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Quasiparticle properties of a single α particle in cold neutron matter
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Light clusters such as α particles and deuterons are predicted to occur in hot nuclear matter as encountered
in intermediate-energy heavy-ion collisions and protoneutron stars. To examine the in-medium properties of
such light clusters, we consider a much simplified system in which, like an impurity, a single α particle is
embedded in a zero-temperature, dilute gas of noninteracting neutrons. By adopting a non-self-consistent ladder
approximation for the effective interaction between the impurity and the gas, which is often used for analyses
of Fermi polarons in a gas of ultracold atoms, we calculate the quasiparticle properties of the impurity, i.e., the
energy shift, effective mass, quasiparticle residue, and damping rate.
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I. INTRODUCTION

Understanding the properties of hot nuclear matter as en-
countered in supernova cores is essential in describing various
phenomena such as neutrino bursts, nucleosynthesis, and for-
mation of neutron stars [1]. Remarkably, this matter can be
opaque even to neutrinos, which in turn play a role in carrying
a released gravitational energy of order 1053 erg during stellar
collapse by diffusing out of supernova cores and at the same
time in depositing a sufficient energy onto the material to
cause a supernova explosion at which the total kinetic energy
is of order 1051 erg. Here, it is significant to note that at finite
temperature, a nonzero number of light clusters such as α

particles, deuterons, tritons, and 3He nuclei appear even in
chemical equilibrium. These clusters, if sufficiently present
in supernova cores, can play a role in scattering or absorbing
the outgoing neutrinos. For example, even an 56Fe nucleus,
one of the most stable nuclear configurations in vacuum, can
decompose into 13 α particles and four neutrons by absorbing
a γ -ray photon of energy in excess of −Q = 124 MeV. If an
56Fe nucleus is simply assumed to be a primary component
of matter at typical conditions where the neutron fugacity
is of order 0.1–1, according to Saha’s arguments, the mass
fraction of α particles is dominated by a factor of eQ/13kBT ,
with the temperature T . In estimating such a fraction, how-
ever, no in-medium modification of nuclear masses except the
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Coulomb corrections is normally considered. To deal with the
in-medium modification, we will focus on a polaron picture,
namely, a light cluster dressed by excitations in the medium.

The earliest theoretical investigations of hot nuclear matter
are based on liquid-drop models [2]. The key ingredient of
these models is mass formula for neutron-rich nuclei. Typ-
ically, in the presence of trapped electron neutrinos, nuclei
in such matter (so-called supernova matter) are not extremely
neutron-rich but too neutron-rich for their masses to be mea-
sured, which requires an extrapolation from empirical mass
data. In the presence of internuclear Coulomb coupling, the
Wigner-Seitz approximation for a lattice of nuclei embedded
in a neutralizing background of electrons is often utilized.
This approximation is known to give a good estimate of the
lattice energy. Concerning the mass distribution, furthermore,
a single species approximation in which only the nuclide
that minimizes the system energy at fixed baryon density and
lepton fraction occurs is often adopted for simplicity. This is
good at sufficiently low temperatures. For better estimates of
the mass distribution at temperatures relevant for supernova
cores, the presence of α particles, etc., has been allowed
for or even the nuclear statistical equilibrium has been im-
posed in some cases [3]. The most important upgrade has
been made on how to calculate the nuclear mass itself as an
extrapolation from the empirical data. The nucleon density
profile in a Wigner-Seitz cell can be better predicted if one
implements the Thomas-Fermi or Hartree-Fock theory [4–7].
Even in such predictions, the result still depends on uncer-
tainties in the adopted equation of state of asymmetric nuclear
matter, especially the density dependence of the symmetry
energy.
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Experimentally, there can be two ways of studying proper-
ties of hot nuclear matter: heavy ion collisions at intermediate
energy and quantum simulations with ultracold atoms. Data
for such heavy ion collisions have already given some evi-
dence for a liquid-gas phase transition of nuclear matter [8].
It is, however, important to note that the deduced temperature
and density of finite matter (primary fragments) created in the
collisions have some uncertainties, while finite-size correc-
tions due to the Coulomb and surface effects have to be taken
into consideration to deduce the critical point of bulk nuclear
matter from the empirical data for the excitation energy, mass,
and temperature of the primary fragments. Anyway, this is
a direct way of probing nuclear matter. On the other hand,
ultracold atoms provide us with an indirect way of probing
nuclear matter. This is mainly because low density neutron
matter, which is dominated by s-wave scattering with negative
and large scattering length, is similar to trapped ultracold
Fermi atoms near a Feshbach resonance [9,10]. It is thus
expected that various superfluid properties of neutron matter
such as the pairing gap, the BCS-BEC crossover, and vortices
under rotation could be deduced from laboratory experiments,
although the neutron-neutron effective range is fairly large as
compared with the case of atoms. Incidentally, effects of a
nonzero effective range of the interaction and nonzero proton
fraction on the equilibrium properties of matter relevant to
neutron stars have been studied by bearing in mind the quan-
tum simulation in cold atomic systems [11,12]. Moreover, one
can add impurity atoms to a system of ultracold Fermi atoms
of a single species [13–15]. In the presence of interspecies
interactions, these impurity atoms manifest themselves as po-
larons. The resultant atomic matter looks like cold nuclear
matter of interest here. In relation to the present interest in
the α particle as an impurity in cold neutron matter, there are
cold atomic systems useful for the quantum simulation, e.g.,
a resonantly interacting atomic gas mixture of 161Dy and 40K
[16], which has almost the same mass ratio with the α-neutron
system, a Fermi polaron interacting with medium via p-wave
Feshbach resonance as well as background s-wave scattering
[17,18], etc.

In the present study, under the motivation mentioned
above, we evaluate in-medium modifications of an α parti-
cle that interacts with surrounding neutrons, by calculating
its quasiparticle properties: the interaction energy, residue,
effective mass, dispersion relation, and decay width. To this
end, for simplicity, we employ an ideal situation where a
single α particle is immersed in pure neutron matter that is
in a normal state at zero temperature, rather than hot nuclear
matter. Furthermore, we assume that the α particle is mobile
with a small momentum and that the neutron matter is dilute
enough, so that we can employ the low-energy treatment, i.e.,
the α particle is point like, while the interaction between the
α particle and a surrounding neutron is described only by
the s-wave scattering length. More quantitative discussion on
these approximations will be given at the end of Sec. IV.

Note that such an α particle is not always stable. In fact,
stability analysis of an α particle in neutron matter would
require microscopic calculations, which will be addressed in
the near future. We also remark that even before the experi-
mental realization of trapped ultracold atoms, Kutschera and
Wojcik [19] used to consider a proton impurity in neutron
matter by sticking with the original polaron picture based
on an electron-phonon system, which is different from the
modern polaron picture based on a minority atom–majority
atom system involving contact interactions.

We also note that α-nucleon interactions in hot nuclear
matter were considered in terms of excluded-volume effects
[20] and the virial expansion [21]. Essentially, the α-nucleon
interactions considered in these approaches tend to be too
repulsive and too attractive, respectively, when applied to a
cold system of interest here. This is because in the former ap-
proach, no attraction is included, while in the latter approach,
the second virial coefficient is related to the two-body phase
shift dominated by the p-wave resonance.

It is interesting to note the possible relevance of the present
polaron picture to α clustering, i.e., manifestation of α particle
like configurations, in atomic heavy nuclei. Although there is
no direct evidence for the presence of such α clustering, it is
expected that the four-nucleon correlation responsible for the
α clustering plays an essential role in describing the surface
region of various heavy nuclei [22–24].

In such a dilute neutron-rich situation, two minority par-
ticles (protons) may tend to form an α particle by picking
two neutrons out of the medium. Consequently, the system
may look like pure neutron matter containing α particles as
impurities. This situation may help us describe the neutron
skin structure of heavy nuclei. The energy and decay rate of
such α particles, if being known experimentally, could give us
an opportunity of probing the bulk properties of the neutron
medium.

This paper is organized as follows. In Sec. II we present
the low-energy effective Hamiltonian for a single α particle
embedded in neutron matter. In Sec. III we employ a varia-
tional method to obtain the energy of the α particle, which is
equivalent to the self-energy calculation from the ladder type
approximation. In Sec. IV we first employ empirical scatter-
ing data for setup of the parameters in the Hamiltonian and
then discuss the numerical results for various quasiparticle
properties as functions of neutron density, and also of the
scattering length for general arguments. Section V is devoted
to summary, physical consequences, and outlook.

II. FORMULATION

We consider a single α particle that is assumed to be an
inert point particle and to be immersed in normal neutron
matter at zero temperature. The Hamiltonian of this system
is described by
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H (x) =
∑

s

∫
dr3ψ†

s (r)
−∇2

2m
ψs(r) + 1

2

∑
s,t,s′,t ′

∫∫
dr3dr′3ψ†

t ′ (r′)ψ†
s′ (r)Vs′t ′st (r − r′)ψs(r)ψt (r

′) − ∇2
x

2M

+g
∑

s

∫
r
ψ†

s (r)ψs(r)δ(r − x) (1)

=
∑
s,p

p2

2m
a†

s,pas,p + 1

2

∑
q,q′,p,s,t,s′,t ′

a†
t ′,q′−pa†

s′,q+pas,qat,q′Ṽs′t ′st (p) − ∇2
x

2M
+ g

∑
p,q,s

a†
s,pas,qe−i(p−q)x, (2)

where m (M) is the mass of a neutron (an α particle), and
we have used the first quantization for the single α parti-
cle in the coordinate representation by x, and expanded the
neutron field operator as ψs(r) = 1√

V

∑
p eipras,p with the

canonical relation {a†
s,p, at,q} = δp,qδs,t , where the subscript

s and p represent the neutron spin and momentum, respec-
tively. It is noted that the bare coupling constant g for the
α-neutron interaction is related to the scattering length a via
the Lippmann-Schwinger equation in the low-energy limit:

g−1 = mr

2π h̄2a
−

∑
p

2mr

p2
, (3)

where mr
−1 = m−1 + M−1 is the reduced mass, and a mo-

mentum cutoff � is assumed implicitly in the divergent
integral

∑
p as a regulator. The cutoff � corresponds to the

effective range r0 via r0 ≈ �−1, and can be sent to infinity
after the renormalization of the bare coupling constant g in
terms of the scattering length a in Eq. (16). We use the natural
units in which h̄ = c = 1.

Now we implement a gauge transformation [25],

S(x) := eixP̂ with P̂ =
∑
s,p

pa†
s,pas,p, (4)

which sends a gas of neutrons to the comoving frame of the
impurity α particle. By using S(x)as,pS−1(x) = as,pe−ipx, the
Hamiltonian (2) can be transformed to

SH (x)S−1 =
∑
s,p

p2

2m
a†

s,pas,p

+1

2

∑
q,q′,p,s,t

a†
t,q′−pa†

s,q+pas,qat,q′Ṽs,t (p)

+ (−i∇x − P̂)2

2M
+ g

∑
p,q,s

a†
s,pas,q, (5)

which satisfies the commutation relation [SH (x)S−1,−i∇x] =
0, implying that after the transformation the momentum of
the α particle represents the total momentum of the sys-

tem. Therefore, we can replace the momentum operator
by a c-number vector, i.e., −i∇x → P in the transformed
Hamiltonian,

SH (x)S−1 → Heff (P) =
∑
s,p

εp a†
s,pas,p + (P − P̂)2

2M

+g
∑
p,q,s

a†
s,pas,q, (6)

where we have furthermore dropped the Ṽs,t by assuming
that the neutron self-interaction effects are incorporated in the
single-particle energy εp = p2

2m∗ + U . Here, m∗ is the effective
mass in medium, but we assume that the in-medium modifi-
cation is negligible and take the same notation, i.e., m∗ = m
hereafter. U is the density dependent interaction energy per
particle, which, e.g., can be deduced from a Thomas-Fermi
approach [26] but is not relevant for the present study. We will
use the above Hamiltonian (6) in the following calculations.

III. SINGLE PARTICLE-HOLE PAIR APPROXIMATION

To describe excitations accompanied by the impurity α

particle, we implement a variational method in which the
variational state is spanned by a single particle-hole (p-h) pair
excitation near the neutron Fermi surface [27,28]:

|	〉 = F0|ψ0〉 +
∑

k>,p<,s

F s
k,pa†

s,kas,p|ψ0〉, (7)

where |ψ0〉 is the state occupied by neutrons up to the Fermi
momentum kF , k > (p <) denotes |k| > kF (|p| < kF ), and
F0 and F s

k,p are variational parameters. In fact, F s
k,p serves

as the wave function of the p-h pair of the corresponding
momentum and spin. We remark in passing that even such a
lowest-order form of the variational state can well reproduce
the empirical energy and effective mass of an impurity that
repulsively interacts with medium fermions in the vicinity of
the unitarity limit, i.e., |a| → ∞ and zero effective range [15].

The expectation value of the transformed Hamiltonian (6)
with respect to the state (7) gives

〈Heff (P)〉 =
∑
s,q

εq〈a†
s,qas,q〉 + 〈(P − P̂)2〉

2M
+ g

∑
q,q′,s

〈a†
s,qas,q′ 〉, (8)

where 〈· · · 〉 = 〈	| · · · |	〉, and each term in the right side is given, respectively, by

∑
q

εq〈a†
s,qas,q〉 =

∑
q<

εq

⎛
⎝|F0|2 +

∑
k>,p<,t

∣∣Ft
k,p

∣∣2

⎞
⎠ +

∑
k>,p<

(εk − εp)
∣∣F s

k,p

∣∣2
, (9)
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〈(P − P̂)2〉 = P2|F0|2 +
∑

k>,p<,s

∣∣F s
k,p

∣∣2
[P2 − 2P · (k − p) + (k − p)2], (10)

and
∑
q,q′

〈a†
s,qas,q′ 〉 =

∑
q<

⎛
⎝|F0|2 +

∑
k>,p<,t

∣∣Ft
k,p

∣∣2

⎞
⎠ +

∑
k>,p<

(
F0F s∗

k,p + F ∗
0 F s

k,p

) +
∑

q>,q′>,p<

F s∗
q,pF s

q′,p −
∑

k>,q<,q′<

F s∗
k,qF s

k,q′ . (11)

A. Quasiparticle energy

We impose the normalization condition by using a
Lagrange multiplier μ that turns out to be the ground state
energy EP of the system with momentum P. In fact, EP

represents the α particle dispersion relation up to the Fermi
energy of the medium neutrons. The variational condition
δ〈Heff − μ〉 = 0 leads to a set of eigenvalue equations,1

P2

2M
F0 +

∑
q<,s

g

(
F0 +

∑
k>

F s
k,q

)
= ωF0, (12)

�s
k,p;PF s

k,p + g

(
F0 +

∑
q′>

F s
q′,p −

∑
q′<

F s
k,q′

)
= ωF s

k,p, (13)

where ω = μ − ∑
q<,s εq, and

�s
k,p;P := εk − εp + P2 − 2P · (k − p) + (k − p)2

2M
+ g

∑
q<

.

(14)

From the Lippmann-Schwinger equation (3), the bare cou-
pling constant g turns out to be vanishingly small as a negative
power of the momentum cutoff �. In the renormalization
procedure in terms of the scattering length [27], therefore,
we will drop the terms g

∑
q′< F s

k,q′ in Eq. (13) and g
∑

q< in
�s

k,p;P as subleading order.
Using the auxiliary field χ s

p = F0 + ∑
q′> F s

q′,p in
Eqs. (12)–(13), we obtain the following equation:

ω = P2

2M
+ (ω, P) (15)

with (ω, P) =
∑
p<,s

1
mr

2πa − ∑
k>

(
1

ω − �s
k,p;P

+ 2mr
k2

)
− ∑

q<
2mr
q2

,

(16)

from which the eigenvalues of ω can be determined. In this
equation, (ω, P) can be interpreted as the self-energy ob-
tained from the non-self-consistent ladder approximation for
the α-neutron scattering amplitude [28]. In the case of a repul-
sive interaction a > 0 of interest here, the resulting positive
energy state is characterized by the outgoing scattering ampli-
tude. The real part of the corresponding quasiparticle energy

1One can also obtain the same result from a time-dependent varia-
tional approach to the Dirac type effective action, i.e., δ〈	(t )|i∂t −
Heff |	(t )〉 = 0, if one assumes |	(t )〉 ≈ e−iμt . Note that this |	(t )〉
includes excited states, as well as the ground state.

EP can thus be obtained from the spectral peak as

EP = P2

2M
+ Re(EP + i0, P), (17)

where the analytic continuation to the upper half-plane ω →
ω + i0 has been made; it traces back to the (retarded) propa-
gator of the α particle that undergoes multiple scattering.

B. Quasiparticle residue, width, and effective mass

Validity of the quasiparticle picture for the α particle re-
quires a finite residue and a relatively small width (long
lifetime) compared with the real part of quasiparticle energy,
both of which imply that the propagator of the α particle near
its pole behaves as

GR(ω, P) = 1

ω + i0 − P2

2M − (ω + i0, P)
≈ ZP

ω − EP + i�P
,

(18)

where the width is given approximately by the imaginary part,
�P = −ZPIm(EP + i0, P), and the quasiparticle residue is
defined by2

ZP =
[

1 − Re
∂(ω + i0, P)

∂ω

∣∣∣∣
ω=EP

]−1

. (19)

The effective mass M∗, which characterizes the mobility of
the α particle in the medium, is defined in the momentum
expansion around the pole as

M∗ :=
(

d2EP

dP2

∣∣∣∣
P=0

)−1

= M

Z

[
1 + M

∂2Re(ω + i0, P)

∂P2

∣∣∣∣
ω=E ,P=0

]−1

, (20)

where E = EP=0 and Z = ZP=0. As will be shown by numer-
ical results below, the quasiparticle picture is indeed valid for
the parameter region that corresponds to the low density and
large isospin asymmetric situation considered in this study.

2Unlike unitary cold atoms there is no bound state between an α

particle and a neutron. In fact, a resonant 5He (3/2-), if appearing
in vacuum, would be very unstable to p-wave dissociation into an α

particle and a neutron, while in the s-wave channel there is no posi-
tive scattering length state that can be obtained continuously from the
negative scattering length state (attractive branch). In the absence of
decay to the attractive branch, therefore, the present positive energy
state is not an excited one.
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The quasiparticle dispersion of the α particle can thus be well
approximated by

EP � E + P2

2M∗ (21)

near the low energy limit.

IV. NUMERICAL RESULTS AND DISCUSSION

Before exhibiting numerical results for the quantities de-
scribed in the previous section, we give typical reference
values of the scattering length and the neutron density as

aref = 2.64 fm, (22)

ρref = 0.01 ρ0, → kF ref = 0.36 fm−1, (23)

where ρ0 = 0.16 fm−3 is the normal nuclear density.
These values lead to the dimensionless coupling parame-
ter aref kF ref = 0.95 � 1, which marginally correspond to the
strong coupling regime. The value of ρref is supposed to
be of order the typical density above which neutrinos are
trapped in supernova cores [1], but lower than the typical
density in the neutron skin of heavy nuclei [29]. The value
of the scattering length has been determined from the α-
neutron potential [30] that reproduces the experimental phase
shift for low-energy α-neutron scattering cross section. In the
course of this determination, the effective range has been
simultaneously obtained as r0 = 1.43 fm. This value gives
r0kF ref = 0.51 < 1, which is not so small but still implies the
validity of the present low-energy treatment of the α-neutron
interaction in terms of the zero-range potential characterized
by the scattering length (3) alone. We remark that the values of
aref and r0 obtained here are consistent with the earlier results
[31,32]. Finally, we set the bare mass ratio of the α particle as

M

m
= 4. (24)

For these reference values of the parameters given above,
the numerical results for quasiparticle properties of the α

particle at P = 0 are given as follows:

Eref = 0.467 εF ref = 1.26 MeV, (25)

Zref = 0.650, (26)

M∗
ref = 1.217 M, (27)

and �ref = 0.032 εF ref = 0.086 MeV, (28)

where εF ref = (h̄c)2k2
F ref

2mc2 = 2.69 MeV. The interaction energy of
the α particle at rest, Eref , is positive, a feature that reflects the
positive scattering length corresponding to repulsion, and is
much larger than the decay width. As can be interpreted from
the diagrammatic representation of the present self-energy, the
decay width comes solely from the process in which the α

particle, a quasiparticle dressed by a cloud of p-h bubbles,
decays into a bare α particle and a neutron in the s-wave
scattering state. In addition, the quasiparticle residue obtained
here is fairly close to unity. All these results support the
quasiparticle picture presumed in this study. At the reference
neutron density the effective mass increases by about 20%
from its vacuum value. Such increase seems like a general

0 2 4 6
0.0

0.5

1.0

1.5

1/akF

E/εF

Z

M*/M
10×Γ/εF

FIG. 1. Energy, residue, and mass ratio of an α particle calcu-
lated as functions of 1/akF at P = 0.

feature of various impurity-medium combinations, irrespec-
tive of whether the impurity-medium interaction is repulsive
or attractive. While the scattering length (22) employed here
is an empirical one, for more general discussion, we extend
our calculations and present in Fig. 1 the results as functions
of the dimensionless coupling.

For weak coupling the quasiparticle picture works obvi-
ously. It is also found from the figure that while even in the
strong coupling regime 1/akF � 1, the relation E  � still
holds, in such a regime the quasiparticle is less identifiable
due to the smallness of the residue.

Now we show in Fig. 2 the full dispersion relation EP

obtained from Eq. (17) with the reference values of the pa-
rameters, together with the approximate one (21) expressed
by the effective mass.

We observe that the appreciable P dependence of the
self-energy Re, also plotted in the figure, accounts for the
deviation between the full and the approximate dispersion re-
lations for finite P. The deviation is nevertheless small enough
that the approximate one seems to work for a relatively wide
range of the momentum.

Finally we show how the quasiparticle properties depend
on the neutron density.

0.0 0.2 0.4 0.6

0.46

0.48

0.50

0.52

0.54

P/kF

EP

E+P2/2M*

ReΣ= EP−P2/2M

 akF=1.0

FIG. 2. Dispersion relations of an α particle calculated in units
of εF at akF = 1.0 � aref kF ref .
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0 1 2 3
0.0

0.5

1.0

1.5

2.0

2.5

ρ
ρref
−

E/Eref

Z

M*/M
Γ/Γref

FIG. 3. Neutron density dependence of the energy, residue, ef-
fective mass, and width of an α particle calculated at akF ref = 1.0.

Since the increase in the density extends the phase space
available for the p-h fluctuations, the interaction energy and
the decay width increase with density, as can be seen in
Fig. 3. On the other hand, the relation E  � is kept, and
eventually at ρ = 4.2ρref = 0.0067 fm−3, the kinetic energy
of the background neutron gas reaches εF = εF ref ( ρ

ρref
)2/3 = 7

MeV, which is added to the kinetic energy of the constituent
neutrons inside the α particle, and thus cancels the binding
energy of the α particle per nucleon ≈7 MeV. At this stage, the
stability of the α particle itself becomes doubtful. More realis-
tically, the neutron separation energy of 4He in vacuum, which
amounts to 20.6 MeV, helps us to give a better estimate of the
critical neutron density at which the α particle is no longer
bound. At the neutron density of about 21ρref � 0.034 fm−3,
the neutron Fermi energy reaches 20.6 MeV. Interestingly, a
microscopic calculation for the energy of the four-nucleon
system in symmetric nuclear matter [33] has shown by com-
parison with the free four-nucleon energy threshold in the
medium that the α-like cluster dissociates at ρ = 0.03 fm−3

due to Pauli blocking effects at zero temperature, which is
close to the above neutron density.

In what follows we discuss the negligibility of higher
partial-wave contributions than the s wave. In general the
scattering T matrix and its partial-wave decomposition [34]
can be obtained from the Lippmann-Schwinger equation as

T (k, k′) =
∑

l=0,1,2,···
(2l + 1)Tl (k)Pl (k̂k̂′) (29)

with Pl (x) being the Legendre polynomials, and the partial-
wave matrix can be expanded, at low scattering energy Erel =
k2/2mr and for finite range two-body potentials, as

Tl (k) = 2π

mr

k2l

a−1
l − rlk2/2 + O(k4) + ik2l+1

, (30)

where al and rl correspond respectively to the generalized
scattering length and effective range just like the case of the s
wave; a0 is identical with a. The quasiparticle poles for possi-
ble bound/resonance states at low energies can be obtained in
terms of these parameters. Now let us give a ballpark estimate
of the density region in which the s wave dominates in the

scattering process: Comparing the s- and p-wave matrices
with the empirical scattering length (volume) at the neutron
Fermi momentum, the condition |T0| > |T1| reduces to

a0 > |a1|
(mr

m

)2
k2

F → kF < 0.25 fm−1 → ρ < 0.003ρ0,

(31)

which is compatible with the validity condition for the
Taylor expansion in Eq. (30), i.e., 2|a0|−1 > |r0|(mr/m)2k2

F
and 2|a1|−1 > |r1|(mr/m)2k2

F . Here, we have used a0 =
2.64 fm (a1 = aP3/2 = −67.1 fm3) and r0 = 1.43 fm (r1 =
rP3/2 = −0.87 fm−1) for the s-(p-)wave scattering amplitude,
obtained from the phenomenological α-n potential and scat-
tering data in vacuum [30]. Furthermore, the p-wave (P3/2)
resonance in the α-n system appears at the center-of-mass
neutron kinetic energy ≈0.9 MeV [21,31], which amounts to
the neutron Fermi momentum kF ≈ 0.26 fm−1 when the α

particle is at rest. At densities higher than the one correspond-
ing to kF ≈ 0.26 fm−1, the P3/2 resonance (5He) may survive
strong decay long enough to constitute a fraction of the matter
under the influence of Pauli blocking effect [35], although this
is a scenario valid if and only if the α particle itself is bound in
neutron matter and also the resonance energy is the same as in
vacuum. We remark in passing that if a similar argument can
be applied to the temperature direction, the present model is
valid at temperatures below both about 1 MeV and the neutron
Fermi temperature.

The above estimates indicate that the present model, which
neglects higher waves, is safely applicable only at very low
neutron densities ρ < 0.003ρ0, although this bound is ob-
tained from the extrapolation from the zero density limit using
the two-body scattering data in vacuum. Nevertheless, we
stress that the quasiparticle picture of the α particle, which
is obtained from the s-wave pole structure in this study, seems
hardly disturbed by the other higher-wave contributions, as
seen from the independence of different Tl ’s in Eq. (29) that
is valid even at finite densities. For realistic description of the
system at even higher densities, of course, we have to pursue
the quasiparticle poles from the p- and higher-wave matrices
Tl>0 as well as the s-wave one, and compare quasiparticle
energies and strengths from these poles to figure out which
one dominates at given density, or we can calculate the T
matrix directly using an empirical two-body potential without
the partial-wave decomposition. This is, however, out of the
present scope.

We finally remark that in a very wide density regime below
the normal nuclear density, zero-temperature supernova mat-
ter at proton fraction of order 0.3 can satisfy the condition that
the Fermi momentum of a neutron gas outside nuclei is below
0.25 fm−1 (see Fig. 4 in Ref. [36]). We thus believe that the
present model is fairly reasonable from a phenomenological
point of view.

V. SUMMARY AND OUTLOOK

In this study we elucidate the quasiparticle properties of
a single α particle immersed in a cold dilute neutron gas
by evaluating the self-energy from the variational treatment
equivalent to a non-self-consistent ladder approximation that
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incorporates an empirical value of the α-neutron low-energy
s-wave scattering length (22). Our result shows that adding a
single α particle into a dilute neutron gas costs at least the
interaction energy (25) that we calculated for the α particle at
rest. Note that such interaction energy reads E = 0.467εF =
2.23

m ρ2/3. This could be useful to deduce the fraction of α

particles in supernova matter. It is also interesting to note
that the effective mass calculated with the same parameter set
leads to an approximate dispersion relation of the α particle,
Ep = E + P2/2M∗, with the density-dependent interaction
energy E given above. Applying the dispersion relation to the
Bose distribution for a dilute α gas in neutron matter, we can
estimate the transition temperature for possible Bose-Einstein
condensation [37] to be TBEC = 2π h̄2

M∗ ( ρα

ζ (3) )2/3 MeV, which
gives TBEC = 0.14 MeV at ρα = ρref/10. This might have
some relevance to α clustering in the surface of heavy nuclei.

In the present work the α particle in neutron matter is
treated as an inert point particle, i.e., the inner structure is
neglected from the low-energy point of view. To go beyond
it, the α particle has to be regarded as a cluster of four
nucleons. Then, diagrammatically needed is to take into ac-
count neutron exchange in and out of the cluster in scattering
processes as well as deuteron-like pair correlations, which
might eventually break up the α particle at sufficiently high
densities [38–40]. For elaborate studies to clarify the stability
of such α clustering in neutron matter, the wave function of
the system is needed in terms of interacting nucleons with
phenomenological potentials [26,33].

As discussed in the previous section, the present study
is restricted to the dilute limit of the α density and to the
cold, isospin asymmetric limit of the nuclear medium. Next
it is interesting to consider the system of two α particles
in neutron matter. The interaction between the α particles,

which resembles that between two repulsive Fermi polarons
in the context of ultracold atoms except for the Coulomb re-
pulsion, has some possible relevance to neutrino scattering off
light clusters in supernova matter. To make better estimates,
it would be necessary to raise both the proton fraction and
temperature [41] in the nuclear medium and also consider
screening corrections to the α-α Coulomb repulsion [42].
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APPENDIX A: DIMENSIONLESS EXPRESSION
FOR THE SELF-ENERGY

It is convenient to rewrite the self-energy in terms of di-
mensionless quantities (symbols with tilde) as well as kF and
εF as

(ω + i0, P) =
∑
p<

1

g−1
r − G(ω + i0, P; p) − ∑

q<
2mr
q2

= (2π )2εF

∑
ρ<

g̃−1 − ReG̃ + iImG̃

(g̃−1 − ReG̃)
2 + Im2G̃

(A1)

with

G(ω, P; p) ≡
∑
k>

{[
ω − εk + εp − P2 − 2P(k − p) + (k − p)2

2M

]−1

+
[

k2

2mr

]−1
}

. (A2)

Here, we have factored out the dimensional coefficients as G = k3
F

(2π )2εF
G̃ and g−1

r = k3
F

(2π )2εF
g̃−1, and expressed the rest parts as

G̃(ω, P; p − P) =
∫ ∞

1
dκκ2

∫ 1

−1
dx

{[
E − κ2 + ρ̄2 − κ2 + ρ2 − 2κρx

R
+ i0

]−1

+ [κ2(R−1 + 1)]−1

}
(A3)

and g̃−1 = 2π2 R

R + 1

(
1

2πakF
−

∑
ρ<

2

ρ2

)
, (A4)

where ρ̄ ≡
√

(p − P)2/kF , and we have introduced variables: E = ω/εF , P = P/kF , R = M/m, |p|/kF = ρ, and |k|/kF = κ ,
and shifted the momentum temporarily, p → p − P, for convenience. Performing the x integration in Eq. (A3) first, we obtain∫ 1

−1
dx

[
E − Rκ2 − Rρ̄2 + κ2 + ρ2 − 2κρx

R
+ i0

]−1

= R

2κρ

[
ln

∣∣∣∣ (κ − κ−)(κ − κ+)

(κ + κ−)(κ + κ+)

∣∣∣∣
− iπθ

(
1 −

∣∣∣∣RE − Rκ2 + Rρ̄2 − κ2 − ρ2

2κρ

∣∣∣∣
)]

, (A5)

where θ (x) is the Heaviside function, and

κ± ≡ ρ

R + 1
± 1

R + 1

√
R(R + 1)ρ̄2 − Rρ2 + ER(R + 1). (A6)
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Note that κ+ � 0 and κ− � 0 for R > 1 and E > 0. Then, the real and imaginary parts read, respectively as

ReG̃(ω, P; p − P) =
∫ ∞

1
dκ

[
Rκ

2ρ
ln

∣∣∣∣ (κ − κ−)(κ − κ+)

(κ + κ−)(κ + κ+)

∣∣∣∣ + 2
R

R + 1

]

= R

4ρ

[
(1 − κ2

+) ln

∣∣∣∣1 + κ+
1 − κ+

∣∣∣∣ + (1 − κ2
−) ln

∣∣∣∣1 + κ−
1 − κ−

∣∣∣∣
]

− R

R + 1
(A7)

and

ImG̃(ω, P; p − P) = −π

∫ ∞

1
dκ

Rκ

2ρ
θ

(
1 −

∣∣∣∣RE − Rκ2 + Rρ̄2 − κ2 − ρ2

2κρ

∣∣∣∣
)

= −Rπ

4ρ
θ (κ+ − 1)[κ2

+ − κ2
−θ (−κ− − 1) − θ (1 + κ−)]. (A8)

The p integration in Eq. (A1) can be done numerically after shifting back p − P → p.
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