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Light mesons within the basis light-front quantization framework
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We study the light-unflavored mesons as relativistic bound states in the nonperturbative Hamiltonian formal-
ism of the basis light-front quantization approach. The dynamics for the valence quarks of these mesons is
specified by an effective Hamiltonian containing the one-gluon exchange interaction and the confining potentials
both introduced in our previous work on heavy quarkonia, supplemented additionally by a pseudoscalar contact
interaction. We diagonalize this Hamiltonian in our basis function representation to obtain the mass spectrum
and the light-front wave functions (LFWFs). Based on these LFWFs, we then study the structure of these mesons
by computing the electromagnetic form factors, the decay constants, the parton distribution amplitudes, and the
parton distribution functions. Our results are comparable to those from experiments and other theoretical models.
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I. INTRODUCTION

Light mesons are important bound states of the strong
interaction, as an ab initio explanation of their structures
requires nonperturbative solutions of quantum chromody-
namics (QCD). Various theoretical methods exist for solv-
ing the structures of light mesons [1–17]. Among these
methods based on equal time quantization, the Bethe-
Salpeter equation (BSE) has been successful in describing
properties of two-body bound states in a relativistic and
covariant formalism [1–4]. Lattice QCD is capable of pro-
ducing high-precision results for hadron spectroscopy and
many other observables in the Euclidean space [5–10].
Furthermore, inspired by the gauge/string duality, holo-
graphic QCD models [11,12] have been proposed to
provide an interpretation of hadron structures using light-
front quantization complementary to equal-time quantization
approaches.

In addition to these well-established approaches, basis
light-front quantization (BLFQ) is an emerging framework
to describe hadronic structures based on many-body meth-
ods using Hamiltonian dynamics that is nonperturbative and
fully relativistic [18]. Specifically, the light-front Schrödinger
equation formulated as an eigenvalue problem generates the
mass spectrum as the eigenvalues and the light-front wave
functions (LFWFs) as the eigenfunctions. The advantage of
this approach is that calculating physical observables from
LFWFs is straightforward. For instance, the electromagnetic
form factor in light-front dynamics is simply the overlap of
these LFWFs. Furthermore, the same wave functions grant
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access to decay constants, parton distribution amplitudes
(PDAs), and parton distribution functions (PDFs). Progress
has been made in the applications of BLFQ to the positronium
system [19], heavy mesons [20–27], light mesons [28,29], and
many other systems [30,31].

Our model stands apart from previous calculations by ap-
plying a light-front-Hamiltonian formalism in a basis function
representation that provides access to the full spectroscopy.
In this work, we naturally extend the effective Hamiltonian
used for heavy quarkonia to light-unflavored mesons with
the addition of a pseudoscalar interaction inspired by the
Nambu–Jona-Lasinio (NJL) model [32–34]. The resulting
Hamiltonian consists of the light-front kinetic energy, the
combined transverse and the longitudinal confinement poten-
tial, the one-gluon exchange, and the pseudoscalar interaction.
The Hamiltonian is then diagonalized within the valence
Fock sector in a basis function representation. It should be
noted that this model is different from the earlier BLFQ-NJL
model [28] in that the mass spectroscopy that we present here
is dominated by gluon dynamics. We determine the model
parameters by fitting the masses of ρ(770), ρ ′(1450), and
π (140). Upon solving for the remaining states of the mass
spectrum, we evaluate various physical properties for the low-
est mass states with available LFWFs.

We organize this paper as follows. In Sec. II, we in-
troduce the effective Hamiltonian and the basis space used
to solve the light-front-time-independent Schrödinger equa-
tion in the valence Fock sector of light-unflavored mesons.
In Sec. III, we present and discuss numerical results ob-
tained with our model, including the full spectroscopy, decay
constants, charge radii, magnetic moments, and quadrupole
moments. In Sec. IV, we present the PDFs and PDAs for
the ground states of the pion and the ρ meson, and compare
the pion results with the available experiments after QCD
evolution. In Sec. V, we summarize the paper and discuss
possible future developments.
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II. EFFECTIVE HAMILTONIAN AND BASIS
FUNCTION REPRESENTATION

A. The Hamiltonian

With the aim to approach a unified study on a selection
of mesons, we inherit the effective Hamiltonian that was first
proposed for the heavy quarkonia [20,21] and later applied
to mesons with unequal masses for the valence quarks [27].
This effective Hamiltonian in the valence Fock sector is
partially based on light-front holography [11]. The longitu-
dinal confining potential was first introduced in Ref. [20]
to complement the traverse holographic confining poten-
tial. The one-gluon exchange interaction, derived from the
leading-order effective Hamiltonian approach, was included
to produce short-range high-momentum physics as well as
the spin-dependent interaction of the meson structure [20,21].
This effective Hamiltonian in a convenient but mixed repre-
sentation reads

Heff ≡ P+P− − P2
⊥

= k2
⊥ + m2

q

x
+ k2

⊥ + m2
q̄

1 − x
+ κ4x(1 − x)r2

⊥

− κ4

(mq + mq̄)2
∂x(x(1 − x)∂x ) + Vg, (1)

where mq (mq̄) is the mass of the quark (antiquark), k⊥ (−k⊥)
is the relative momentum of the quark (antiquark) using
total P⊥ = 0, x (1 − x) is the longitudinal momentum
fraction of the quark (antiquark), and r⊥ is the transverse
separation of the quark and antiquark. The first two terms
are the kinetic energy of the quark and the antiquark.
The third and fourth terms describe the confinement in
both the traverse and the longitudinal directions. The
former serves as the light-front anti–de Sitter/quantum
chromodynamics (AdS/QCD) soft-wall potential [11,35],
while the later is introduced to supplement the transverse
confinement to form a three-dimensional spherical
confinement potential in the nonrelativistic limit. The last
term Vg is the one-gluon exchange. In the momentum
space, it is defined by 〈k′

⊥, x′, s′, s̄′|Vg|k⊥, x, s, s̄〉 =
−CF4παs(Q2)ūs′ (k′

⊥, x′)γμus(k⊥, x)v̄s̄(−k⊥, 1 − x)γ μ

vs̄′ (−k′
⊥, 1 − x′)/Q2, where CF = (N2

c − 1)/(2Nc) = 4/3
is the color factor with Nc = 3 used throughout this work,
and Q2 is the average four-momentum square carried by
the exchange gluon [21]. The running coupling used in
Vg is modeled on the result of one-loop perturbative QCD
(pQCD) [21] and is given by

αs(Q
2) = 1

β0 ln(Q2/	2 + τ )

�
αs

(
M2

z

)
1 + αs

(
M2

z

)
β0 ln

(
μ2

IR + Q2
)/(

μ2
IR + M2

z

) , (2)

where β0 = (33 − 2Nf )/(12π ) is the QCD β function, with
Nf being the number of quark flavors, and αs(M2

z ) = 0.1183 is
the strong coupling at the Z−boson mass of Mz = 91.2 GeV.
The constant τ is introduced to avoid the pQCD infrared (IR)
catastrophe. In practice, we use μIR = 0.55 GeV with Nf = 3
such that αs(0) = 0.89, in accordance with the calculations of

heavy quarkonia, where Nf = 4 for charmonium and Nf = 5
for bottomonium [21].

The effective Hamiltonian in Eq. (1) has been successfully
applied to solve heavy meson systems with fitted parameters
mq (mq̄) and κ [20,21,23,24,27]. It turns out that for the light
meson system, a suitable choice of these two parameters could
also produce a reasonable mass spectrum, as we will show
later. However, in spite of its various similarities to heavy
mesons, the light meson system has an unusual feature of the
π -ρ mass splitting attributed to dynamical chiral symmetry
breaking. We propose to add a pseudoscalar contact interac-
tion,

Hγ5 =
∫

dx−
∫

dx⊥P+λ ψ̄ (x)γ 5ψ (x)ψ̄ (x)γ 5ψ (x), (3)

where ψ (ψ̄) is the fermion (antifermion) field and λ is the
coupling strength of this interaction. We propose to include
this interaction into the Hamiltonian for the following reasons.
First, it is in the same spirit of the NJL model [32–34], which
aims to explain the effective dynamics of quarks inside the
light mesons. Second, as a pseudoscalar bilinear, it mostly
influences the pseudoscalar states, especially the ground state
(π ), and leaves the other states with total angular momentum
greater than 1 almost intact. This makes it ideal to produce the
π -ρ splitting when added to the adopted Heff [Eq. (1)]. Ad-
ditionally, its Hamiltonian matrix element can be calculated
analytically in our basis representation to be introduced in the
following subsection. The complete Hamiltonian in this work
takes the form of Heff,γ5 = Heff + Hγ5 .

B. Basis function representation

With our Hamiltonian specified in the previous subsection,
the mass spectrum and wave functions are obtained directly
as solutions of the light-front-time-independent Schrödinger
equation

Heff,γ5 |ψh(P, j, mj )〉 = M2
h |ψh(P, j, mj )〉, (4)

where P = (P−, P+, P⊥) is the four-momentum of the parti-
cle, j and mj are, respectively, the total angular momentum
and its magnetic projection for that particle. We work in the
valence |qq̄〉 sector such that the Fock space representation of
the light meson reads

|ψh(P, j, mj )〉

=
∑
s,s̄

∫ 1

0

dx

2x(1 − x)

∫
d2k⊥
(2π )3

ψ
(mj )
ss̄/h (k⊥, x)

× 1√
Nc

Nc∑
i=1

b†
si(xP+, k⊥ + xP⊥)

× d†
s̄i((1 − x)P+,−k⊥ + (1 − x)P⊥)|0〉. (5)

Here, ψ
(mj )
ss̄/h (k⊥, x) are the valence-sector LFWFs, where s

and s̄ represent the spins of the quark and the antiquark,
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TABLE I. Summary of the model parameters. The first line provides the best parameters when the Hamiltonian is given by Eq. (1).
The second line shows the modifications arising from the addition of the pseudoscalar interaction in Eq. (3). Nexp is the total number of
experimental states identified in the mass spectroscopy. The root mean square (rms) measures the overall deviations between the Particle Data
Group (PDG) [36] values and BLFQ results for the 11 identified states shown in Fig. 1. The quantity δ jM measures the overall rotational
symmetry violation and is defined in the text.

Nf αs(0) κ (MeV) mq = mq̄ (MeV) Nexp Nmax Lmax λ (GeV−2) rms (MeV) δ jM (MeV)

Heff – 127 61
3 0.89 610 480 11 8 24

Heff, γ5 0.56 111 60

respectively. The LFWFs are properly normalized such that

∑
s,s̄

∫ 1

0

dx

2x(1 − x)

∫
d2k⊥
(2π )3

ψ
(m′

j )∗
ss̄/h′ (k⊥, x)ψ (mj )∗

ss̄/h (k⊥, x)

= δhh′δmjδm′
j . (6)

In solving the eigenvalue equation, we use a basis func-
tion approach, the basis light-front quantization (BLFQ),
where the Hamiltonian is diagonalized within a chosen ba-
sis function representation [18]. One major advantage of
implementing BLFQ is to make numerical calculation effi-
cient. The basis choice of this work follows that of heavy
quarkonia [20,21] which employs the eigenfunctions of the
effective Hamiltonian of Eq. (1) in the absence of the one-
gluon exchange. Explicitly, we expand the LFWF into the
traverse and the longitudinal basis functions with coefficients
ψh(n, m, l, s, s̄):

ψss̄/h(k⊥, x) =
∑
n,m,l

ψh(n, m, l, s, s̄)φnm

(
k⊥√

x(1 − x)

)
χl (x),

(7)

where the basis functions are defined as

φnm(q⊥) = 1

κ

√
4πn!

(n + |m|)!
(

q⊥
κ

)|m|
e− q2⊥

2κ2 L|m|
n

(
q2

⊥
κ2

)
eimθq ,

(8)

χl (x; α, β ) = x
β

2 (1 − x)
α
2 P(α,β )

l (2x − 1)

×
√

4π (2l + α + β + 1)

×
√

�(l + 1)�(l + α + β + 1)

�(l + α + 1)(�(l + β + 1)
. (9)

In the transverse direction, we have the two-dimensional
harmonic oscillator function φnm(q⊥), where q⊥ �
k⊥/

√
x(1 − x), q⊥ = |q⊥|, θq = arg q⊥, and La

n (z) is the
generalized Laguerre polynomial. The confining strength κ

serves as the harmonic oscillator scale parameter. Integers
n and m are the principal quantum number for radial
excitations and the orbital angular momentum projection
quantum numbers, respectively. For the longitudinal basis
function χl (x; α, β ), l is the longitudinal quantum number
and P(α,β )

l (z) is the Jacobi polynomial. Parameters α and β

are dimensionless basis parameters in this model specified by
α = 2mq̄(mq + mq̄)/κ2 and β = 2mq(mq + mq̄)/κ2.

To make the eigenvalue problem specified by the Hamil-
tonian in our basis representation numerically tractable, the
basis modes are truncated to their respective finite cutoffs:
2n + |m| + 1 � Nmax and 0 � l � Lmax. Nmax controls the to-
tal allowed oscillator quanta and it provides a natural infrared
(IR) regulator 	IR ∼ b/

√
Nmax and ultraviolet (UV) regulator

	UV ∼ b
√

Nmax [20]. Lmax controls the resolution of the basis
in the longitudinal direction.

III. NUMERICAL RESULTS

In this work, we focus our investigation on the light-
unflavored mesons. We do not distinguish the up and the
down flavors in the Hamiltonian, and therefore our predicted
results are independent of the isospin and charge. We work
in the SU(2) isospin symmetric limit such that the antiquark
mass mq̄ is identical to the quark mass mq. We find the ba-
sis cutoff Nmax = 8 to be sufficient, which is identified with
	IR = 0.21 GeV and 	UV = 1.83 GeV. Lmax = 24 is used
mainly to reduce the artifact of numerical oscillations in the
longitudinal direction of the LFWFs. In the remainder of the
paper, we will use Nmax = 8 and Lmax = 24 for all calculations
unless stated otherwise. We first apply the Hamiltonian Heff

to find the optimal parameters of confining strength κ and
constitute quark mass mq by fitting the masses of ρ(770) and
ρ ′(1450) from the Particle Data Group (PDG) [36]. Next, we
fine tune the coupling strength of pseudoscalar interaction λ

to best fit the experimental mass value for the π (140). This
two-step procedure produces the optimized model parameters
summarized in Table I.

A. Spectroscopy

The effective Hamiltonian in Eq. (4) is diagonalized
separately for each value of mj . We then perform state iden-
tification to assign the quantum numbers of the states, jPC,
where j is the total angular momentum, P is the parity, and C
is the charge conjugation, as presented in Fig. 1. Light-front
parity [or (−1) jP] as well as C can be deduced from the basis
representation of the LFWFs [20], while j is determined from
the mass degeneracy of the spectrum. In these figures, we use
the tops and bottoms of the black boxes to indicate the spreads
of mass eigenvalues of the same states with different mj . The
mean values marked by the dashed bars are defined as

M �

√
M2

− j + M2
1− j + · · · + M2

j

2 j + 1
. (10)
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FIG. 1. The reconstructed light meson spectra with effective Hamiltonians Heff (left panel) and Heff,γ5 (right panel) at Nmax = 8 and Lmax =
24. The horizontal and vertical axes are jPC and invariant mass in GeV, respectively. Model parameters are listed in Table I. Calculated states
are represented by boxes to show the spread of mass eigenvalues in mj due to violation of rotational symmetry and basis truncations. The rms
deviations of the masses from the PDG values are 127 MeV (left panel) and 111 MeV (right panel) for the 11 identified states both illustrated
in this figure and specified in Table II. We use BLFQ (Heff,γ5 ) to indicate the model with both the one-gluon exchange interaction and the
pseudoscalar interaction, and BLFQ (Heff ) to indicate the model without the pseudoscalar interaction.

In addition, we use δ jMh � max {Mmj } − min {Mmj } for each
hadron h to measure its violation of rotational symmetry,
represented by the height of the boxes. The overall violation
of rotational symmetry for the entire spectrum is defined as

δ jM �
√

1

N

∑
h

(δ jMh)2, (11)

where N is number of hadrons with j 
= 0 and the summation
is over all such hadrons identified in the model.

TABLE II. Detailed comparison of the mass measured in GeV
between the PDG [36] and BLFQ results for the 11 identified states
illustrated in Fig. 1. Results of AdS/QCD [11] use a quark mass
around 46 MeV and confining strength around 540 MeV. Results
of BSE calculations with the rainbow-ladder truncation [3] are also
listed, along with the improved results using the three-loop truncation
of the three-particle irreducible effective action shown in the paren-
thesis [4]. Mean values are used for both experimental and theoretical
data.

PDG [36] AdS/QCD [11] BSE [3,4] BLFQ

π 0.14 0.14 0.14 (0.14) 0.14
ρ 0.78 0.78 0.76 (0.74) 0.78
a0 0.98 0.78 0.64 (1.1) 0.74
b1 1.23 1.09 0.85 (1.3) 1.20
a1 1.23 1.09 0.97 (1.3) 1.09
π ′ 1.30 1.09 1.10 1.44
a2 1.32 1.33 1.16 1.34
ρ ′ 1.45 1.33 1.02 1.44
a′

0 1.47 1.33 1.27 1.65
π2 1.67 1.53 1.23 1.59
ρ3 1.69 1.71 1.54 1.69

We can see that the effective Hamiltonian Heff,γ5 is success-
ful in reproducing the low-lying experimental masses in the
light sector. The spectroscopy is mostly rotational symmetric
with δ jM around 60 MeV, as shown in Table I. Moreover,
the addition of the pseudoscalar interaction generates suffi-
cient mass splitting between the pseudoscalar and the vector
ground states, which serves to simulate the chiral dynamics
sufficiently while holding the mass of other states primarily
unchanged with respect to the results with Heff alone. For the
rest of this work, we focus on the numerical results obtained
using LFWFs from the BLFQ (Heff,γ5 ) Hamiltonian unless
stated otherwise.

B. Light-front wave functions

The valence structure of bound states is encoded in
the LFWFs, through which various hadronic observables
are directly accessible. To visualize the LFWF as the
probability amplitude, we use k⊥ to sample k⊥ along
the x direction (i.e., k⊥ = k⊥ · x̂) and obtain a relative
sign of exp(imlπ ) = (−1)ml for negative k⊥. We also de-
fine ψ

(mj )
↑↓±↓↑(k⊥, x) � [ψ (mj )

↑↓ (k⊥, x) ± ψ
(mj )
↓↑ (k⊥, x)]/

√
2. For

pseudoscalars (0− states), there are two independent com-
ponents: ψ↑↓−↓↑(k⊥, x) and ψ↑↑(k⊥, x) = ψ↓↓(k⊥, x). For
vectors (1− states) at mj = 0, there are also two independent
components: ψ↑↓+↓↑(k⊥, x) and ψ↑↑(k⊥, x) = ψ↓↓(k⊥, x).

It is instructive to compare LFWFs for the light mesons to
those for the heavy quarkonia [21] all obtained from the same
Hamiltonian [Heff of Eq. (1)] but with different parameters. In
Fig. 2, we show the comparison of the dominant pseudoscalar
LFWF component (↑↓ − ↓↑) among ηb (bottomonium), ηc

(charmonium), and π . Similar observations, though not shown
here, can also be made about the evolution of the dominant
vector LFWF component (↑↓ + ↓↑) in the mj = 0 sector
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(a) ηb: ψ↑↓−↓↑(k⊥, x) (b) ηc: ψ↑↓−↓↑(k⊥, x) (c) π: ψ↑↓−↓↑(k⊥, x)

FIG. 2. Evolution of dominant LFWF ψ↑↓−↓↑(k⊥, x) for pseudoscalar mesons ηb, ηc and π respectively (from left to right) at Nmax =
Lmax = 8 with BLFQ (Heff) Hamiltonian using different model parameters. The corresponding confining strengths κ (quark mass mq) are, from
left to right, 1.387 GeV (4.894 GeV), 0.985 GeV (1.570 GeV), and 0.610 GeV (0.480 GeV). See Ref. [21] for a complete list of parameters
used for heavy quarkonia.

among the ϒ , J/�, and ρ mesons. In these plots, the horizon-
tal axes are the transverse momentum scaled by its respective
confining strength which is the same as the basis scale used
in the models. We notice that, with decreasing meson mass,
the LFWFs span a broader kinematic region in both x and
k⊥/κ for the light mesons, as expected due to the anticipated
increase in relativistic behavior.

It should be mentioned that the dominant pseudoscalar
LFWF component contributes to around 62.9% of the total
amplitude in π , in contrast to 92.6% in ηc and 97.6% in ηb,
which further indicates the relativistic nature of the light me-
son system. With the addition of the pseudoscalar interaction,
in Fig. 3, we show the nonvanishing LFWF spin components
of π and ρ at mj = 0 using Nmax = 8 and Lmax = 24.

C. Decay constants

Decay constants are defined from the local vacuum-to-
hadron matrix elements of the quark current operators. For
pseudoscalar (P) and vector (V) meson states, the decay con-
stants fP and fV are defined as

〈0|ψ̄ (0)γ μγ5ψ (0)|P(p)〉 = ipμ fP, (12)

〈0|ψ̄ (0)γ μψ (0)|V(p, mj )〉 = eμ
mj

(p)MV fV, (13)

where p is the meson momentum, MV is the mass of the vector
meson, and eμ

mj
(p) is the polarization vector (we adopt the

convention of Ref. [20]). We take the mj = 0 state of the
vector meson for calculating the decay constant. The “+” and
transverse (x, y) currents lead to the same result in the leading
Fock sector [37]:

fP,V

2
√

2Nc
=

∫ 1

0

dx

2
√

x(1 − x)

∫
d2k⊥
(2π )3

ψ
(mj=0)
↑↓∓↓↑ (x, k⊥), (14)

where the minus corresponds to the pseudoscalar while the
plus corresponds to the vector. In Table III, we present the
results of the decay constants for π and ρ to compare with
experiments and other methods. Our results of decay constants
are consistently larger than the PDG data [36], which is pri-

marily due to the fact that the model treats the valence quarks
as point-like particles. In principle, this can be improved by
incorporating higher Fock sectors which, among other effects,
will bring in the self-energy contributions to the quarks and
anti-quarks. In addition, we find the decay constant of the
excited pion to be f ′

π = 136 MeV and that of the excited rho
meson to be f ′

ρ = 133 MeV in our work.

D. Form factors and charge radii

The electromagnetic form factors characterize the struc-
ture of a bound state system in quantum field theory, which
generalize the multipole expansion of the charge and current
densities in nonrelativistic quantum mechanics. Here we study
the fictitious form factor with the photon coupling only to
the quark (but not the antiquark). The form factors can be
obtained by applying the Drell-Yan-West formula within the
Drell-Yan frame P′+ = P+ [39], which in the valence Fock
sector depend on the matrix elements

Im′
j ,mj (Q

2) � 〈ψh(P′, j, m′
j )|

J+(0)

2P+ |ψh(P, j, mj )〉

=
∑
s,s̄

∫ 1

0

dx

2x(1 − x)

∫
d2k⊥
(2π )3

×ψ
(m′

j )∗
ss̄/h (k⊥ + (1 − x)q⊥, x)ψ (mj )

ss̄/h (k⊥, x)

(15)

with q = P′ − P and Q2 = −q2 = q2
⊥. For pseudoscalar

mesons, Eq. (15) directly produces the charge form factor
GC(Q2) = I0,0(Q2). For vector mesons, we adopt the prescrip-
tion of Grach and Kondratyuk [40,41] to evaluate the elastic
form factors. In addition, wave functions of the same vector
meson solved from the Hamiltonian might have relative sign
differences across different mj , so we have used the nonrela-
tivistic dominant component to fix their relative signs in the
calculation of form factor matrix elements. Consequently, the
elastic form factors of the vector states, namely the charge
form factor GC(Q2), the magnetic form factor GM(Q2), and
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FIG. 3. LFWF spin components of the pion and the ρ meson (mj = 0) calculated using the Hamiltonian BLFQ (Heff,γ5 ) at Nmax = 8 and
Lmax = 24.

the quadruple form factor GQ(Q2) are given by

GC(Q2) = 1

3
[(3 − 2η) I1,1 + 2

√
2η I1,0 + I1,−1],

GM(Q2) = 2 I1,1 −
√

2

η
I1,0, (16)

GQ(Q2) = −2

3

√
2[ η I1,1 −

√
2η I1,0 + I1,−1]

with η = Q2/(4M2
h ) and Mh being the mass of the hadron. We

then define the rms charge radius
√

〈r2〉, the magnetic moment

μ, and the quadrupole moment Q as follows:

〈r2〉 = −6 lim
Q2→0

∂GC(Q2)

∂Q2
,

μ = lim
Q2→0

GM(Q2), (17)

Q = 3
√

2 lim
Q2→0

∂GQ(Q2)

∂Q2
.

In Fig. 4, we present the calculations of elastic form factors
for π and ρ to compare with available experimental results
as well as BLFQ-NJL results from Ref. [28]. Results of the
observables defined in Eq. (17) are included in Table IV. We
can see our charge radii for π and ρ are lower than those from
other approaches and experiments whenever available, which
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TABLE III. Decay constants (in MeV) of ground states π and ρ calculated according to Eq. (14) with BLFQ (Heff,γ5 ) at Nmax = 8 and
Lmax = 24 compared with experiments and other theoretical models. For the BLFQ-NJL model, we present both the original results from
Ref. [28] and the revised calculations in parentheses [38]. For the light-front quark model (LFQM), we show results of both harmonic oscillator
(left) and linear (right) confining potentials.

PDG [36] This work BLFQ-NJL [28] BSE [1] LFQM [13]

fπ 130 259 202.10 (142.91) 131 130, 131
fρ 216 323 100.12 (70.80) 207 246, 215

is consistent with the large decay constants found in our model
(see Table III).

IV. PARTON DISTRIBUTION FUNCTION AND PARTON
DISTRIBUTION AMPLITUDE

A. Parton distribution function

PDFs control the inclusive processes at large momentum
transfer. The PDF is the probability density for finding a par-
ticle with certain longitudinal momentum fraction x at a given
factorization scale μ. In the LFWF representation, it can be
obtained by simply integrating out the transverse momentum
of the squared wave function,

q(x; μ) = 1

4πx(1 − x)

∑
s,s̄

∫
d2k⊥
(2π )2

|ψs,s̄(x, k⊥)|2, (18)

where the scale indicated by μ is associated with the LFWF.
Here, the PDF and its first moment are normalized to 1,
within the valence quark sectors as a consequence of the unit
normalization of the valence LFWF given by Eq. (6). In Fig. 5,
we present the valence PDFs for the pion and the rho meson at
Nmax = 8 and Lmax = 24. In addition, we have also performed
a polynomial interpolation of the pion PDF after factoring out
the power-law end-point behavior.

The PDF for the π obtained from the LFWF is ex-
pected to correspond to a low effective factorization scale
compared to available experiments, as we only considered
the valence quark sector and ignored contributions from
sea quarks and gluons. We now evolve the PDFs from our
model scale μ (a fit parameter described below) to the
experimental scale via the well-known Dokshitzer-Gribov-
Lipatov-Altarelli-Parisi (DGLAP) equations [50–52], and
compare the results at the experimental scale. Specifically,
we evolve the parametric form of our initial pion PDF us-
ing the next-to-next-to-leading order (NNLO) DGLAP with
the higher order perturbative parton evolution toolkit (HOP-
PET) [53]. The strong running coupling is specified by the
variable flavor-number scheme (VFNS) with the matching
conditions at the heavy quark mass thresholds. It is initialized
using the default value of αs(M2

z ) = 0.1183, and then carried
out with the NNLO β function. See Ref. [53] for more details.
Since the initial scale of our model is estimated to fall in the
range between the IR regulator (0.21 GeV) and the UV regu-
lator (1.83 GeV), we fit the evolved valence-quark PDF to the
original Fermilab E615 data [54] at its experimental scale of
4.05 GeV so as to determine our initial scale. In this way, the
initial scale of our model is determined to be μ0 = 0.56 GeV,
which yields the results presented in Fig. 5. We also include
an error band showing the dependence of the pion PDF due

FIG. 4. Elastic form factors for π (left panel) and ρ meson (right panel) as functions of Q2 calculated according to Eqs. (15) and (16) using
LFWFs obtained from BLFQ (Heff,γ5 ) at Nmax = 8 and Lmax = 24. Experimental measurements of pion charge form factors are available [42–44]
and plotted on the left for comparison. The BLFQ-NJL model calculation of the charge form factor for the pion (where the charge radius was
fit to experiment) is also plotted in the dashed line for comparison [28]. The charge form factor, magnetic form factor, and the quadruple form
factors calculated from the ρ meson LFWFs are illustrated on the right in the dotted line, the dashed line and the dot-dashed line, respectively.
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TABLE IV. Results of the π and ρ meson charge radii
√〈r2

h 〉 (in fm), magnetic moments μ and quadrupole moments Q (in fm2) calculated
according to Eq. (17), compared to available experimental measurements and other models. The lowest pion mass used in the lattice QCD
calculation in Ref. [45] is mπ = 161 MeV. Uncertainties quoted in the referenced works are quoted in parenthesis.

PDG [36] This work BSE [46] Lattice QCD [45] LFQM [15,47] NJL model [48,49]√〈r2
π 〉 0.672(8) 0.44 0.66 0.591(43) 0.67 0.645√

〈r2
ρ〉 − 0.48 0.73 0.819(42) 0.52 0.82

μρ − 2.15 2.01 2.067(76) 1.92 2.48
Qρ − −0.063 −0.026 −0.0452(61) −0.028 −0.070

to a 5% assigned uncertainty in our initial energy scale. It is
clear that the valence quark sectors are no longer the dominant
contribution at this high scale (4.05 GeV); gluons and sea
quarks become much more important especially in the small-x
region. At this scale, the valence quarks contribute around
43% of the hadron longitudinal momentum, whereas gluons
and sea quarks contribute around 57% in total (43% gluon,
14% sea quarks).

B. Parton distribution amplitude

The PDAs control the exclusive processes at large momen-
tum transfer [55]. In general, the PDAs are defined as the
light-like separated gauge-invariant vacuum-to-meson matrix
elements. Specifically in the LFWF formalism, PDAs can be
expressed as [21]

φP,V(x; μ) = 2
√

2Nc

fP,V

1

4π
√

x(1 − x)

∫
d2k⊥
(2π )2

ψ
(mj=0)
↑↓∓↓↑ (x, k⊥),

(19)

where P and V stand for pseudoscalar and vector mesons,
associated with the minus and plus signs, respectively. Ad-
ditionally, fP,V are the decay constants defined in Eqs. (12)

and (13), and μ is the factorization scale of the system, the
dependence of which is given by the Efremov-Radyushkin-
Brodsky-Lepage (ERBL) evolution [55–57]. With these
definitions, the PDAs at all scales are normalized to 1.

By assuming the PDAs having the same initial scale as that
of the pion PDF, we present the PDAs for the pion and the
rho meson at 0.56 GeV in Fig 6. One should notice that the
PDA for the π is much broader than that of the ρ at this low
energy scale, which suggests that the π is a more relativistic
system than the ρ. In order to compare the pion PDA with
the available experimental data from Fermilab E791 [58], we
performed the ERBL evolution [59] of this initial pion PDA.

In the Gegenbauer basis, the evolved PDA of the pion at
any scale μ is given by

φπ (x, μ) = 6x(1 − x)
∞∑

n=0

C3/2
n (2x − 1) an(μ,μ0), (20)

where

an(μ,μ0) = 2

3

2n + 3

(n + 1)(n + 2)

(
αs(μ)

αs(μ0)

)4πγ 0
n /2β0

×
∫ 1

0
dx C3/2

n (2x − 1) φπ (x, μ0). (21)

FIG. 5. BLFQ (Heff,γ5 ) calculations of PDFs for π and ρ at Nmax = 8 and Lmax = 24 (left panel) according to Eq. (18) and the evolved pion
PDF to the E615 experimental scale of 4.05 GeV using DGLAP evolution (right panel). The polynomial interpolation of the pion PDF is used
in the evolution with the HOPPET [53]. Final valence quark results after the evolution are compared with the original analysis of the E615
experimental data [54], along with contributions from sea quarks and gluons.
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FIG. 6. BLFQ (Heff,γ5 ) calculations of PDAs for π and ρ at Nmax = 8 and Lmax = 24 in the initial scale (left panel) according to Eq. (19)
and the ERBL evolution of the pion PDA to the E791 experimental scale at 3.16 GeV [58] (right panel) using Eq. (20). The initial PDA of the
π and that of the ρ are shown on the left as the dashed line and the dotted line, respectively. On the right, the evolutions of the pion PDA at
various energy scales μ = 0.56 GeV (dashed line), 1.00 GeV (dot-dashed line), 3.16 GeV (solid line) are presented. The asymptotic PDA is
included as the dotted line for comparison.

Here, C3/2
n (2x − 1) is the Gegenbauer polynomial, μ0 is the

initial scale, and γ 0
n = −2 CF (3 + 2

(n+1)(n+2) − 4
∑n+1

k=1
1
k ). In

Fig. 6, we present the results of the ERBL evolution of the
pion PDA at various energy scales using the same running
coupling as in the QCD evolution of the pion PDF. As the
energy increases from 0.54 GeV to 3.16 GeV (Fermilab E791
experimental energy) [58], the pion PDA gradually trends
towards the perturbative QCD asymptotic PDA, φ(x,∞) =
6x(1 − x). It is interesting to point out that our BLFQ model
of the pion begins its evolution below the pQCD asymptotic
at x = 0.5, which is opposite to some of the available calcula-
tions, including AdS/QCD [12].

We have also calculated nth moment of the PDA, 〈ξ n〉 =∫ 1
0 dx(2x − 1)nφ(x), in order to compare with other ap-

proaches quantitatively. In Table V, we compare our moment
calculations for the π and ρ with other available models.
Notice that only the nth moments with even n are shown
here as any odd power vanishes due to isospin symmetry.
The second moment can also be used to estimate the relative
velocity of the parton via 〈v2〉 ≈ 3〈ξ 2〉. Here, 〈v2

π 〉 ≈ 0.66
and 〈v2

ρ〉 ≈ 0.61 at 1 GeV, much higher than those of heavy
quarkonia [21], where 〈v2

ηc
〉 ≈ 0.36 and 〈v2

ηb
〉 ≈ 0.21.

TABLE V. Leading moments of π meson and ρ meson calculated using their PDAs in BLFQ (Heff,γ5 ) at Nmax = 8 and Lmax = 24, compared
with selected results obtained from AdS/QCD, BSE, pQCD, QCD sum rules (SR), lattice QCD, and light-front quark model (LFQM). Note
that results from various models are obtained at similar but slightly different energy scales μ estimated by the corresponding references.
We show results of both rainbow-ladder truncation (left) and improved kernels (right) for the BSE approach, and results of both harmonic
oscillator (left) and linear (right) confining potentials for the LFQM approach. The numerical uncertainty of our result is under control by
the Gauss-Legendre quadrature rule with a sufficient number of Gaussian weights and precisions. Uncertainties from other approaches, where
available, are quoted in parenthesis when they are symmetrical or explicitly when they are asymmetrical.

π This work pQCD AdS/QCD [60] BSE [2] SR [61] SR [62] Lattice QCD [7] LFQM [13]

μ (GeV) 1, 3.16 ∞ 1 2 2 1 2 1

〈ξ 2〉 0.220, 0.213 0.200 0.237 0.280, 0.251 0.220+0.009
−0.006 0.24 0.28(1)(2) 0.24, 0.22

〈ξ 4〉 0.099, 0.095 0.086 0.114 0.151, 0.128 0.098+0.008
−0.005 0.11 0.11, 0.09

〈ξ 6〉 0.057, 0.054 0.048 0.078 0.099, 0.081 0.07, 0.05

ρ This work pQCD AdS/QCD [63] BSE [64] SR [61] SR [65] Lattice QCD [7] LFQM [13]

μ (GeV) 1, 2 ∞ 1 2 2 1 2 1

〈ξ 2〉 0.204, 0.203 0.200 0.227 0.23 0.206(8) 0.227(7) 0.27(1)(2) 0.21, 0.19

〈ξ 4〉 0.089, 0.088 0.086 0.105 0.11 0.087(6) 0.095(5) 0.09, 0.08

〈ξ 6〉 0.050, 0.049 0.048 0.062 0.066 0.051(4) 0.05, 0.04
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V. SUMMARY AND DISCUSSIONS

In this work, we investigated the light unflavored mesons
within the BLFQ approach. Our model Hamiltonian was
extended from the effective Hamiltonian used for heavy
quarkonia by adding the pseudoscalar contact interaction
inspired by the NJL model. Within our two-body basis repre-
sentation, we solved for the mass spectrum and the LFWFs.
We fitted three model parameters for the light-unflavored
mesons, the quark mass, the confining strength, and the
contact interaction coupling, using the meson masses given
by the PDG. The resulting spectroscopy agreed with 11
states in the PDG to within a rms mass deviation of 111
MeV. We showed that the inclusion of pseudoscalar con-
tact interaction was valuable to account for the π -ρ mass
splitting.

In addition, we studied the internal structures of the pion
and the rho meson by analyzing their LFWFs and subsequent
observables. With these LFWFs, we calculated decay con-
stants for the π and the ρ mesons. Furthermore, we computed
their electromagnetic form factors and subsequently obtained
physical observables including the charge radii, the magnetic
moment, and the quadrupole moment. We attributed the small
charge radius of the pion to the use of point-like valence
quarks in our models. We also calculated the PDFs and PDAs
for the π and the ρ at the model scale, and used DGLAP and
ERBL evolutions respectively to evaluate the PDF and PDA
at experimental scales for the π . Taking the initial scale as a
fit parameter, the results for the π were in good agreement
with available data and other models. PDFs after the DGLAP

evolution also illustrated the significant roles taken by the
gluon and the sea quarks in light mesons at the experimental
scale.

This work is our first step to understand light mesons
within the light-front Hamiltonian formalism. We expect to
include self-energy corrections and higher Fock sectors for a
more comprehensive description of the light meson systems.
We anticipate that inclusion of these additional degrees of
freedom and interactions in the Hamiltonian will improve
the current results towards more fundamental treatment of
dynamic chiral symmetry breaking and a better agreement
with experiment.
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