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Discovery versus precision in nuclear physics: A tale of three scales
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At least three length scales are important in gaining a complete understanding of the physics of nuclei. These
are the radius of the nucleus, the average inter-nucleon separation distance, and the size of the nucleon. The
connections between the different scales are examined by using examples that demonstrate the direct connection
between short-distance and high-momentum transfer physics and also that significant high-momentum content
of wave functions is inevitable. The nuclear size is connected via the independent-pair approximation to the
nucleon-nucleon separation distance, and this distance is connected via the concept of virtuality to the EMC
effect. An explanation of the latter is presented in terms of light-front holographic wave functions of QCD. The
net result is that the three scales are closely related, so that a narrow focus on any given specific range of scales
may prevent an understanding of the fundamental origins of nuclear properties. It is also determined that, under
certain suitable conditions, experiments are able to measure the momentum dependence of wave functions.
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I. INTRODUCTION

In studying atomic nuclei one encounters three different
length scales: the nuclear radius RA(≈5 fm for a heavy nu-
cleus), the average separation between nucleons at the centers
of nuclei d ≈ 1.7 fm, and the nucleon radius, rN ≈ 0.84 fm.
The pion Compton wave length, 1/mπ = 1.4 fm is close to
d , so is not a separate scale. The correlation length associ-
ated with the Fermi momentum, ≈π/kF [1] is also of the
order of d .

The general modern trend of theorists is to focus on each
length scale of a given subject using the techniques of ef-
fective field theory. The main idea (see, e.g., Ref. [2]) is as
follows: If there are parameters that are very large or very
small compared to the physical quantities (with the same di-
mension) of interest, then one may get a simpler approximate
description of the physics by setting the small parameters to
zero and the large parameters to infinity. Then the finite effects
of the large parameters can be included as small perturbations
about the simple approximate starting point.

This scale separation is a common technique (see, e.g.,
Ref. [3]) in which physics at large distances is assumed not
to depend on physics at shorter distances. A famous example
is the weak interaction in which the effects of W and Z boson
exchanges can be treated as contact (zero-ranged) interactions
at low energies. The general philosophy is that if one is
working at a low mass scale m one does not need to consider
dynamics at a mass scale � � m. Or in terms of distances: the
long distance scale 1/m must be very much greater than the
short distance scale 1/�. In other words, there must be a large
separation of scales for effective field theory techniques to be
maximally efficient. In nuclear physics the scale separation is
not very large—the values of relevant distances are not widely
separated.

In using effective field theory, theorists concentrate on a
given range of length scales. A typical procedure is to make
robust calculations that enable firm predictions. These are then
tested by experiments, and the results may confirm the theo-
ries or (more likely) lead to revision of the theories. Another
scenario, in which experiment leads, is that an experiment dis-
covers an unexpected phenomenon, such as the Rutherford’s
discovery of the atomic nucleus or the SLAC-MIT discovery
of quarks within the nucleon [4,5].

The two approaches of the previous paragraph can be sum-
marized as precision vs discovery. The effective field theory
approach of working within a given scale is aptly suited for
precision work. In contrast, discovery of new phenomena is
not well treated by scale separation techniques because new
phenomena are often related to discovering a new relevant
scale.

I comment on the precision approach. Much current ac-
tivity in precision nuclear structure calculations is based on
using low-energy, long-length-scale treatments. These began
with interactions, known as Vlow k , that use renormalization
group transformations that lower a cutoff in relative momen-
tum to derive NN potentials with vanishing matrix elements
for momenta above the cutoff. Such interactions show greatly
enhanced convergence properties in nuclear few- and many-
body systems for cutoffs of order � = 2 fm−1 or lower
[6–10]. Later calculations use renormalization group meth-
ods to soften interactions in nuclear systems. This extends
the range of many computational methods and qualitatively
improves their convergence patterns [11]. The similarity
renormalization group (SRG) [12–14] does this by systemati-
cally evolving Hamiltonians via a continuous series of unitary
transformations chosen to decouple the high- and low-energy
matrix elements of a given interaction [15,16].
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However, many conventional NN potentials, feature strong
short-range repulsion [17]. This is supported by some lattice
gauge QCD calculations [18–23]. The repulsion causes bound
states with very low energies (such as the deuteron) to have
important contributions to the binding and other properties
from high-momentum components.

In Ref. [24], the authors calculate cross sections for elec-
tron scattering from light nuclei. They conclude, “and thus the
data confirm the existence of high-momentum components
in the deuteron wave function.” The high-momentum com-
ponents of the deuteron lead to inclusive electron-scattering
cross section ratios with simple scaling properties [25]. That
reference finds significant “evidence for the dominance of
short-range correlations in nuclei.” Ref. [26] argued that the
statement of Ref. [24] (and by implication that of Ref. [25]) is
not correct because wave functions are not observables. Sim-
ilarly, Ref. [27] argued that nuclear momentum distributions
are not observable. It is certainly true that wave functions are
not observable quantities, but cross sections are observables.

There are prominent examples that momentum-space wave
functions are closely related to cross sections. Showing that
the cross section of the photo-electric effect in hydrogen is
proportional to the square of the momentum-space ground-
state wave function of hydrogen is a text-book problem
[28,29]. The modern version of the photo-electric effect is
called Angle Resolved Photoemission Spectroscopy (ARPES)
a technique that is well-known, see, e.g., Ref. [30], to yield
information of about the momentum and energy states of elec-
trons in materials. The statement that measurements of cross
sections can be used to learn about wave functions violates no
principles of quantum mechanics.

One of the purposes of this paper is to exemplify how
the use of the impulse approximation simplifies the connec-
tion between cross sections and wave functions for nuclear
processes at high-momentum transfer. If the kinematics are
correctly chosen, then the effects of various processes that are
not directly related to wave functions can be minimized [31],
so that in effect measuring cross section measures important
properties of wave functions. See Secs. IV, VI, and VII.

The principle concern of the present epistle is that current
experiments involving nuclei cover all the three scales men-
tioned above. Deep inelastic scattering experiments on nuclei,
involving squares of four-momentum transfers (Q2) between
10 and hundreds of GeV2 have shown that the quark properties
(quark distributions) of nucleons bound in nuclei are different
than those of free nucleons. This phenomenon is known as the
EMC effect; see, e.g., the review in Ref. [32]. The effect is not
large, of order 10–15%, but is of fundamental interest because
it involves the influence of nuclear properties on scales that
resolve the nucleon size.

But scales larger than the nucleon size are relevant because
modifications of nucleon structure must be caused by inter-
actions with nearby nucleons. Indeed, after the nucleon size,
the next largest length is the inter-nucleon separation length,
d . This is the scale associated with short range correlations
between nucleons. Therefore, the EMC effect is naturally
connected with short range correlations between nucleons.
But the internucleon separation is not very much smaller than
that of the nuclear size. This means that effects involving the

entire nucleus cannot be disregarded. Such effects are known
as mean-field effects in which each nucleon moves in the
mean field provided by other nucleons. Understanding the
EMC effect involves understanding physics at all three length
scales.

Here is an outline of the remainder of this paper. Section II
presents a short review of the modern technique of softening
the nucleon-nucleon interactions to simplify calculations of
low-energy nuclear properties. The consequence of this soft-
ening is the hardening of the leptonic interactions that probe
the system. Section III is concerned with the largest of the
three nuclear distance scales–the nuclear radius. This is fol-
lowed by a discussion of the physics of the separation between
two nucleons in bound states in Sec. IV. The consequent
nuclear manifestations are discussed in Sec. V. This involves
understanding the connection between the physics of short
distances and high momentum. It is shown that the momentum
dependence of wave functions can in principle be observed by
measuring elastic form factors. Next, Sec. VI discusses the
(e, e′ p) reaction as a discovery mechanism for the physics of
the two-nucleon separation distance. The concept of virtuality
(the difference between the square of the four-momentum and
the square of the mass) as a connection between the scale of
the two-nucleon separation-distance and the nucleon size is
introduced in Sec. VII. The connection between virtuality and
the EMC effect is elucidated in Sec. VIII. Finally, a summary
is presented in Sec. IX.

I aim to explain the basic ideas as clearly as possible
by using simple examples. There is no intent to present de-
tailed state-of-the-art calculations. A separate direction, not
discussed here, is that precision nuclear structure calculations
can be used in the aid of discovery, such as in the searches
for neutrinoless double beta decay [33] and/or beyond the
standard model particles [34].

II. SOFTENED NN POTENTIALS AND HARDENED
INTERACTION OPERATORS

The use of scale separation began with applying chi-
ral effective field theory to the nucleon-nucleon interaction
[35–37]. This work stimulated many efforts, see, e.g., the
reviews in Refs. [38,39].

Another approach is to use low momentum nucleon-
nucleon interactions [6–8,10,11,26,40]. After that came the
similarity renormalization group [11–16,41] which involves
a unitary transformation on nucleon-nucleon interactions and
the operators that represent observable quantities. The present
section is intended as a brief review of the latter two
techniques, with emphasis placed on the necessary transfor-
mations of the operators that probe the system.

Let us begin by describing a simple cutoff theory as de-
scribed by Bogner et al. [6] who found that the effective
interactions constructed from various high precision nucleon-
nucleon interaction models are identical. Their approach is to
obtain the half-off shell T -matrix via the equation

T (k′, k; k2) = Vlow k(k′, k)

+ 2

π
P

∫ �

0

V low k(k′, p)T (p, k; k2)

k2 − p2
p2d p (1)
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for a single partial wave in which k′ and k denote the relative
momenta of the outgoing and incoming nucleons, and the
mass of the nucleon is taken to be unity. Furthermore, all
momenta are constrained to lie below the cutoff �. A spe-
cific formalism was developed to obtain Vlow k from the initial
bare interaction V . This construction enforces the condition
that the half-off-shell T -matrix is independent of the cutoff
parameter �.

As a consequence of the cutoff independence of the half-
off-shell T -matrix, the interacting scattering eigenstates of the
low-momentum Hamiltonian H� ≡ H0 + Vlow k (where H0 is
the kinetic energy operator) are equal to the low-momentum
projections of the corresponding scattering and bound eigen-
states, |�k〉, |�B〉 of the original Hamiltonian, H0 + V [42].
This means that |χk〉 = P|�k〉, with an analogous relation for
bound states, ∣∣χ�

B

〉 = P|�B〉, (2)

where P is an projection operator onto states of relative
momenta less than �. The consequences of the projection
operator P in Eq. (2) are studied below.

Suppose the system is probed by an interaction operator,
here defined as O. The procedure invoked by using Eq. (1)
leads to the requirement that O is to be dressed. The trans-
formation corresponding to the first in the series of three
transformations used to derive a Vlow k that is Hermitian and
independent of energy [8] is

O →
(

1 + HPQ
1

E − HQQ

)
O

(
1 + 1

E − HQQ
HQP

)
, (3)

where Q = I − P and HQQ = QHQ, etc. This projection
operator procedure maintains the correct value of the ma-
trix elements of O, and is sufficient for present explicative
purposes.

The key feature of Eq. (3) is that the effects of any high-
momentum component (Q-space) in the wave function that
are removed by using Eq. (2) as the wave function are incor-
porated in the probe operator. Thus, the probe operator must
be hardened by the softening of the two-nucleon potential.

The use of Vlow k to soften the NN potential was followed
by renormalization group methods [11]. The similarity renor-
malization group (SRG) [12–14,43] achieves softening by
evolving Hamiltonians with a continuous series of unitary
transformations chosen to decouple the high- and low-energy
matrix elements of a given interaction [15,16]. Thus,

Hs = UsHU †
s = H0 + Vs, (4)

with H = H0 + V ≡ Hs=0, and H0 is the kinetic energy opera-
tor. The generator of the transformation is ηs = dUs

ds U †
s = −η†

s

and dHs
ds = [ηs, Hs]. The choice of the anti-Hermitian oper-

ator ηs as ηs = [H0,Vs] has proved to be convenient and is
used here. The kinetic energy operator is not changed by the
transformation.

Reference [41] correctly emphasized that when using the
wave functions produced by SRG-evolved interactions to cal-
culate other matrix elements of interest, the associated unitary
transformation of operators must be implemented. See also
Ref. [44]. The evolution of any operator O ≡ Os=0 is given

by the same unitary transformation used to evolve the Hamil-
tonian [13,26],

Os = UsOs=0U
†
s , (5)

which obeys the general operator SRG equation

dOs

ds
= [[H0,Vs],Os]. (6)

If implemented without approximation, then unitary transfor-
mations preserve matrix elements of the operators that define
observables.

The focus here is on the calculation of observables. Con-
sider an operator O, consistent with the bare Hamiltonian
H = H0 + V, that probes the system. The applications dis-
cussed here involve the interactions between a lepton probe
and the system. The operator flow equation, Eq. (6), is rewrit-
ten using the Jacobi identity as

dOs

ds
= [H0, [Vs,Os]] + [Vs, [Os, H0]], (7)

with the boundary condition Os=0 = O. To illustrate the main
idea, let us take O to depend only on coordinate-space op-
erators, and the bare potential to be local. Then for s =
0, [V,O] = 0, and for a system in its center of mass

[O, H0] = 1

2Mr
(∇2O + 2∇O · ∇), (8)

[V, [O, H0]] = −1

Mr
∇V · ∇O, (9)

with Mr the reduced nucleon mass. To first order in s,

Os = O − sMr∇V · ∇O, (10)

and one sees immediately that the evolution converts a one-
body operator to a two-body operator. The factor of Mr arises
from converting the units here to those of Ref. [41] in which
s = 0.2 fm4. A term of first order in s that arises from the
s-dependence of the potential vanishes here, as shown in the
Appendix.

To see the explicit effect of hardening of the interaction
operator, let O be the momentum transfer operator eiλq·r,
(in which the real-valued parameter λ accounts for using the
relative coordinate) then Os acquires a factor of q which gets
larger as the momentum transfer increases.

For an A-nucleon system this evolution procedure would
turn a one-body operator into an A body operator, as explained
in Ref. [41].

The stage is now set for the discussion of lepton-nucleus
scattering in terms of the three scales of nuclear physics,
starting with the largest and proceeding to the smallest.

III. DISCOVERY OF NONZERO NUCLEAR SIZES

This Section is concerned with the largest of the three nu-
clear scales- the nuclear radius. Though small on the scale of
atomic sizes, the nuclear radius is large in the present context.

Hofstadter, as part of his Nobel-prize winning work,
showed [45,46] (in first Born approximation) that the electron-
nucleus scattering cross section σs(θ ) was proportional to
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the square of the three-dimensional Fourier transform of the
nuclear charge density:

σs(θ ) ∝
∣∣∣∣
∫

d3rρ(r)eıq·r
∣∣∣∣
2

, (11)

where ρ(r) is the nuclear charge density as a function of the
separation from the center of the nucleus. Relativistic correc-
tions are small for nuclear targets [47]. The three-dimensional
integral appearing in Eq. (11) is defined to be the form factor
F (q). Electron scattering, in measuring the difference be-
tween the form factor and unity, showed that the nucleus was
not a point charge, as it would have been in a lowest-order ef-
fective field theory treatment. Importantly, electron scattering
was one of the main methods to determine the spatial extent
of nuclear charge distributions [48].

For large nuclei the charge density is well-approximated by
a Woods-Saxon (Fermi) form ρ(r) = ρ0

1+e(r−R)/a . For nuclei wth
A > 20, ρ0 = 0.17 Z

A fm−3, r = 1.1 fmA1/3, and a = 0.54 fm
[48]. The nuclear diffuseness a can be understood as follows.
Each nuclear single-particle state falls exponentially with dis-
tance away from the nuclear center. Thus, the density falls
a e−r/a for large r, with a ≈ 1/2/

√
2MB with B the average

binding energy at the center of the nucleus B = 16 MeV and
M the nucleon mass, a = 0.57 fm, which is close to empirical
values and close to the size of the nucleon. The distance scale
could instead be taken as the surface thickness, t = 4.4 a ≈
2 fm, the distance over which the density drops for 90 to
10% of its maximum value. The value of t is close to the
nucleon-nucleon separation distance. Thus, the two smallest
nuclear size scales enters in understanding the largest nuclear
radius. This is an example of the principle that all of three
nuclear distance scales are connected on a deep level.

The remainder of this section is concerned with under-
standing the role of a and in examining the effects of softening
the nucleon-nucleon interaction.

A. Effects of the diffuseness

Examining the effects of a is simplified by using the nu-
clear shape as parameterized by the symmetrized Fermi form
[49]:

ρ(r) = ρ0
sinh

(
c
a

)
[
cosh

(
c
a

) + cosh
(

r
a

)] , (12)

ρ0 = 3

4πc3
(

π2a2

c2 + 1
) , (13)

which, for large nuclei with c/a � 1, is indistinguishable
from the usual Fermi form. The Fourier transform of this
function yields the nuclear form factor given by

F (q) = ρ0
4π2ac

q sinh πaq
[πa/c coth(πaq) sin(cq) − cos(cq)].

(14)

The mean-square radius defined by

〈r2〉 ≡
∫

d3rρ(r)r2 = 1

5
(3c2 + 7a2π2). (15)

FIG. 1. Nuclear form factor. Blue, solid, F (q); red, dashed,
F (q) + �F (q).

Using c = 6.38 fm and a = 0.535 fm for the Gold nucleus
[50] as an example, observe that 〈r2〉 = 28.4 fm2 with the
term proportional to a2 contributing about 4 fm2. Thus, the
small scale of a contributes about 14% to the mean square
radius and about 7% to the rms radius. The small distance
scale is important. Another example of importance is that the
diffuseness a leads to an exponential fall-off with q:

lim
q→∞ F (q) = e−πaq cos cq

q
. (16)

B. Influence of the softened nucleon-nucleon interaction

Let us examine the effect of the unitary transformation on
the nuclear form factor. Use Eq. (10) with the probe opera-
tor O = eiq·r, taking (A − 1)/A → 1, where r represents the
nucleon position operator and q is the momentum transfer.
Evaluating the matrix element of the softened nucleon-
nucleon potential operator in the nuclear ground states leads,
via the Hartree-Fock approximation, to a nucleon-nucleus,
shell-model interaction which is taken as a local potential,
U (r). Such a mean-field potential has the shape of the nuclear
density, e.g., Eq. (13), with a central depth of about 57 MeV
[51]. Nonlocaility of the mean field is neglected here to sim-
plify the presentation.

One finds from Eq. (10) that

O ≈ (1 − iq · r̂sMU ′) eiq·r. (17)

This first-order change in O is accompanied by a first-order
change in the wave function, so that in principle the computed
form factor is not modified by the unitary transformation.

The purpose here is only to illustrate the effect of the
hardening of the interaction caused by transformations such as
those of Eq. (10). Therefore, I compute the change in the form
factor, �F caused by including the second term of Eq. (17).
This change is given by

�F (q) = −8π (sM )

3
q

∫
r2drρ(r)

dU

dr
j1(qr), (18)

with value of s = 0.2 fm4 [41]. A comparison between F (q)
and F (q) + �F (q) is made in Fig. 1. The term �F is negli-
gible for q < 1 fm−1, but is about a 10% effect for 1.3 fm−1

and dominates for q > 2 fm−1. If �F is large compared with
F , then it is necessary to compute higher order terms, so the
details would change. Nevertheless, Fig. 1 demonstrates the
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hardening of the probe interaction that occurs for large values
of the momentum transfer.

IV. TWO-NUCLEON SEPARATION DISTANCE

This section examines the physics of the two-nucleon sep-
aration distance. Bound-state wave functions are constructed
using simple, two-parameter models of the 3S1 nucleon-
nucleon interaction with parameters chosen to reproduce the
measured scattering length and effective range [52]. As such,
these are low-energy interactions. These simple potentials
contain features such as a hard core or Yukawa interaction
that have been parts of more realistic interactions. The range
parameters of that reference are used here, with the strengths
of the potential adjusted slightly so as to reproduce the value
of the binding energy (2.2 MeV). The different potentials
produce different bound-state wave functions and measurable
differences are perceived through the behavior of the form
factors (here the Fourier transforms of the square of the wave
functions). The importance of the correction terms in the
difference between using Os and O is assessed. The scaling
properties of the form factors are also presented in preparation
for use in Sec. V.

A. Nucleon-nucleon hard core plus exponential potential

This potential is defined by having an infinite hard core at
a separation r0 and an attractive exponential potential V (r) =
−V0 e−(r−r0 )/a (V0 = 1.92 fm−1) for larger separations. The
model is exactly solvable. The values r0 = 0.4 fm and a =
0.45 [52] are used. This potential (as others in this section)
is a crude model for deuteron properties because there is no
tensor force.

The s-state bound-state wave function is determined by us-
ing the transformation y = 2aγ e−r/(2a), γ = √

MB, where B
is the binding energy and M the nucleon mass, which converts
the Schroedinger equation into Bessel’s equation. Then the
bound-state wave function is

u(r) = N J2aγ (2a
√

MV0e−r/2a), (19)

subject to the condition that u(r0) = 0. The factor N is a nor-
malization constant. One can check the large r limit by using
the small argument limit of the Bessel function (Jν (x) ∼ xν)
so that limr→∞ u(r) ∝ e−γ r , as expected. The form factor of
this model is the bound-state matrix element of the operator

OQ = eiQ·r/2, (20)

in which the probe is defined to act only on one nucleon of the
two-body system. Then the form factor is given by

F (Q) = 2

Q

∫ ∞

r0

dr

r
sin (Q/2 r)u2(r), (21)

and can be re-expressed in terms of the momentum-space
wave function ψ (k) given by

ψ (k) = 1√
2πk

∫ ∞

r0

dr sin kr u(r), (22)

FIG. 2. F (Q) for hard core plus exponential potential.

with

F (Q) =
∫

d3k ψ (k+)ψ (k−), (23)

and k± ≡ k ± Q/4.
If one uses the Vlow k prescription of Eq. (2), then one cuts

off the momentum-space wave function at a relative momen-
tum �, with � = 2.1 fm−1 a commonly used value. The aim
here is to see how much of the form factor (as a function of
Q2) is given by relative momenta that are greater than �.

The cutoff form factor is then given by

F�(Q) =
∫

d3kψ (k+)ψ (k−)�(� − k+)�(� − k−). (24)

Using this form factor corresponds to using Eq. (2) for the
wave function. Invariance of the form factor would be ob-
tained if the probe operator were modified according to Eq. (3)
or Eq. (10). The purpose in computing F�(Q) is only to
determine the values of � for which operator modification
becomes necessary.

Figure 2 shows the form factor falling asymptotically as
1/Q6 and modulated by oscillations. Figure 3 shows the val-
ues of � necessary to achieve 5% accuracy in the form factor
as a function of Q. These are greater than 2.1 fm−1 for values
of Q > 2.2 fm−1, so such values of Q require operator modifi-
cation. The use of Eq. (10) is not possible because of the hard
core of the potential.

FIG. 3. Value of � for which F�(Q)/F∞(Q) = 0.95 as a function
of �.
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FIG. 4. F (Q) for square well potential.

B. Square well potential

The next example is the square well potential with a radius
of 2.205 fm [52] and depth 0.157 fm−1. The form factor is
shown in Fig. 4. Figure 5 shows the values of � necessary
to achieve 5% accuracy in the form factor as a function of Q.
Operator modification is found to be important here for values
of Q > 1.5 fm−1. The use of Eq. (10) is not possible because
the derivatives of the potential are δ functions.

C. Exponential potential

The exponential potential is given by the expres-
sion V (r) = −V0e−r/a with a = 0.76 fm [52] and V0 =
0.779 fm−1. The form factor is shown in Fig. 6. One sees that
F (Q) scales as 1/Q6.

This potential has well-defined derivatives so that one may
use the probe operator evolution of Eq. (10) to study the
change in the operator. For computing the form factor of a
two-body bound-state Eq. (10) becomes

Os ≈
[

1 − i

2
sM

dV

dr
(r̂ · Q)

]
eiQ·r/2. (25)

FIG. 5. Value of � for which F�(Q)/F∞(Q) = 0.95 as a function
of � for square well potential. The rapid rise is due to a node in the
form factor.

FIG. 6. Q6F (Q) for exponential potential. Solid F (Q). Dashed
F (Q) + �F (Q), see Eq. (26).

The use of the second term of this equation causes a change
to the computed form factor �F (Q), with

�F (Q) = QsM

6

∫
dru2(r) j1(Qr/2)

dV

dr
. (26)

The function F (Q) + �F (Q) is shown as the dashed curve of
Fig. 6. One sees that the term induced by the softening of the
interaction causes a significant hardening of the interaction
starting for values of Q as low as about 2 fm−1 and dominates
for Q > 3 fm−1. If �F is large compared with F , then it is
necessary to include higher-order terms in s, so the details
would change. Nevertheless, Fig. 6 demonstrates the harden-
ing of the probe interaction.

D. Yukawa potential

Here V (r) = V0e−μr/r with μ = 0.411 fm−1 as in
Ref. [52] and V0 = 0.25. The form factor, as shown Fig. 7,
scales as Q−4. The function F (Q) + �F (Q) [Eq. (26)] is
shown as the rising curve of Fig. 7. The dramatic change
in the probe operator is caused by the large derivative of
the Yukawa potential at short distances. The Fig. 7 again
demonstrates the hardening of the probe interaction.

FIG. 7. Q4F (Q) and Q4[F (Q) + �F (Q)] for Yukawa potential.
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E. Influence of tensor force and higher Q2

The one-pion exchange potential (OPEP) causes a ten-
sor force that dominates the long-range properties of the
deuteron. This has been known since the discovery of the
quadrupole moment of the deuteron in 1939. Furthermore, the
OPEP by itself, along with a single parameter that provides
a short-distance cutoff, is known to provide an approximate
but reasonable bound-state wave function for the deuteron
[53,54].

The iteration of the tensor part of OPEP that occurs in
solving the Schroedinger equation gives an S-state potential
that acts approximately as an attractive δ function potential
[32,55,56]. This approximate δ function is the leading order
term for the potential in both EFT and pionless EFT. In mo-
mentum space the S-state wave function has a node around
k = 2 fm−1, and the D-state dominates for k between about 2
and 4 fm−1 for many potentials that are in use in many-body
calculations today.

The softening of the OPEP by the SRG means that the
electromagnetic interaction must acquire a tensor force com-
ponent. Including this effect in the probe operator would add
a complication.

F. Summary

Softening of the NN interaction via a unitary transforma-
tion or projection operator procedure requires a corresponding
transformation of interaction operators that increases their
effects at high-momentum transfer. The examples shown in-
dicate that for some potentials the effects of transforming the
operator are very important for momentum transfers greater
than about 5 fm−1, an important region for current experi-
ments that attempt to discover new phenomena. Furthermore,
the transformed operators cannot be obtained easily for some
potentials.

The use of the impulse approximation that involves using
bare, untransformed operators simplifies the interpretation of
experiments and therefore seems best suited for discovery
purposes.

V. TWO-NUCLEON SEPARATION IN NUCLEI:
OBSERVING HIGH-MOMENTUM AND

SHORT-DISTANCE FEATURES

The previous section discusses how high-momentum com-
ponents may arise from interactions between nucleons. The
present section is concerned with the manifestation of such
effects in nuclei, and also one way to observe the relation
between short-distance and high-momentum physics.

Bethe [57] wrote, “Indeed, it is well established that the
forces between two nucleons are of short range, and of very
great strength” and “there are strong arguments to show
that the two-body forces continue to exist inside a complex
nucleus.”

Brueckner, Eden, and Francis [58] used a variety of nuclear
reactions to argue that the nuclear wave function contains
nucleons with a significant probability to have high momen-
tum. One particularly telling example is the significant cross
sections observed in the (p, d ) reaction with 95 MeV pro-

tons. The neutron in the nucleus must have high momentum
comparable to that of the proton, about 420 MeV/c, so that
combination with the incident proton allows the deuteron to
emerge from the nucleus. The only way a bound neutron
could acquire such momentum is via interactions with another
nearby nucleon.

Bethe continued, “All these processes show that the ‘poten-
tial’ is fluctuating violently from point to point in the nucleus,
which is compatible with the assumption that two-body forces
continue to act inside the nucleus without much modificca-
tion.” The idea of two strongly interacting nucleons, acting
independently of the other nucleons (the independent pair
approximation) is the basis of Bruckner theory [59] which
provided a fundamental explanation of how nuclear satura-
tion and the shell model of nuclei arise from fundamental,
hard, short-ranged interactions of nucleons. This means that
the nucleon-nucleon separation distance is related, via the
nucleon-nucleon interaction, to the size of the entire nucleus.

One modern implementation of the independent pair ap-
proximation is the generalized contact formalism (GCF) [60].
The GCF is an effective model that provides a factorized
approximation for the short-distance (small-r) and high-
momentum (large-k) components of the nuclear many-body
wave function. Its derivation relies on the strong relative
interaction of closely separated nucleons and their weaker
interaction with the residual A-2 nuclear system [61–63].
Using this approximation, the two-nucleon density in either
coordinate or momentum space (i.e., the probability of finding
two nucleons with separation r or relative momentum k) has
been expressed at small separation or high momentum as [62]

ρNN,α
A (r) = CNN,α

A × ∣∣ϕα
NN (r)

∣∣2
,

nNN,α
A (k) = CNN,α

A × ∣∣ϕα
NN (k)

∣∣2
, (27)

where A denotes the nucleus, NN denotes the nucleon pair
being considered (pn, pp, nn), and α stands for the nucleon-
pair quantum state (spin 0 or 1). CNN,α

A are nucleus-dependent
scaling coefficients, referred to as “nuclear contact terms”, and
ϕα

NN are two-body wave functions that are given by the zero-
energy solution of the two-body Schrödinger equation for the
NN pair in the state α. The functions ϕα

NN do not depend on
the nucleus, but do depend on the NN interaction.

The authors [60] state that an important feature of the GCF
is the equivalence between short distance and high momen-
tum, which is built into Eq. (27) by using the same contact
terms CNN,α

A for both densities. This equivalence is established
by extracting the contacts separately from the coordinate- and
momentum-space nuclear wave functions. The present section
is devoted to finding a direct correspondence between short
distance and high momentum.

This analysis uses the zero-energy Lippmann-Schwinger
(LS) equation and asymptotic expansions obtained by integra-
tion by parts [64]. The LS equation for scattering at 0 energy
is given by

ϕα
NN (k) = −M

k2

∫
d3r

(2π )3/2
e−ik·rV (r)ϕα

NN (r). (28)

If the potential is an approximate δ function in coordinate
space, then ϕα

NN (k) ∼ 1
k2 .
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For other interactions it is useful to express the S-wave,
momentum-space wave function as

ψ (k) = − M√
2πk3

∫ ∞

0
dr sin(kr) V (r) u(r), (29)

where u(r) is the S-state radial wave function and in which
the labels NN, α are suppressed. One derives expansions for
asymptotic values of the momenta by replacing the sin(kr)
appearing in the integral of Eq. (29) by −1

k
d cos kr

dr . Then one
can get higher-order terms by writing cos(kr) = 1

k
d sin kr

dr . The
result, defining K ≡ M√

2π
, assuming that the potential is not a

δ function, and that Vu and its derivatives exist at r = 0 is

ψ (k) = K

k4

∫ ∞

0
dr

d cos kr

dr
V (r)u(r) (30)

= K

k2

[
−V (0)u(0) −

∫ ∞

0
dr cos kr(Vu)′

]

= K

k4
V (0)u(0) + K

k6
(Vu)′′(0) + K

k8
(Vu)′′′′(0) + · · ·

(31)

If the potential is nonlocal of the form V (r, r′), then the prod-
uct Vu in Eq. (29) is replaced by

Vu(r) ≡ r
∫ ∞

0
dr′V (r, r′)u(r′), (32)

and the derivatives thereof that appear in Eq. (31) are replaced
by derivatives of Vu at the origin.

One may classify the asymptotic behavior obtained from
different classes of potentials.

(i) Class I: The potential is a δ function. Then ψ (k) ∼
1
k2 as in leading-order pion-less effective field the-
ory. Or as in Ref. [39], showing that an approximate
δ-function potential arises from treating the iterated
effects of the one pion exchange potential.

(ii) Class II: u(0) = 0 but V (0)u(0) �= 0. An example is
V ∼ 1/r and u(r) ∼ r for small values of r. In this
case, ψ (k) ∼ V (0)u(0)

k4

(iii) Class III: u(0) = 0, V (0)u(0) = 0. An example is the
exponential potential for which V (0) �= 0 is finite and
u(0) = 0. In this case, ψ (k) ∼ V ′(0)u′(0)

k6

(iv) Class IV: The potential has a hard core potential, in-
finitely repulsive for a distance less than a core radius,
r = c. Then using u(c) = 0, u′(c) �= 0 and taking the
Fourier transform of the wave function:

ψ (k) = −K

k2

∫ ∞

c
dr

d cos kr

dr
u(r)

∼ K

k3
sin(kc)u′(c). (33)

(v) Class V: Vu and all of its derivatives vanish at the
origin. This is the square well of range R. Then using
the LS equation yields

ψ (k) ∼ KV (0)

k4
cos(kR)u(R). (34)

(vi) Class VI: Nonlocal potentials. The quantity ψ (k) ∝
limr→0[Vu(r)]/k4 unless the limit vanishes. The Yam-

aguchi potential [65] V (r, r′) ∝ e−μr

r
e−μr′

r′ provides an
example of ψ (k) ∝ 1

k4 . A power law fall-off would
be obtained even if previous limit did vanish because
some nonzero even-numbered derivatives of Vu at the
origin must occur.

In each of the first five cases the product of the potential
and wave function at short separation distances determines
the high-momentum behavior of the momentum-space wave
function. For nonlocal potentials the high-momentum behav-
ior is controlled by Vu and/or its derivatives at the origin. Once
again short-distance behavior determines the high-momentum
content. Moreover, in each case there is a power law fall-off
with increasing k. This slow fall with increasing k means that
significant high-momentum content can be expected for all of
the interactions of Classes I–VI.

A power-law fall off can be uniquely avoided if the poten-
tial is a function of r2. In that case, all of the terms in the
series of Eq. (31) would vanish because of the vanishing of
all odd-number derivatives of V (r2) at the origin. No realistic
nucleon-nucleon potential in current use is a function of r2.
This means that significant high-momentum content can be
expected.

A. Form factors at high-momentum transfer

The previous analysis of zero-energy wave functions is
also applicable to bound-state wave functions. For a bind-
ing energy B the −M

k2n factors of Eq. (31) is replaced by
− M

(k2+MB)k2n−2 ≈ − M
k2n in asymptotic expansions.

An approximate relation between the momentum space
wave function and the elastic form factor can be obtained
using Eq. (23). Reference [66] argued that the dominant con-
tributions to the integral occur when k = ±Q/4. Then

F (Q) ∝ ψ (Q/4). (35)

This result depends on factorizing the momentum dependence
of the potential, Ṽ from that of the wave function, and is
denoted the factorization approximation. The procedure is to
use the LS equation to represent the wave functions appearing
in Eq. (24). Then Eq. (35) emerges if∫

d3kṼ (|Q/4 − k|)ψ (k) ≈ Ṽ (Q/4)
∫

d3kψ (k). (36)

The integral over d3k is the wave function at the origin of
coordinate space.

The result Eq. (35) is remarkable. It means that under cer-
tain conditions, in principle, it is possible to measure the wave
function of a system, or at least its momentum dependence in
a specific regime. This means that general statements about
the unmeasurable nature of wave functions are not correct.

An (unrealistic) experiment in which one could attempt to
test Eq. (35) is elastic electron scattering from a bb meson.
Elastic scattering on the deuteron is complicated by the need
to include the effects of meson exchange currents and cor-
rections to the nonrelativistic treatment [67]. Calculations of
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deuteron form factors for momentum transfers greater than
about 7 fm−1 are not shown in that review.

Note also that nucleon-nucleon scattering at laboratory en-
ergies less than 350 MeV does not yield significant constraints
on Ṽ (Q/4) for large values of Q [68]. Large momentum
transfer means that large kinetic energy is needed.

The following text explains how the different classes of
potentials discussed here can be or cannot be manifest by
measurements of form factors as expressed in Eq. (35).

Class I: V is a δ function in coordinate space, and therefore
a constant in momentum space. The wave function ψ (k) is
mainly determined by the propagator in which k and Q of
Eq. (36) of the same importance. The factorization argument
does not apply.

Class II: The Yukawa potential V (r) = V0e−μr/r. The
product Vu is well defined as r → 0, because then u(r) ∝ r.
Thus, Eq. (31) predicts ψ (Q) ∼ 1/Q4 and the form factor
show in Fig. 7 also shows a 1/Q4 behavior.

Class III: The exponential potential. In accord with
Eq. (31) the wave function falls as 1/Q6, and so does the form
factor shown in Fig. 6.

Class IV: Hard core plus exponential. Figure 2 shows os-
cillations expected from Eq. (33) but factorization does not
work because the discontinuity of u′(r) at r = r0 induces large
momentum components.

Class V: Square well potential. The factorization approx-
imation is not accurate, although oscillations with period
2π/R ≈ 3 fm−1 are seen. This is because condition of Eq. (36)
are not maintained due to oscillations that cause 0’s in Ṽ for
large values of the argument.

In summary, the short distance behavior of the potential
times the coordinate-space radial wave function determines
the high-momentum dynamics in all cases. If the factorization
approximation of Eq. (36) is valid and the probe operator is
well-known, then the measurement of the form factor deter-
mines the high-momentum behavior of the wave function.

VI. THE (e, e′ p) REACTION: DISCOVERY AT THE
NUCLEON-NUCLEON SEPARATION SCALE

The (e, e′ p) reaction occurs if an electron knocks out a nu-
cleon so that an initial nuclear state of A nucleons is converted
to a final nuclear state of A-1 nucleons.

In the plane wave impulse approximation (PWIA), an elec-
tron transfers a single virtual photon with momentum q and
energy ν to a single proton, which then leaves the nucleus
without interacting with another nucleon on the way out of
the nucleus; see Fig. 8. There are various corrections- final
state interactions, meson exchange currents, etc. However, one
can account for such effects by using appropriate kinematics
and including the effects of final state interactions, see, e.g.,
Ref. [31].

For high-momentum transfer processes the outgoing nu-
cleon has high energy, greater than the 350 MeV that is used
to constrain nucleon-nucleon potentials. The softening effects
of unitary transformations on nucleon-nucleon potentials re-
quires that the potential be Hermitian. No realistic Hermitian
potential applicable for scattering energies greater than about
1.5 GeV exists at the present time. This means applying a

FIG. 8. A nucleus emits a nucleon of four-momentum Pmiss that
absorbs a virtual photon of four-momentum q to make a final-state
nucleon of four-momentum Pmiss + q, with (Pmiss + q)2 = M2, where
M is the nucleon mass.

unitary transformation to soften the interaction is not practi-
cal. Instead, the final state interactions can be treated using
the Glauber approximation in which the nucleon-nucleon
scattering cross sections are used as input to form the optical
potential [69].

If the background effects mentioned above are handled
correctly, then the scattering amplitude is proportional to the
wave function of the struck bound nucleon [70]:

M ∝ ψ (Pmiss). (37)

Once again [as in Eq. (35)] the scattering amplitude is
seen to directly accesses information about the momentum
dependence of the wave function. This feature has enabled
experimental studies to show that the high-momentum part
of the wave function is dominated by short-range correla-
tions (SRCs) [71]. These are pairs of nucleons with large
relative and individual momenta and smaller center-of-mass
(c.m.) momenta, where large is measured relative to the typ-
ical nuclear Fermi momentum kF ≈ 250 MeV/c [32,72]. At
momenta just above kF (300 � k � 600 MeV/c), SRCs are
dominated by pn pairs [73–79]. This pn dominance is due
to the tensor part of the nucleon-nucleon (NN) interaction
[80,81].

The presence of nucleon-nucleon short ranged correlations
in nuclei has many implications for the internal structure of
nucleons bound in nuclei [32,82,83], neutrinoless double beta
decay matrix elements [84–90], nuclear charge radii [91], and
the nuclear symmetry energy and neutron star properties [92].

If SRG transformations are applied to the strong-
interaction Hamiltonian, then the necessary use of hardened
interactions (discussed in Sec. V) in analyzing experiments
would complicate their interpretation.

VII. VIRTUALITY—A SMALL-DISTANCE SCALE

Bound nucleons (of four-momentum p) do not obey the
standard Einstein relation pμ pμ = M2, and are said to be off
the mass shell. The average binding energy is much, much
less than the nucleon mass, so the violation of the Einstein
relation can be ignored when computing or understanding
many average nuclear properties.
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If one looks in more detail and examines nucleon-nucleon
scattering, then one sees that the intermediate nucleons must
be off their mass shell. In the Blankenbecler-Sugar [93] and
Thompson reductions [94] of the Bethe-Salpeter equation
[95] one nucleon emits a meson of 0 energy and nonzero
momentum and the other nucleon absorbs the meson. Since
the momenta of the nucleons have changed, but their energy
has not changed, the intermediate nucleons are off their mass
shell. In other reductions of the Bethe-Salpeter equation [96],
one nucleon is on the mass shell, and the other is not. This
means that the nuclear wave function, treated relativistically,
contains nucleons that are off their mass shell. Such nucleons
must undergo interactions before they can be observed, and
are denoted as virtual. The difference p2 − M2 is related to
the virtuality [97].

Experiments [98–100] using leptonic probes at large values
of Bjorken x interrogate the virtuality of the bound nucleons.
To see this, consider the PWIA situation with (Pmiss + q)2 =
M2, let q have the four-momentum (ν, 0⊥,−(

√
ν2 + Q2)) ≈

(ν, 0⊥,−(ν + Q2

2ν
)), in the Bjorken limit with q2 = −Q2,

Q2 → ∞, ν → ∞, and Q2/ν finite. Then with q− = q0 −
q3 ≈ 2ν � q+ ≈ −Mx, x = Q2

2Mν
, one finds that

V ≡ P2
miss − M2

M2
≈ − Q2

M2

(
P+

miss

M
− 1

)
. (38)

This quantity V , defined here as the virtuality, is generally not
zero. For example, experiments have been done with Q2 =
3 GeV2, P+

miss
M = 1.5, for which V ≈ −1.5. Plateaus, kinemat-

ically corresponding to to scattering by a pair of nucleons,
have been observed [71] in this region. Treating highly virtual
nucleons requires including relativistic effects. A recent study
is Ref. [101].

The only way for a nucleon to be so far off the mass shell is
for it to be interacting strongly with another nearby nucleon.
To see that, consider a configuration of two bound nucleons,
initially at rest in the nucleus. This is a good approximation
for roughly 80% of the nuclear wave function. To acquire the
large missing momentum of the previous paragraph, one nu-
cleon must exchange a boson or bosons with four-momentum
comparable to that of the incident virtual photon as shown in
Fig. 9.

Such a Bosonic system can only travel a short distance �r
between the nucleons with

�r ∼ 1

| �Pmiss|
. (39)

Thus, a highly virtual nucleon gets its virtuality from another
nearby nucleon which must be closely separated. High virtu-
ality is a short-distance phenomenon. As such, it serves as an
intermediate step between using nucleonic and quark degrees
of freedom.

Reference [102] attempted to find a difference between the
effects of highly virtual nucleons and the effects of high local
density. The simple arguments presented here show that there
is a direct connection between high local density and high
virtuality. It is therefore not possible to distinguish the two
effects. This issue is discussed in more detail in Ref. [103].

FIG. 9. The strong interaction represented by the wiggly line
exchanges a momentum �Pmiss between two nucleons.

In evaluating Feynman diagrams the lowest-order effects
of the nonvanishing of V can be canceled by propagators and
reorganized into low-energy constants; see Fig. 10. But un-
derstanding the fundamental origin of virtuality would allow
a deeper understanding of nuclear physics.

To better understand the connection between virtuality and
quark degrees of freedom, consider a virtual nucleon as a sup-
erposition of physical states that are eigenfunction of the QCD
Hamiltonian. Virtual states with nucleon quantum numbers
can be expressed using the completeness of states of QCD:

|N (V )〉 =
nmax∑
n=1

cn|Nn〉, (40)

in which the states |Nn〉 are resonances and also nucleon-
multi-pion states. Each of these states has a detailed under-
lying structure in terms of quarks and gluons. In exclusive
reactions with not very large momentum transfer few states
are excited and one may use Eq. (40) to describe the physics.
However, for high-energy inclusive reactions of experimental
relevance one needs many states. In this case a quark descrip-
tion is necessary.

VIII. EMC EFFECT—DISCOVERY AT THE SMALL
NUCLEAR DISTANCE SCALE

The aim of this section is to exemplify the connection
between the small-distance scale related to virtuality and
deep inelastic scattering from nuclei. The relation between

γ∗γ∗
γ∗

FIG. 10. The effects of a virtual intermediate nucleon (indicated
by the heavy line) may be replaced by using a two-nucleon contact
interaction.
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virtuality and the EMC effect has been explored previously
in Refs. [32,104–107].

Deep inelastic scattering (DIS) on a free nucleon target was
initially expected to observe a set of resonances and there-
fore small cross sections for large values of three-momentum
transfer [4,5]. Instead, the cross sections were large an ap-
proximate Bjorken scaling was observed. The unambiguous
interpretation is that the nucleon contains quarks.

I explain in more detail. For typical DIS kinematics Q2 =
100 GeV2, x = 0.5, ν ≈ 100 GeV, the expansion of Eq. (40)
becomes unwieldy because the absorption of a virtual photon
by free nucleon leads to a system of mass MX with M2

X =
Q2( 1

x − 1), so MX ≈ 10 GeV. This high excitation energy tells
us that a huge number of baryon states are involved. Instead
it is far more efficient to analyze the cross sections using
quark degrees of freedom. Measurements determine the quark
structure functions q(x) that are scale and scheme dependent
[108]. However, they are well understood and interpreted as
momentum distributions. Observe again that measurements
of experimental cross sections determine features of wave
functions.

Next turn to deep inelastic scattering on nuclei at simi-
larly large values of Q2. It was initially thought that at such
kinematics only very small distances in the target would be
involved [109]. Such distances are much, much less than the
internucleon spacing of ≈1.7 fm, and the expectation was
that using a nuclear target would only increase the number
of target nucleons. Instead, the medium modification of q(x)
was observed. At high values of x the ratio of the bound to free
structure function ratio is less than one by an amount of only
between 10 and 15%, dependent on the nucleus. This effect is
known as the EMC effect [109,110].

That bound structure functions are different than free ones
is natural in terms of the discussion above regarding virtuality
and Eq. (40). Bound nucleons are virtual and the states |Nn〉
have different structure functions than the nucleon.

Because of the large number of states entering in Eq. (40) it
is most efficient to use quark degrees of freedom to understand
DIS large values of Q2. Then the free nucleon is regarded as
a superposition of various configurations or Fock states, each
with a different quark-gluon structure.

I simplify the discussion using a model inspired by the
QCD physics of color transparency [111–114]. The infi-
nite number of quark-gluon configurations of the proton are
treated as two configurations, a large-sized, bloblike config-
uration, BLC, consisting of complicated configurations of
many quarks and gluons, and a small-sized, pointlike con-
figuration, PLC, consisting of three quarks. The BLC can
be thought of as an object that is similar to a nucleon. The
PLC is meant to represent a three-quark system of small size
that is responsible for the high-x behavior of the distribution
function. The smaller the number of quarks, the more likely
one can carry a large momentum fraction. The small-sized
configuration (with its small number of qq pairs) is very differ-
ent than a low lying nucleon excitation. This two-component
model is meant to serve as a simple schematic tool to enable
qualitative understanding.

When placed in a nucleus, the bloblike configuration feels
the usual nuclear attraction and its energy decreases. The

pointlike configuration feels far less nuclear-attraction by
virtue of color screening [115] in which the effects of glu-
ons emitted by small-sized configurations are canceled in
low-momentum transfer processes. The nuclear attraction in-
creases the energy difference between the BLCs and the PLCs,
therefore reducing the PLC probability [111]. Reducing the
probability of PLCs in the nucleus reduces the quark mo-
menta, in qualitative agreement with the EMC effect.

Working out the consequences of the BLC-PLC model
enables the connection between the EMC effect and virtuality
to be clarified. The Hamiltonian for a free nucleon in the
two-component model can be expressed schematically by the
matrix

H0 =
[

EB V
V EP

]
, (41)

where B represents BLC and P the PLC. The PLC is spa-
tially much smaller than the BLC, so that EP � EB. The
hard-interaction potential, V , connects the two components,
causing the eigenstates of H0 to be |N〉 and |X 〉 rather than |B〉
and |P〉. In lowest-order perturbation theory, the eigenstates
are given by

|N〉 = |B〉 + ε|P〉, (42)

|X 〉 = −ε|B〉 + |P〉, (43)

with ε = V/(EB − EP ) � 1. It is natural to assume |V | �
EP − EB, so that the nucleon is mainly |B〉 and its excited state
is mainly |P〉. The notation |X 〉 is used to denote the state that
is mainly a PLC, which does not at all resemble a low-lying
baryon resonance.

The quark structure function is the matrix element of the
operator ODIS that is the imaginary part of the virtual-photon-
quark Compton scattering amplitude. This operator acts on a
single quark, so that

q(x) = 1

1 + ε2
(〈B|ODIS|B〉 + ε2〈P|ODIS|P〉), (44)

in which it is assumed that the single-quark operator does not
connect the two very different states |B〉 and |P〉. Furthermore,
the condition that the PLC dominates the structure function at
large values of x is enforced by defining a function f (x) > 0
that monotonically increases as x increases. In particular, let

〈P|ODIS|P〉 ≡ f (x)〈B|ODIS|B〉, (45)

so that

q(x) = 1

1 + ε2
〈B|ODIS|B〉[1 + ε2 f (x)]. (46)

The model quark distributions of Ref. [116], based on
light-front holographic QCD, may provide a realization of the
simple relation Eq. (45). These incorporate Regge behavior
at small x and inclusive counting rules as x approaches unity
and is consistent with DIS measurements. The model provides
quark distributions qτ (x) (normalized to unity) as function of
τ , the number of constituents in the system:

qτ (x) = �
(
τ − 1

2

)
√

π�(τ − 1)
[1 − w(x)]τ−2 w(x)−

1
2 w′(x), (47)
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with w(x) = x1−xe−a(1−x)2
. The elastic form factors of this

model fall asymptotically as 1/Q2τ , and the slope of form
factors as Q2 = 0 is proportional to τ . These features mean
that an increase in the value of τ corresponds to an increase in
effective size. The function q3 represents a three quark system
and is naturally associated with the PLC.

In Eq. (47) the function qτ is normalized to unity. The u
and d quark distributions at a scale μ0 = 1.06 ± 0.15 GeV
are given by

u(x) = 3

2
q3(x) + 1

2
q4(x), (48)

d (x) = q4(x), (49)

with the u(x) and d (x) normalized to the flavor content of
the proton. An excellent reproduction of measured structure
functions and elastic form factors is obtained using only
two components and the flavor-independent parameter a =
0.531 ± 0.037. This gives some justification to the simple
two-state picture of the present model.

The ratio q3(x)/q4(x) = 1/[1 − w(x)] which increases
monotonically with increasing x, as expected by the intuition
inherent in Eq. (45) with df /dx > 1. It is therefore reasonable
to associate the PLC (q3) with becoming more important as
the value of x increases. In this model BLC is associated
with q4, and the PLC component occurs only with up quarks.
The relevant combination for a nucleus with N neutrons and
Z protons is proportional to Z 3

2 [q3(x) + q4(x)] + N
4 [3q3(x) +

9q4(x)].
Now suppose the nucleon is bound to a nucleus. The nu-

cleon feels an attractive nuclear potential, here represented by
H1, with

H1 =
[
U 0
0 0

]
, (50)

to represent the idea that only the large-sized component of
the nucleon feels the influence of the nuclear attraction. The
treatment of the nuclear interaction, U , as a number is clearly
a simplification because the interaction necessarily varies with
the relevant kinematics. The present model is similar to the
model of Ref. [111], with the important difference that the
medium effects enter as an amplitude instead of as a probabil-
ity. See also Ref. [117].

The complete Hamiltonian H = H0 + H1 is

H =
[

EB − |U | V
V EP

]
, (51)

in which the attractive nature of the nuclear binding potential
is emphasized. Then interactions with the nucleus increase the
energy difference between the bare BLC and PLC states and
thereby decreases the PLC probability.

The medium-modified nucleon and its excited state, |N〉M

and |X 〉M , are now (again using first-order perturbation the-
ory)

|N〉M = |B〉 + εM |P〉, (52)

|X 〉M = −εM |B〉 + |P〉, (53)

where

εM = V

EB − |U | − EP
= ε

EB − EP

EB − |U | − EP
(54)

and εM
ε

= EB−EP
EB−|U |−EP

< 1.
The difference

εM − ε ≈ |U |
EB − EP

(55)

is relevant for understanding the EMC effect because

|N〉M = |N〉 + (εM − ε)〈P|ODIS|P〉, (56)

and the medium modification of the nucleon is proportional to
the interaction with the nucleus represented by U .

The medium-modified quark distribution function qM (x) =
〈NM |ODIS|NM〉, and is qM (x) = q(x) + �q(x) with

�q ≈ 2(εM − ε)〈N |ODIS|P〉
≈ 2(εM − ε)ε〈P|ODIS|P〉. (57)

in which terms of first order in (εM − ε) kept to represent the
small EMC effect. Next use Eqs. (45) and (46) to find

�q(x) = 2(εM − ε)ε
q(x) f (x)

1 + ε2 f (x)

≈ 2(εM − ε)ε q(x) f (x). (58)

Note that the product (εM − ε)ε is less than zero, independent
of the sign of the interaction V . This means that, at large
values of x, the quark structure function in the nucleus is less
than that of a free nucleon, and decreases with increasing x
because f (x) is monotonically increasing with increasing x.
These features are inherent in the data for values of x < 0.7.

The next step is to relate (εM − ε) ∝ U [via Eq. (55)] to the
virtuality. Suppose a photon interacts with a virtual nucleon of
four-momentum Pmiss The three-momentum Pmiss opposes the
A − 1 recoil momentum p ≡ Pmiss = −PA−1. The mass of the
on-shell recoiling nucleus is given by M∗

A−1 = MA − M + E ,

where E > 0 represents the excitation energy of the spectator
A − 1 nucleus, to find [106]

M2V = P2
miss − M2 (59)

= (MA −
√

(M∗
A−1)2 + p2 )2 − p2 − M2, (60)

which reduces in the nonrelativistic limit to

M2V ≈ −2M

(
p2

2Mr
+ E

)
, (61)

where the reduced mass Mr = M(A − 1)/A. The virtuality,
V , is less than 0, and its magnitude increases with both the
A-1 excitation energy and the initial momentum of the struck
nucleon.

References [106,111] obtained a relation between the po-
tential U and the virtuality V by using the extension of the
Schroedinger equation to an operator form:

p2

2Mr
+ U = −E , (62)

055206-12



DISCOVERY VERSUS PRECISION IN NUCLEAR … PHYSICAL REVIEW C 102, 055206 (2020)

TABLE I. EMC effect versus Virtuality.

Quantity 3He 4He 12C 56Fe 208Pb

| dR
dx | [118]. 0.070 ± 0.029 0.197 ± 0.026 0.292 ± 0.023 0.388 ± 0.032 0.409 ± 0.039

| V
2M | (MeV) [106] 34.59 69.4 82.28 82.44 92.2

so that p2

2Mr
+ E = −U = |U | and via Eq. (55),

V = 2U

M
= 2(εM − ε)(EP − EB)

M
, (63)

so that the modification of the nucleon due to the PLC
suppression is proportional to its virtuality. Potentially large
values of the virtuality greatly enhance the difference between
εm and ε.

Recall Eq. (57) and replace (εM − ε) therein by its expres-
sion in terms of V [Eq. (63)] to find

qM (x) = q(x) + M

EP − EB
Vε f (x)q(x). (64)

The conditions that (εM − ε)ε < 0, V < 0 and Eq. (63) lead
to the requirement that ε > 0, which means that V < 0. The
sign of ε is consistent with the light-front holographic model
for which ε = 1/

√
2 for the proton and 0 for the neutron.

The suppression of pointlike components is manifest by the
condition df /dx > 0 and εdf /dx > 0. The ratio of structure
functions is R(x) = qM (x)/q(x), and

dR

dx
= M

EP − EB
Vε

df

dx
< 0, (65)

as the measurements of the EMC effect have shown. The
negative sign is caused by the negative value of the virtuality.
This expression is only meaningful for x < 0.7 where Fermi
motion effects can be ignored.

The quantities M, EP − EB, and f (x) are independent of
the nucleus, so that the A-dependence of the EMC effect is
determined by the virtuality, V . According to this model, the
larger the virtuality the larger the EMC effect, as measured
by the slope of R(x). Table I compares the measurements of
the slope with computations of the virtuality. The data for
A = 56 is from a mixture of A = 56 and A = 63. The theory
for 208Pb is compared with the data for 197Au. The increase
of the magnitude of the slope tracks qualitatively well with
the corresponding increase of the virtuality. A quantitative
reproduction of the A-dependence requires a more detailed
treatment of the separate N and Z dependence as in Ref. [83].

Another consequence of this model is that the medium-
modified nucleon contains a component that is an excited state
of a free nucleon. The amount of modification, εM − ε, which
gives a deviation of the EMC ratio from unity, is controlled by
the potential U and via Eq. (63) the virtuality. A more detailed
evaluation of the EMC effect is reserved for another paper.

IX. SUMMARY & DISCUSSION

This paper takes a trip through three length scales relevant
to nuclear physics. These are the nuclear size, the internucleon
separation distance and the nucleon size. Simple examples are
used to illustrate the basic underlying features that drive the
observations made at the three different scales. The intent is

to arrive at the realization that all three scales are must be
understood to truly understand the physics of nuclei.

Section II briefly reviews the currently popular procedure
of softening the interactions between nucleons, with a focus
on the concomitant hardening of the operators that probe nu-
clei. A first-order equation, Eq. (10), is derived to demonstrate
that the probe operators are hardened by the same unitary
transformation that softens the interactions.

Section III discusses the largest nuclear scale, with the first
point being that momentum transfers higher than that achieved
by Rutherford were needed to discern the nonzero nature
of the nuclear size. Equations (17) and (18) are derived to
estimate the effect of the hardening of the probe operator, and
is used to demonstrate its importance for momentum transfers,
q, greater than about 2 fm−1.

The physics of the nucleon-nucleon separation is explored
in Sec. IV by using bound-state wave functions produced
by four simple models of the nucleon interaction. The high-
momentum transfer (q) scaling of the form factors is exhibited
for each model. The values of relative momentum p that
make important contributions to the form factor are displayed.
Increasing the value of q is shown to increase the values of p
that enter. The resulting effect of the hardening of the probe
operator is displayed for two of the model interactions, where
again significant effects of hardening of the operator are seen
for q > 2 fm−1. For other interactions the hardening cannot
be computed easily. The role of the tensor force in producing
high-momentum components, and in transforming the probe
operator, is also discussed. Current experiments involve trans-
fer of high momentum. The interpretation of such experiments
is simplified if bare, untransformed probe operators can be
used.

The role of two-nucleon physics in nuclei, as manifest in
the independent pair approximation, is explored in Sec. V.
The modern approach is the generalized contact formalism.
The high-momentum properties of 0-energy wave functions
entering that formalism are examined. The result Eq. (31)
demonstrates the explicit connection between short-distance
and high-momentum physics. Furthermore, the inevitable
power-law falloff indicates that significant high-momentum
content must occur. The conditions necessary for obtaining
a direct connection, Eq. (35), between scaling behavior of
measured form factors and the underlying wave functions are
determined.

Section VI discusses the (e, e′, p) reaction as a tool for
discovery of short-distance physics at the nucleon-nucleon
separation scale. Under certain conditions Eq. (37), which
directly relates the scattering amplitude to the wave function,
is valid. More generally, at high-momentum transfer, final
state nucleons have high energy and undergo different inter-
actions than those in the initial state. Thus, in such situations,
it is far simpler to use the impulse approximation with the
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fundamental potentials in the Hamiltonian than to use interac-
tions softened by unitary transformations.

The transition from the nucleon-nucleon separation dis-
tance to the nucleon size and smaller sizes is begun in Sec. VII
through a discussion of virtuality, Eq. (38). High-momentum
transfer reactions probe highly virtual nucleons. Nucleons
achieve high virtuality only through strong interactions with
closely separated nucleons, Eq. (39). The internal wave func-
tion of such nucleons may be expressed as a superposition
of baryonic eigenstates, Eq. (40). If the momentum transfer
is large enough, then many, many states must be included in
the superposition, and it becomes more efficient to use quark
degrees of freedom.

The role of virtuality in understanding the nuclear modifi-
cation of quark structure functions (EMC effect) is discussed
in Sec. VIII. The explicit connection, Eq. (65) is displayed
by using a two-component, (pointlike/bloblike) model of the
nucleon’s quark degrees of freedom. The simple model is
shown to be consistent with the two-state treatment of light-
front holographic QCD that reproduces free nucleon structure
functions and elastic form factors. In particular, the pointlike
component is more important relative to the bloblike com-
ponent at larger values of x. This model, combined with the
concept of virtuality provides a qualitative explanation of the
EMC effect.
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APPENDIX: DERIVATION OF Eq. (10)

The result, Eq. (10), is stated without treating the term of
first order in s caused by the s-dependence of the potential.
This Appendix shows that the term vanishes for the case of a
local, bare potential and a local operator O.

Consider the matrix element

Ms ≡ 〈�|[H0, [Vs,O]]|�〉, (A1)

which enters in computing elastic form factors. The goal here
is to show that the term of order s vanishes. To first order in s,

Vs ≈ V + s
dV

ds
(s = 0) = V + s[[H0,V ],V ]. (A2)

The double commutator [[H0,V ],V ] = −2
M (∇V )2 which is

function of r. This commutes with O and Eq. (10) is obtained.
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