r1 + r2 due to the nuclear force. Here
the nuclei radii are r1 = 1.4A1/−3

i . In the limit of zero beam
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energy, we have [36]

S0 = SGe
4
√

2μZ1Z2e2RN
h̄ . (5)

Zi and e are the charge numbers and electric charge, re-
spectively. SG = π h̄2/(2μ) is the astrophysical factor in the
Gamow limit [36]. An extension to different l values is pos-
sible, here we consider the dominant l = 0 channel only [36].
The relation between S and S∗ discussed above, Eq. (1),
gives a smooth energy dependence as shown in Fig. 1. For
our system S0 = 1016 MeV b, in fair agreement with the
model calculations absent resonances. Note that the hindrance
model of Ref. [10] suggests a much lower value for S0 and
a decreasing behavior at low Ec.m.. Our model predicts a
nonresonant S = 1.5 × 1016 MeV b at Ec.m. = 1 MeV which
decreases to S = 8 × 1015 MeV b at Ec.m. = 5.5 MeV in con-
trast to Ref. [10] but in good agreement to other model studies
[16–23].

As seen in this figure, the two different proposed analyses
of the THM reaction data lead to S∗ values well above or well
below those of the present calculation without resonances or
the simple analytical formula [36]. These discrepancies need
to be resolved. This might be possible using data obtained
with the THM approach but for a system, which does not
present the same Coulomb problem for one of the outgoing
particles. A suitable reaction could be 13C(12C, n) . . . where
the neutron may act as a spectator [12]. Our calculations
including the natural resonances are closer to the results of
Ref. [11] without Coulomb renormalization. In a recent paper
[37], data for the 13C(12C, p) 24Na reaction was discussed,
and an upper limit was derived for the 12C + 12C at stellar
energies. These findings are in agreement with our predictions
discussed above and other nonresonant model calculations
[16–23] but in contrast to the hindrance model [10].

In Fig. 2 we present relative calculated reaction rates in
the Gamow peak region vs T 9, i.e., the system temperature
in Gigakelvin (GK). For this figure the calculated reaction
rate was divided by a reference one obtained using a con-
stant S0 = 1 × 1016 MeV b. The green circles: ratio without
resonances; red squares: ratio with all included resonances,
see Fig. 1 excluded the 2.567-MeV resonance, the inclusion
of which would result in more than one order of magnitude
increase in the region of explosive burning, T > 1 GK. In
Ref. [13], the resonance is discussed in great detail and it is
excluded as 0+ in contrast to Ref. [11], see also Fig. 1. Also
relevant is the role of the 0.877-MeV resonance. If this is a
1− resonance as claimed in Ref. [11] then it should not be
included in the calculations because of spin and parity viola-
tion. The reaction rates would hugely decrease at the lowest
temperatures, but it is most probably a 0+, and its inclusion
results in the large ratio at low T9. This is crucial to understand
the early evolution of carbon stars. Compare the red squares
to the results displayed in Fig. 3 of Ref. [11]. Some difference
may come from the resonance widths increased by the finite
detector resolution.

FIG. 2. Ratio of reaction rate divided by assumed constant S0 =
1 × 1016 MeV b vs T 9. Green circles: ratio without resonances; red
squares: ratio with all included resonances. Some typical regions for
carbon burning are indicated in the figure, compare to Ref. [11].

In conclusion, in this Rapid Communication we have intro-
duced a TDHF inspired macroscopic model and extended it to
sub-barrier energies using the Feynman path-integral method,
i.e., solving Newton dynamics below the barrier in imaginary
times. The model has no free parameters and reproduces
reasonably well the direct data for the 12C + 12C reaction.
Extending the model by including low-energy resonances in
the region below that of the direct data we have calculated the
astrophysical S∗ factor for 12C + 12C in the range of Ec.m. =
0.4–6 MeV. The reported analyses of the THM indirect data
for 12C(14N, 2H) 24Mg lead to values which are in some agree-
ment to our model results [11] but in contrast to Ref. [12]
with the Coulomb corrections. It is important to stress that, in
experiments, the widths of the narrow resonances would be
increased by the finite detector resolution. The results depend
crucially on the spin and parity assigned to each resonance in
the region of interest. Although we are quite confident that the
2.567-MeV resonance is NOT a 0+ resonance, the 0.877-MeV
resonance is included as such. The reaction rates and, thus,
the evolution of carbon rich stars depend crucially on the
measured and calculated astrophysical factor as of Fig. 1. We
believe that our simple model greatly helps to clarify some
aspects and calls for a better determination of resonances in
the energy of interest and especially their spin and parity: a
challenge for future experiments.
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