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Bridging the quartet and pair pictures of isovector proton-neutron pairing
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The formal implications of a quartet coherent-state ansatz for proton-neutron pairing are analyzed. Its
nonlinear annihilation operators, which generalize the BCS linear quasiparticle operators, are computed in the
quartetting case. Their structure is found to generate nontrivial relationships between the many-body correlation
functions. The intrinsic structure of the quartet coherent state is detailed as it hints to the precise correspondence
between the quartetting picture and the symmetry restored pair condensate picture for the proton-neutron pairing
correlations.
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Introduction. After more than 60 years since pairing effects
were first considered in nuclear physics [1], the microscopic
pairing models are still facing the challenge of consistently
describing the subtle interplay between the isovector (T = 1)
and the isoscalar (T = 0) proton-neutron pairing in nuclear
systems [2]. One of the first studies of the isovector pairing
Hamiltonian was performed by Beliaev et al. in the framework
of the generalized BCS approach in which the protons and
the neutrons are mixed through the Bogoliubov transforma-
tion [3]. Since then, the BCS approach was employed in the
majority of studies, and it was further extended to include also
the isoscalar proton-neutron pairing interaction [4]. However,
as has been noted already by Beliaev et al., the BCS treatment
is not complete because “one must take into consideration
the quadruple correlations of α-particle-like nucleons in ad-
dition to pair correlations.” The first investigation of these
correlations has been performed by Soloviev [5], who related
them to a four-body interaction term. Later on, the four-body
“quartet” correlations have been discussed in relation to the
standard two-body isovector pairing interaction by Brémond
and Valatin [6] and by Flowers and Vujicic [7]. They pro-
posed a BCS-like function in which the pairs are replaced by
quartets, but the calculations with this trial state turned out
to be too complicated, and it was never applied to realistic
cases. The first proof that the quartets are essential degrees
of freedom for the isovector pairing Hamiltonian was given
by Dobes and Pittel [8] for the particular case of degenerate
shells. They have shown that in this case the exact solution of
the isovector pairing Hamiltonian for even-even N = Z sys-
tems can be expressed as a quartet condensate with the quartet
defined as two isovector pairs coupled to total isospin T = 0.
Later on quartet condensation models (QCMs) have been
proposed for nondegenerate levels and applied for realistic
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isovector pairing Hamiltonians [9,10]. Recently it was shown
that the exact solution for the nondegenerate levels can be also
expressed in terms of quartets [11] and that this solution turns
to a quartet condensate in the strong-coupling regime [12]. All
these studies have demonstrated that the α-like quartets are
indispensable for a proper description of isovector pairing.

At this point it is worth stressing that the quartet conden-
sation in the pairing context mentioned above should not be
confused with the other “quartet condensate” concept, based
on a similar wave function as the QCM one but dealing with
in medium bound states of four fermions as, e.g., α particles,
and their Bose-Einstein condensation [13,14] in finite nuclei
and infinite nuclear matter. Although no α-particle condensate
survives at saturation density, one may develop a theory for
quartet condensation which in many aspects is similar to the
BCS approach for the condensation of pairs [15].

Very recently we introduced such a BCS-like approach
involving a quartet coherent state in the context of proton-
neutron pairing [16]. The aim of this Rapid Communication is
to further explore the implications of a quartet coherent-state
ansatz for the proton-neutron pairing problem. This leads us
to establish the general relation between the quartet models
and the BCS-based models, which was previously investigated
only for particular cases [8–10,17,18].

We consider the general isovector pairing Hamiltonian,

H =
Nlev∑
i=1

εiNi,0 +
∑

τ=0,±1

Nlev∑
i, j=1

Vi jP
†
i,τ Pj,τ , (1)

where i, j denote the single-particle fourfold degenerate
states and εi refers to the single-particle energies; a time-
conjugated state will be denoted by ī. The first part is the
standard single-particle term whereas the second part is the
isovector pairing interaction expressed by the neutron-neutron
(τ = 1), proton-proton (τ = −1), and proton-neutron (τ = 0)
pairs operators defined by P†

i,τ = [c†
i c†

ī
]T =1
τ . In the discussion
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below, we will frequently refer to the set of collective ππ, νν,
and πν Cooper pairs �†

τ (x) ≡ ∑Nlev
i=1 xiP

†
i,τ , which depend on

a set of mixing amplitudes xi, i = 1, 2, . . . , Nlev. We denote
by q†

i = ν
†
i,↑ν

†
i,↓π

†
i,↑π

†
i,↓ the isoscalar quartet operator that fills

completely the level i.
The BCS-like quartet coherent-state ansatz introduced in

Ref. [16] is written in terms of the QCM collective quartet
operator Q†(x) ≡ √

3[�†�†]T =0 ≡ 2�
†
1 (x)�†

−1(x) − [�†
0 (x)]2

as

|QBCS〉 = exp[Q†]|0〉 =
∑

n

1

n!
[Q†]n|0〉. (2)

Below, we will explore in more detail the particular conse-
quences of its coherent-state character.

The Rapid Communication concentrates on formal aspects
of pairing and quartetting. We will first show that QBCS of
Eq. (2) can be annihilated by a nonlinear transformation of
fermion operators (mixing singles and triples and/or dou-
bles with quadruples). This is in analogy to the well-known
simpler case where a quasiparticle operator annihilates the
BCS state. We will discuss how the former can open very
interesting possibilities of calculus with the quartet coherent
states. An interesting aspect will be that QBCS can be written
as a Hubbard-Stratonovich transformation of a single-particle
field. This will help to show that the number projected QBCS
is analytically equivalent to the number projected BCS for
T = 0 states. For T > 0 states the equivalence will be shown
only numerically, getting very close to 100%.

QBCS annihilation operators. One of the major advan-
tages of the BCS approach is the possibility of describing
the paired system in a picture of weakly interacting “quasi-
particles”, whose associated operators obey an annihilation
condition with respect to the correlated BCS vacuum. Despite
its nonlinear character, the above quartet-BCS state still ad-
mits a generalized class of annihilation operators due to its
coherent-state nature [15]. However, at variance with the lin-
ear quasiparticles of the BCS case, the annihilation operators
in the quartetting case do not obey simple linear equations of
motion. For a specific particle operator c and for a specific
pair operator P = cc, the general annihilation operators may
be computed as

α = c + [Q†, c],

β = P + [Q†, P](2) + 1
2 [Q†, P](3,1),

(3)

where we used the decomposition [Q†, P] ≡ [Q†, P](2) +
[Q†, P](3,1) which is of the form c†c† + c†c†c†c. Explicitly,
a protonlike annihilation operator of the QBCS state has the
form

αi,↑ = πi,↑ − 2xiπ
†
i,↓�

†
1 (x) +

√
2xiν

†
i,↓�

†
0 (x), (4)

involving the annihilation of a particle and the creation of a
particle dressed by a collective pair. Analogous relations hold
for the other spin-isospin combinations.

The specific form of these nonlinear annihilation opera-
tors has interesting consequences; one, in particular, is the
existence of a nontrivial connection between the two-
body normal densities and the four-body anomalous den-
sities. To see this, evaluate the average 〈QBCS|π†

i,↑αi,↑ +

π
†
i,↓αi,↓|QBCS〉 = 0 by using Eq. (4). This leads to the oc-

cupations expressed in terms of the quartetting tensor as

ni = 〈π†
i,↑πi,↑ + π

†
i,↓πi,↓〉 = 2xi

∑
j

x j〈[P†
i P†

j ]T =0〉, (5)

where the averaging is performed on the QBCS state. It fol-
lows that the total number of quartets may be expressed as the
average of the collective quartet operator as

nq = 〈QBCS|Q†(x)|QBCS〉. (6)

This is a generalization of the simple BCS case with the
ground-state |BCS〉 = exp[�†(x)]|0〉 and the annihilation op-
erators αi,↑ = ci,↑ − xic

†
i,↓. Here the occupations may be

computed from 0 = 〈c†
i,↑αi,↑〉 = ni/2 − xi〈c†

i,↑c†
i,↓〉. It follows

that the number of pairs is given by the average of the collec-
tive pair operator,

np =
∑

i

ni/2 = 〈BCS|�†(x)|BCS〉. (7)

For the BCS case, we may also introduce the occupation and
unoccupation amplitudes and recover the familiar form np =∑

i xi〈c†
i,↑c†

i,↓〉 = ∑
i(vi/ui )uivi = ∑

i v
2
i .

Returning to the second class of pairlike QBCS annihila-
tion operators, the expressions resulting from Eq. (3) for each
isovector pair Pk,τ are

βk,±1 = Pk,±1 − x2
k P†

k,∓1 − 2xk�
†
∓1

+ xk�
†
∓1Nk,±1 − xk�

†
0Tk,∓1,

βk,0 = Pk,0 + x2
k P†

k,0 + 2xk�
†
0

+ xk�
†
1Tk,−1 − xk�

†
−1Tk,1 − 1

2 xk�
†
0Nk,0, (8)

involving pair creation and annihilation terms, together with
a nonlinear pair dressed by the particle number and isospin
operators Ti,1 = −(π†

i,↑νi,↑ + π
†
i,↓νi,↓)/

√
2 and Ti,−1 = −T †

i,1.
Remarkably, there is another nonlinear combination that com-
mutes exactly with the quartet operator. Explicitly, with

ηk ≡ �
†
1Tk,−1 − �

†
−1Tk,1 + 1

2
�

†
0Nk,0 − 1

2
xkP†

k,0

∑
j

Nj,0, (9)

we have [Q†, η] = 0 and, thus, ηk|QBCS〉 = 0. Because
the isospin operators T±1 = ∑

k Tk,±1, obey [Q†, T±1] = 0,
they also annihilate the isospin conserving QBCS state
T±1|QBCS〉 = 0.

The annihilation of the QBCS state by the operators ηk

and T±1 leads to the fact that the operators in Eq. (8) are not
actually uniquely defined. We could add to any of the β’s an
arbitrary combination of η and PT and still obtain a valid
pairlike annihilation operator. This freedom could allow for
new treatments to be consistently developed for the pairing
Hamiltonian, in analogy with Refs. [15,19] as will be explored
in future works.

Structure of the QBCS state. Computations with the non-
linear QBCS ansatz are made tractable in Ref. [16] by a
linearization procedure for the exponent. The quartet operator
is first expressed as the square of a rotated collective pair
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γ , Q = 	γ † · 	γ †, defined by γ †
τ = ∑Nlev

j=1 x j p†
j,τ , where

p†
j,1 = i(P†

j,1 − P†
j,−1)/

√
2, p†

j,2 = (P†
j,1 + P†

j,−1)/
√

2,

p†
j,3 = −iP†

j,0. (10)

Note that this choice is not unique. A Hubbard-Stratonovich
transformation is then used to represent the quartet coherent
state as a combination of general isovector pair BCS states,

exp(Q†) = exp(	γ † · 	γ †)

=
∫

d3z exp
(−	z2/4 + 	z · 	γ †

)

=
∫

d3z e−	z2/4
Nlev∏
i=1

(
1 + xi	z · 	p†

i + x2
i 	z2q†

i /2
)
,

(11)

where we omitted the overall normalization factor. In this
way, we obtain a superposition of standard BCS states, each
factorized as a product over the single-particle levels.

To better understand this specific pattern of partial symme-
try breaking, it is instructive to pass to spherical coordinates
in Eq. (11) and write the quartet coherent state as

exp(Q†) =
∫ ∞

0
dz z2e−z2/4

∫
S2

dn̂ exp(zn̂ · 	γ †). (12)

Naturally, the isospin projection is already implemented by
the angular integration. To see this, consider the coherent
state of the isovector pair 	γ integrated over all directions in
isospace,

j†
0 ≡

∫
S2

dn̂ exp(n̂ · 	γ †)

=
∞∑

k=0

(	γ † · 	γ †)k

(2k + 1)!

=
∞∑

k=0

(Q†)k

(2k + 1)!

= j0(i
√

Q†), (13)

which is formally the expansion of a spherical Bessel function
of imaginary argument (hence, the name). The basic informa-
tion about the quartet correlations is, thus, already contained
in this simpler ansatz; by projecting onto good particle num-
ber, we always recover the QCM state,

Pnq exp(Q†)|0〉 = Pnq j†
0 |0〉 = (Q†)nq |0〉. (14)

We interpret now the role of the radial integral in Eq. (12)
as just changing the mixing between the components having
different particle numbers.

The analytic expressions of the norm function and of the
Hamiltonian average on the j†

0 state may be obtained simply
by dropping the radial integrals from the QBCS expressions
(see Ref. [16], Supplemental Material). Remarkably, identical
expressions were reported in Refs. [20,21] in the context of
the symmetry restored BCS approach. The definition itself of
the j†

0 state hints at a precise relationship with the projected
BCS state, which we detail below.

BCS symmetry restoration for T = 0. The generalized
BCS equations for isovector pairing in even-even N = Z sys-
tems present two degenerate solutions with gap parameters
�ν = �π = �, �πν = 0, and �ν = �π = 0, �πν = � (for
a proof, see Ref. [17]). The corresponding BCS states are
given by

|BCSI〉 = exp[�†
1 (x)] exp[�†

−1(x)]|0〉,
|BCSII〉 = exp[�†

0 (x)]|0〉. (15)

Techniques for projecting these solutions onto good parti-
cle number and isospin have been developed in Refs. [20–26]
with their connection to the quartet models only being men-
tioned for particular cases in Refs. [8,17,18].

Here, we establish the correspondence in the general case
by analytically performing the projection operation on the
BCS state, and recovering a version of the j†

0 ansatz of
Eq. (13). For simplicity, we consider the axially symmetric
state |BCSII〉 with Tz = 0, and we employ the isospin projec-
tion operator [27],

PT ;Tz=0 =
∫

S2
dn̂ DT ∗

00 (n̂)R(n̂) (16)

written in terms of a Wigner D matrix and of the rotation
operator in isospin space R(n̂), which may be factorized as
R(n̂) = ∏Nlev

i=1 Ri(n̂). Given the isoscalar character of the fully
occupied single-particle level q†

i |0〉, the only nontrivial term
involves the rotation of the one-pair state. The isospin rotation
operator Ri(n̂) = exp(−iϕT̂z ) exp(−iθ T̂y) acting on a Tz = 0
pair state is effectively

Ri(n̂) P†
i,0Ri(n̂)−1 = in̂ · 	p†

i , (17)

involving the same rotated pairs 	p†
i of Eq. (10) used to bring

the collective quartet operator to a diagonal form. The isospin
rotated BCS state becomes

R(n̂)|BCSII〉 =
Nlev∏
k=1

(
1 + ixkn̂ · 	p†

k − x2
k q†

k/2
)|0〉

= exp(in̂ · 	γ †). (18)

This implies that the isospin projected BCS may be written as

PT ;Tz=0|BCSII〉 =
∫

S2
dn̂ DT ∗

00 (n̂) exp(in̂ · 	γ †). (19)

In particular, the T = 0 component is simply

PT =0|BCSII〉 =
∫

S2
dn̂ exp(in̂ · 	γ †)

=
∞∑

k=0

(−	γ † · 	γ †)k

(2k + 1)!

=
∞∑

k=0

(−Q†)k

(2k + 1)!
= j0(

√
Q†), (20)

which is nothing else than Eq. (13) evaluated with imagi-
nary mixing amplitudes or, equivalently, originating from the
ansatz exp(−Q†).
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This proves the general equivalence of the projected BCS
and QCM approaches for the isovector pairing correlations in
the T = 0 ground state of N = Z even-even nuclei, i.e.,

PN=4nq

T =0 |BCS〉 = (Q†)nq |0〉 = |QCM〉. (21)

Before detailing with the N > Z case below, we remark
the possibility of establishing nontrivial connections between
the correlation functions also for the particle number pro-
jected QCM state, based on the above annihilation operators.
We write Eq. (4) in schematic form α = c + c†c†c† and
project the annihilation condition α exp[Q†]|0〉 = 0 onto a
fixed particle number, which singles out two terms. A proper
particlelike annihilation operator for the QCM state may then
be expressed in terms of the inverse amplitude coherent quar-
tet, which satisfies Q(1/x)Q†(x)|QCM〉 = λ|QCM〉 with λ a
numerical factor (for details see Appendix A of Ref. [28]). We
obtain, e.g., for the protonlike annihilation operator,

[
πi,↑ + nq

λ
[Q†, πi,↑]Q

(
1

x

)]
|QCM〉 = 0, (22)

where the commutator can be read off Eq. (4). In anal-
ogy with Eq. (5) for the quartet coherent state, we may
obtain a relation between the particle and the quartet den-
sities on the QCM state of the form 〈QCM|c†c|QCM〉 =
〈QCM|c†c†c†c†cccc|QCM〉.

This is perfectly analogous to the simple single-species
BCS case where the quasiparticle action on the BCS state
(ci,↑ − xic

†
i,↓) exp[�†(x)]|0〉 = 0 may be projected to obtain

the nonlinear annihilation relation,

[
ci,↑ − xi

Nlev − n + 1
c†

i,↓�

(
1

x

)]
[�†(x)]n|0〉 = 0. (23)

We may then find the connection between the particle and
the pair densities on the projected BCS state |PBCS〉 =
[�†(x)]n|0〉 as

〈c†
i,↑ci,↑〉 = xi

Nlev − n + 1

Nlev∑
j=1

1

x j
〈P†

i Pj〉. (24)

Similar relationships may be established also for higher-order
correlation functions, which could enable new ways of solving
the pairing problem, e.g., within the recent many-body boot-
strap approach [29,30].

QCM versus projected BCS for N > Z .
In the QCM quartetting approach, the states for the N >

Z systems are constructed by appending to the N = Z ansatz
additional coherent pairs [9]. A state with np excess neutron
pairs and nq quartets, having T = Tz = np is defined as the
particular combination,

|QCM(T = Tz = np)〉 = [�†
1 (y)]np[Q†(x)]nq |0〉. (25)

Here, one allows the extra collective pairs �
†
1 (y) to have a

different structure than the pairs �†(x) forming the quartets.

The same idea may be applied to the BCS ansatz: Below, we
consider the pair condensates of Eq. (16) to have different
mixing amplitudes. Note that we also have to append a νν pair
condensate to the πν condensate in this N > Z case. In this
section, we define |BCSII〉 = exp[�†

1 (y)] exp[�†
0 (x)]|0〉. We

consider as illustrative examples an N = 4, Z = 2 system and
an N = 6, Z = 2 system. The particle number and isospin
projected combinations are

PN=6
T =Tz=1|BCSI〉 = (�†

1,xQ†
y − 3�

†
1,y[�†

x �
†
y ]T =0)|0〉, (26a)

PN=6
T =Tz=1|BCSII〉 = (2�

†
1,yQ†

x − �
†
1,x[�†

x �
†
y ]T =0)|0〉, (26b)

PN=8
T =Tz=2|BCSI〉 = (5[�†

1,y]2[�†
y �

†
x ]T =0 − 2�

†
1,y�

†
1,xQ†

y )|0〉,
(26c)

PN=8
T =Tz=2|BCSII〉 = (11[�†

1,y]2Q†
x + 4[�†

1,x]2Q†
y

− 12�
†
1,x�

†
1,y[�†

x �
†
y ]T =0)|0〉, (26d)

with the notation �†
x = �†(x), Q†

y = Q†(y), etc. Naturally,
there are multiple options of coupling various pairs to a given
total isospin, and the QCM ansatz of Eq. (25) is just a partic-
ular choice. Interestingly, the QCM choice does not appear in
all previous expressions.

With the states (26), we performed variation-after-
projection calculations for a picket-fence model of eight
fourfold degenerate levels of single-particle energies εk =
k − 1 and with a state-independent interaction of strength G.
The analytical expressions for the average of the isovector
pairing Hamiltonian on the states (26) were derived with the
CADABRA2 computer algebra system [31] using the method
presented in Refs. [32,33].

In all cases, we obtained a very good agreement between
the projected BCS and the QCM results. For the chosen
model, the overlaps do not decrease lower than 0.999, and the
relative errors in the correlation energies do not exceed 0.5%.
We present in Fig. 1 the results for the lightest N = 4, Z = 2
system; the agreement between projected BCS and QCM im-
proves for heavier systems (we note that the QCM ansatz gives
a higher correlation energy in all cases).

Note that even in the case of equal pair and quartet mixing
amplitudes (x = y) the results are still good: The obtained
overlaps with the QCM state (having x �= y) are always greater
than 0.98, and the errors in the correlation energies are always
smaller than 8%. In this case, all analytical expressions for the
projected BCS states reduce to the QCM ansatz of Eq. (25)
with x = y.

In constructing the QCM ansatz for N > Z systems,
Ref. [9] mentions the necessity of a different structure for the
excess collective neutron pairs with respect to the collective
pairs forming the quartet as to reproduce the Hartree-Fock
limit. However, the present results indicate that whereas the
x = y choice introduces significant errors, it preserves the cor-
rect behavior in the weak pairing regime. Indeed, the Hartree-
Fock vacuum may be obtained as a limit of the x = y QCM
ansatz by suitably scaling the mixing amplitudes. For the
N = 4, Z = 2 and N = 6, Z = 2 systems with the scal-
ings wε = (1/ε, ε2, 0, 0, . . .) and zε = (1/ε, ε, ε, 0, 0, . . .),
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FIG. 1. Error in the correlation energy (a) Ec = E (G) − E (G = 0) and overlaps (b) for the states (26) relative to the QCM state (25),
versus the interaction strength G (in units of the level spacing). The results are for two protons and four neutrons on eight equidistant levels.
To indicate the results we use the notations: “�xQx” for the state �†(x)Q†(x)|0〉 of Eq. (25) with equal pair and quartet amplitudes x = y;
“�x[�x�y]0” for state �†

1 (x)[�†(x)�†(y)]T =0|0〉; “PNT |BCS〉1,2” for the projected BCS states of Eqs. (26a) and (26b).

we obtain

�
†
1 (wε )Q†(wε ) ∝ q†

1P†
2,1 + O(ε),

[�†
1 (zε )]2Q†(zε ) ∝ q†

1P†
2,1P†

3,1 + O(ε), (27)

which reduce to the exact Hartree-Fock state in the ε → 0
limit.

Summary and conclusions. We presented an attempt at
bridging the descriptions of the proton-neutron isovector pair-
ing correlations in the symmetry preserving quartet picture
and in the mean-field pair-condensate picture.

For both the coherent and the projected states, the non-
linear annihilation operators are shown to generate nontrivial
connections between the many-body correlation functions. A
possible application of these relations would be to consider
the novel quantum many-body bootstrap approach [29,30]
and to implement the condensate property of the ansatz in
terms of these constraints for the correlation functions. This
would enable a numerically unified description, based on a
quartet coherent state of both nuclear matter and finite nu-
clei. The same framework could be generalized to quartetting

in condensed-matter systems, e.g., to the study of biexciton
condensation in semiconductors or trapped fermionic atoms
in optical lattices.

Then, inspired by the structure of the quartet coherent state,
we have shown that the QCM ansatz for the ground state of
even-even N = Z systems can be obtained by projecting out
the particle number and the isospin from a proton-neutron
BCS state. For the N > Z systems the PNT BCS and QCM
states are not analytically equivalent. However, their overlaps
are very close to one. The numerical PNT BCS calculations
indicate that the particular way of coupling various pairs to
the total isospin of the N > Z system does not influence much
the final results as long as the trial states obeys the cor-
rect symmetry constraints. An interesting question is whether
these facts hold in the case of an isovector-isoscalar pairing
Hamiltonian. This issue we intend to address in a future
study.
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