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Microscopic description of fusion hindrance in symmetric Ni+Ni
and asymmetric 12C + 198Pt systems

M. Rashdan
Department of Mathematics and Theoretical Physics, NRC Atomic Energy Authority, Cairo, Egypt

(Received 7 February 2020; accepted 9 October 2020; published 6 November 2020)

Hindrance at deep subbarrier energies for the symmetric 58Ni + 58Ni, 64Ni + 64Ni, and asymmetric 12C + 198Pt
systems is investigated using microscopic energy and the density-dependent G-matrix effective interaction.
The proton and neutron density distributions of target and projectile are derived from Skyrme-Hartree-Fock
calculations. A fair agreement with the data of the fusion excitation functions and astrophysical S factors have
been obtained without any fitting parameters. Hindrance is naturally reproduced at deep subbarrier energies,
which is consistent with experimental observations.
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I. INTRODUCTION

A steep falloff in fusion cross section between heavy
ions has been observed, recently, for several systems at deep
subbarrier energies and has been identified as a fusion hin-
drance [1–6]. The phenomenon of a hindrance has often
been analyzed in terms of the S factor, where a maximum
in S(E ) appears at the threshold energy of observing fusion
hindrance [3], or by the logarithmic derivative of the fusion
cross section [4]. Several phenomenological potentials have
been introduced to describe the hindrance phenomenon. For
example, Misicu and Esbensen [7] proposed a potential with
a shallow pocket and a repulsive core to describe fusion re-
actions at subbarrier energies. Although the repulsive core
could modify the depth and the shape of the minima of the
internuclear potential, the distance at which the repulsive core
is added has been taken as a free parameter. Furthermore, the
assumption that the fusion cross section can be described by
two different potentials seems to be inadequate. Ichikawa [8]
investigated fusion hindrance in reactions of 58,60Ni collid-
ing with Ni and other nuclei using Yukawa-plus exponential
(YPE) potential. The YPE model would describe fusion hin-
drance but it has seven free input parameters that have been
adjusted for each interacting pairs to fit the data.

Recently, Hagino et al. [9] investigated the relationship
between the maximum of the astrophysical S factor and the
hindrance phenomenon in heavy-ion fusion reactions at deep
subbarrier energies by using two Woods-Saxon (WS) poten-
tials. They found that the astrophysical S factor could provide
a convenient tool to analyze the deep subbarrier hindrance
phenomenon, even though the S factor may have a strong
energy dependence for heavy-ion systems. However, the two
WS potentials used by Hagino et al. have six free parameters
which were fit for each colliding pairs to reproduce the data.

The aim of the present work is to investigate fusion
hindrance within a microscopic parameter-free internuclear
potential, which depends on the incident energy as well as

the nuclear densities of the interacting nuclei. This internu-
clear potential is derived from Brueckner G matrix, which is
the solution of the Bethe-Goldstone equation [10–12]. The
nuclear densities are input in this approach and are derived
microscopically from Skyrme-Hartree-Fock (SHF) calcula-
tions, adopting SKRA interaction, which well describe finite
nuclei [13]. The derived potential will be used to calculate
the fusion excitation function and the astrophysical S factors
for the systems 58Ni + 58Ni, 64Ni + 64Ni, and 12C + 198Pt. Cal-
culations are presented in Sec II. Results are presented and
discussed in Sec. III. Section IV presents the summary and
conclusion.

II. CALCULATIONS

The interaction potential between two colliding nuclei sep-
arated by a distance R can be written as [10–12]

V (R; Kr ) =
∫

d3r[H (r, R; Kr ) − H (r,∞; Kr )], (1)

where Kr is the relative momentum per nucleon, which
depends on the incident energy of the projectile; Kr =
( 2m

h̄2
Elab
AP

)1/2. The energy density functional H is written as

H (r, R; Kr) = τ (ρP, ρT ; Kr) + �(ρP, ρT ; Kr)

+ Hcor (ρp, ρn), (2)

where ρP and ρT are the projectile and target densities. The
first term in Eq. (2) is the kinetic-energy density which is
calculated in momentum space, from

τ (ρP, ρT ; Kr) = h̄2

2m

[
g
∫

F

d3k

(2π )3
(k − KG)2 + K2

Gρ

]
, (3)

where g is a spin-isospin degeneracy factor and KG is a refer-
ence center-of-mass (c.m.) momentum (KG = ρP

ρ
Kr , where ρ

is the total density of the system).
∫

F stands for the integration
over the occupied states for two colliding nuclear matters.
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The second term is the potential-energy density functional
�(ρP, ρT ; Kr), which is calculated, in momentum space, from
the reaction matrix G, which is the solution of the Bethe-
Goldstone equation,

G = V + V
Q

W − H0 + iε
G. (4)

where H0 is the single-particle Hamiltonian and Q is the Pauli
operator blocks occupied states in the core. V is a microscopic
bare nucleon-nucleon interaction taken to be the Reid soft-
core potential. The potential-energy density �(ρP, ρT ; Kr) is
calculated from the G matrix,

�(ρP, ρT ; Kr)

= 1

2

∑
spin

∑
isospin

∫
F

d3k

(2π )3

∫
F

d3k′

(2π )3
〈kk′ | G | kk′〉a, (5)

where the subscript a indicates antisymmetrization of the ma-
trix element. Equations (3)–(5) are calculated in momentum-
space configuration of two colliding nuclear matters (two
Fermi spheres), using the generalized local density approxi-
mation. In this approximation, at each separation distance R,
one can relate two Fermi radii, kFP and kFT , by the densities
of the interaction nuclei ρP (= 2

3π2 k3
FP

) and ρT (= 2
3π2 k3

FT
),

which yields two Fermi spheres whose centers are separated
in momentum space by the relative momentum per nucleon
Kr, since each projectile nucleon has an average momentum
Kr. When the two Fermi spheres overlap a region of double
occupancy is obtained which is forbidden by the Pauli princi-
ple. Therefore, the momentum distribution has to be changed
to avoid the region of double occupancy. In this case, the
two Fermi spheres are enlarged but keep the same overall
density. To this end, one defines two new Fermi radii k′

FP
and

k′
FT

, which are determined from the old ones using volume
conservation. The new radii are of course larger than the old
ones due to the Pauli principle and they have to be calculated
numerically using an iterative procedure (see Ref. [10] for
details).

The last term in Eq. (2) is a correction term due to surface
and symmetry energy corrections [11,12]. The proton and
neutron densities of the combined system are given by the sum
of target and projectile densities, i.e.,

ρp,n = ρT
p,n(r) + ρP

p,n|r − R|. (6)

These densities are calculated from Skyrme-Hartree-Fock
calculations by using the Skyrme interaction SKRA [13].
Other Skyrme interactions are also used for comparison.

III. RESULTS AND DISCUSSION

The total densities of 58Ni and 64Ni are displayed in
Fig. 1. As shown from this figure, a neutron skin is formed
for 64Ni due to the larger number of neutrons. This skin is
expected to increase the nuclear potential and fusion cross
section. The nuclear and total (nuclear + Coulomb) potentials
of 58Ni + 58Ni and 64Ni + 64Ni calculated in the present G-
matrix approach at the energy around the Coulomb barrier,
5 MeV/u, using SHF densities, adopting the SKRA interac-
tion, are displayed in Fig. 2. As shown from this figure the

FIG. 1. The SHF densities of 58Ni and 64Ni calculated adopting
SKRA interaction.

nuclear potential of 64Ni + 64Ni is deeper than the potential of
58Ni + 58Ni in the surface and tail region due to the increases
in the nuclear densities of 64Ni in these regions, as shown from
Fig. 1. This deeper potential decreases the fusion barrier as
shown from Fig. 2. Figure 3 shows the energy dependence
of the nuclear and total potentials of 64Ni + 64Ni. As shown
from this figure the potential is shallow at zero energy and
becomes deeper with increasing energy due to the decreasing
in Pauli blocking effects. As a result, the interaction barrier
decreases and shifts outwards with increasing energy, which
is expected to increase the probability of fusion. The barrier
height decreases by about 2 MeV with increasing energy
from zero laboratory energy to 5 MeV/u, i.e., around the
Coulomb barrier. On the other hand, the depth of the potential
pocket increases by about 8 MeV, as shown from Fig. 3.
This dramatic energy dependence of the nuclear potential is
interesting, where it is expected to strongly affect the fusion

FIG. 2. The nuclear and total (nuclear + Coulomb) potentials of
58Ni + 58Ni and 64Ni + 64Ni calculated at 5 MeV/u.
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FIG. 3. The energy dependence of the nuclear and total potentials
of 64Ni + 64Ni.

cross section at subbarrier energies, which is very important
for the investigation of hindrance phenomena.

The calculated internuclear potentials are used to calcu-
late the fusion cross sections using the CCFULL code [14].
However, in the CCFULL code the input potential is in a
WS form. Thus, the calculated G-matrix potentials are fit
to a WS form. Figure 4 shows the WS potential fit to the
G-matrix potential for the system 58Ni + 58Ni at energy 5
MeV/u. Figures 5(a)–5(c) show the energy dependence of
the WS parameters, which are fit to the potentials calculated
from the G-matrix effective interaction at different energies.
As shown from this figure the depth, V0 increases with in-
creasing energy. The diffuseness a slightly increases and the
radius R0 slightly decreases with increasing energy. The ex-

FIG. 4. The WS potential fit to the G-matrix potential at
Elab/Ap = 5 MeV. The WS parameters are found to be V0 = 90.554
MeV, r0 = 1.0784 fm, and a = 0.8856 fm.

FIG. 5. The energy dependence of the WS potential parameters
R0, a, and V0 shown in panels (a)–(c), respectively, fit to the in-
teraction potential calculated from Brueckner G matrix at different
energies.

citation functions of the symmetric systems 58Ni + 58Ni, and
64Ni + 64Ni and the asymmetric system 12C + 198Pt calculated
using the energy dependence potentials with and without con-
sidering the coupling to inelastic excited states are shown in
Figs. 6–9. The input parameters for the coupling strengths in
the coupled-channels (CC) calculations are listed in Table I.
For the symmetric Ni + Ni systems, the experimental data
are taken from Beckerman et al. [1] and Jiang et al. [2],
while for the asymmetric 12C + 198Pt system they are taken
from Shrivastava et al. [15]. As shown from these figures
the fusion excitation functions are fairly reproduced by the
present G-matrix energy-dependent internuclear potentials.
The steep falloff observed in the fusion cross sections at
very low subbarrier energies are very well reproduced. For
the newly observed fusion asymmetric system 12C + 198Pt,
the experimental fusion cross section is also automatically
reproduced at deep subbarrier energies by the present mi-
croscopic potential without any need to phenomenological
adjustable parameters or damping factors of coupled-channels
effect, as done in the calculations of Refs. [8,9,15,16]. This
is because the present microscopic internuclear potential is
more shallow at very low energies and becomes deeper with
increasing energy. This shallow potential reduces the cross
section at deep subbarrier energies in agreement with the
data. If I use the potential calculated at the energy around
the Coulomb barrier, at Elab/AP = 5 MeV/u, an increase in
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FIG. 6. The excitation functions of 58Ni + 58Ni. The dashed,
NOC (no coupling), and solid, CC, lines represent calculations using
G-matrix energy-dependent potentials with SHF densities, adopting
SKRA interactions. The surface excitation parameters used in the
coupled channels calculations are listed in Table I. The numbers in
brackets denote the number of phonons. Calculations using AW po-
tential are denoted by dotted and dash-dotted lines. The dash-double
dotted line is calculated with the AW potential but using one-phonon
excitations and equal Coulomb and nuclear deformations. The exper-
imental data are taken from Beckerman et al. [1].

the cross section is obtained, especially at lower energies in
disagreement with the data, as shown from Fig. 7. On the
other hand, if I use the potential calculated at zero energy, a
reduction in the cross section below the barrier is obtained,
in disagreement with the data, as shown from Fig. 7. This
is due to the shallow potential at zero energy. Indeed, it has

FIG. 7. The excitation functions of 58Ni + 58Ni calculated using
the G-matrix energy-dependent potentials (dashed and solid lines)
compared with that calculated using G-matrix potentials calculated
at zero and Elab/Ap = 5 MeV (Ec.m. = 145 MeV).

FIG. 8. Same as Fig. 6 but for 64Ni + 64Ni. The experimental data
are taken from Jiang et al. [2].

been pointed out in Ref. [7] that energy density approaches
produce shallow potentials, but they lead to excessively high
potential barriers, underestimating the fusion cross section at
near-barrier energies. However, by using an energy-dependent
potential calculated in the energy density approach, the poten-
tial is modified, leading to a decreasing barrier with increasing
energy, as indicated in Fig. 3. This is obviously due to the
increases in the attractive nuclear potential which, finally,
leads to well-reproduced fusion cross sections at all energies,
as shown from Figs. 6–9 without the need for any changes in
the parameters of the calculation.

It is worth mentioning that the Coulomb deformation pa-
rameters adopted in the CC calculations, given Table I, are
taken from experiments, and they were listed in Ref. [16]. The

FIG. 9. Same as Fig. 6 but for 12C + 198Pt. The short-dotted
and short-dashed lines represent calculations using G-matrix energy-
dependent potentials but with the SLy4 interaction for SHF densities.
The experimental data are taken from Shrivastava et al. [15].
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TABLE I. Input parameters for the coupling strengths in the
CC calculations. λπ refers to the multipolarity and the parity of a
state of excitation energy Ex . The Coulomb and nuclear deformation
parameters are denoted by βC and βN , respectively. The last column
is the number of phonons, Nph, included in the calculations. The data
for excitation energies and Coulomb deformations are taken from
Ref. [16] and references therein.

System λπ Ex (MeV) βC βN Nph

58Ni + 58Ni, T: 2+ 1.45 0.187 0.243 1
3− 4.47 0.2 0.2 2

P: 2+ 1.45 0.187 0.243 1
64Ni + 64Ni, T: 2+ 1.346 0.193 0.25 3

3− 3.56 0.165 0.198 1
P: 2+ 1.346 0.193 0.25 1
12C + 198Pt, T: 2+ 0.407 0.11 0.11 1

3− 1.5 0.1 0.1 1

nuclear deformations cannot be determined from experiments
and they are almost taken differently from the Coulomb defor-
mation. In Ref. [16] for 58Ni + 58Ni reaction, βN of 58Ni was
increased to 1.21βC for the 2+ and βN = βC for 3− excited
states. I follow a similar prescription for the same reaction,
where βN is increased to 1.3βC for the 2+ and βN = βC for
3− excited states. For the 64Ni + 64Ni reaction, the nuclear
deformation of 64Ni was taken from Ref. [16] is larger than
the Coulomb deformation for both 2+ and 3− excited states.
In the present work, the values βN = 1.3βC for the 2+ and
βN = 1.2βC for the 3− excited states of 64Ni are considered.
These values are larger than that considered in Ref. [16] but
are consistent with other previous work [12] in which βN

was increased to 1.4βC for 64Ni. For the C + Pt reaction,
the nuclear and Coulomb deformations are taken equally as
considered in Ref. [16].

It is important to make comparisons with the results of CC
calculations with some standard nuclear interactions, like the
Akyüz-Winther (AW) potential [17], which has the practical
advantage of being parametrized by WS functions, which is
appropriate for the use of the CCFULL code. In Figs. 6, 8,
and 9, calculation of the excitation functions using the AW
potential with and without coupling to inelastic excitations are
presented. As shown from these figures, the AW potential fails
to reproduce the cross sections below the barrier, whereas it
overestimates the data at lower energies, as expected.

It is also important to make comparisons with different
Skyrme interactions used in SHF calculations for generating
the nuclear densities, which are inputs in the G-matrix poten-
tial. Figure 9 shows the excitation function for the 12C + 198Pt
system calculated using the Skyrme interaction SLy4 [18] in
the SHF calculations for the nuclear densities in a comparison
with the SKRA interaction. As shown from this figure, the two
Skyrme interactions give similar good results, since both well
describe the nuclear densities and, consequently, the nuclear
potential and fusion cross sections. The Skyrme interaction
SkM∗ [19] is also tested and is found to also give similar
results. This shows that the sensitivity to Skyrme interactions
that well describe the nuclear densities are weak, which, on

FIG. 10. Same as Fig. 6 but for the astrophysical S factors. Cal-
culations using G-matrix potentials but calculated at fixed energy
Ec.m. = 145 MeV are shown by short-dotted and short-dashed lines.

the other hand, favors the generality of the present approach in
calculating the internuclear potential and fusion cross section.

The astrophysical S factor is a powerful tool for studying
fusion hindrance. The corresponding S factors of the fusion
reactions of Figs. 6, 8, and 9 are shown in Figs. 10–12. As
shown from these figures, a maximum in the S factor is pre-
dicted by the present energy-dependent internuclear potential
at the corresponding subthreshold energy of hindrance, which
is consistent with the observed experimental data. The agree-
ment in the S factor is better than that obtained in Ref. [9],
which used two different phenomenological Woods-Saxon
potentials, with six adjustable parameters, where the first
and second WS potentials were fit for two different energy
regions of the fusion cross section, which were taken ad
hoc. In Ref. [16], many phenomenological potentials such as

FIG. 11. Same as Fig. 8 but for the astrophysical S factors.
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FIG. 12. Same as Fig. 9 but for the astrophysical S factors.

Krappe-Nix-Sierk [20], Bass (1980) [21], and AW were used
to describe the fusion cross section with a phenomenological
damping factor to describe fusion hindrance. In the present
microscopic approach, the fusion cross sections at subbarrier
and deep subbarrier energy as well as the corresponding S

factors, where a maximum occurs at hindrance deep subbar-
rier energy, are satisfactorily reproduced with single-channel
microscopic energy and density-dependent internuclear po-
tential, without any fitting or damping parameters. This is an
important attempt for describing fusion hindrance through a
microscopic parameter-free approach, which depends on the
incident energy and the density distributions of the interacting
nuclei.

IV. CONCLUSION

Calculations of the fusion excitation functions and the
astrophysical S factors based on a microscopic parameter-
free energy and density-dependent internuclear potential are
presented to investigate hindrance phenomena in heavy-ion
reactions at subbarrier energies. The internuclear potential
is derived by solving the Bethe-Goldstone equation, locally,
in momentum-space configuration of two colliding nuclear
matters, starting from the realistic Reid-soft core potential.
The nuclear densities are derived from SHF calculations. The
model is a microscopic parameter-free approach. The fusion
excitation functions and the S factors are well described where
a good agreement with the experimental data is obtained.
Hindrance is satisfactorily reproduced, without any adjustable
parameter or damping factors, due to the energy and density
dependence of the internuclear potential.
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