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New method to extract information of near-threshold resonances: Uniformized Mittag-Leffler
expansion of Green’s function and T matrix
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We propose a new, model-independent approach that appropriately incorporates the resonant and threshold
behaviors. We show that when choosing the appropriate variable, the complete Green’s function and the T matrix
can be expressed as single-valued functions (uniformization) in the form of a simple series explicitly written by
the bound and resonant poles: the uniformized Mittag-Leffler expansion. The poles’ symmetries, arising from
the unitarity of the S matrix, impose the series to obey the proper threshold behaviors. We then demonstrate this
method in a model case of a double-channel meson-baryon scattering, with channels, KN (I = 0), and π�(I =
0), by fitting the numerically calculated T matrix with the simple series and comparing the fitted results to the
exact results.

DOI: 10.1103/PhysRevC.102.055201

I. INTRODUCTION

Resonances and threshold behaviors of hadron scatterings
are characteristic nonperturbative phenomena in strong inter-
action physics. From a mathematical perspective, resonances
and hadron scattering processes, threshold behaviors, in par-
ticular, correspond to poles and branch points of an analytic
function, the S matrix. Formally, a resonance is defined by
the pole of the scattering amplitude, A, as a Breit-Wigner
form [1],

A(
√

s) ∼ �R√
s − MR − i �R

2

, (1)

or as a relativistic Breit-Wigner form (e.g., Ref. [2]),

A(s) ∼ MR�R

s − M2
R − iMR�R

, (2)

where s is the center-of-mass energy squared, and MR and
�R are the mass and the width of the resonance, respectively.
These formulas describe observables well if the observed
center-of-mass energy,

√
s, is close to the pole mass, MR, and

is sufficiently distant from the thresholds.
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It is also well known that in the vicinity of the threshold
the imaginary part of the scattering amplitude behaves as

ImA(
√

s) =
{

0 (
√

s < ε1),
ak (

√
s > ε1)

(3)

at the lowest threshold and

ImA(
√

s) =
{

c + ακ (
√

s < εi ),
c + ak (

√
s > εi )

(4)

at higher thresholds [3], where εi is the threshold energy, k
is the momentum in the center-of-mass frame, κ is defined by
k = iκ , and c, a and α are real constants. The interrelationship
between the resonances and the threshold behaviors create
prosperous and sophisticated grounds on hadron physics (e.g.,
Ref. [4]). One typical example is the existence of exotic
hadrons (e.g., Ref. [5]).

Neither the original Breit-Wigner form nor the relativistic
Breit-Wigner form incorporates the proper threshold be-
haviors, making it challenging to extract information on
near-threshold resonances from experimental data. Some
phenomenological attempts have been made to formulate
scattering amplitudes such as Ref. [6], which modifies the
Breit-Wigner form to incorporate both resonance and thresh-
old behaviors:

A(s) ∼ MR
√

�1�2

s − M2
R − iMR(�1 + �2)

, (5)

where �i = giki, ki is the momentum in the center-of-mass
frame, and gi may be considered as the coupling constant
squared for the resonance. In Ref. [6], the imaginary part of
the denominator of Eq. (5) has an opposite sign relative to the
real part. Considering the symmetries of the poles (symmetric
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FIG. 1. Two-body (meson-baryon) scattering process. The circle
represents the two-body T matrix.

about the positive real axis of the s plane), we unified the
notation to Eqs. (3) and (4).

These attempts, however, are far from satisfactory from a
theoretical point of view. In this paper, we propose a novel
approach that naturally and perfectly incorporates both reso-
nance and threshold behaviors in a theoretically sound fashion
based on the analyticity and the unitarity of the S matrix,
particularly in coupled channels.

This project’s eventual goal is to extract information on
near-threshold resonances by applying our method to ac-
tual experimental data. In this paper, however, we apply our
method to the results of a numerically calculated model the-
ory. Since we can precisely calculate the pole energies and
residues within the model theory, we can test our method by
comparing the fitted results to the exact results. The results ap-
plying our method to actual experimental data will be shown
in a subsequent paper.

The study of resonances in coupled channels has a long
history [7]. In particular, the methods of the K matrix [8]
and the dispersion relation [9] have been widely used and
worked out. Our method can be regarded as a variation of the
dispersion relation. It, however, differs in representing the S
matrix (and the Green’s function) as a single-valued function
of a simple variable, called uniformization, which enables us
to incorporate the analyticity and unitarity of the S matrix (the
Green’s function), particularly in coupled channels in a simple
fashion.

II. UNIFORMIZED MITTAG-LEFFLER EXPANSION
OF THE GREEN’S FUNCTION AND T MATRIX

To extract information on resonances from experimental
data, we must link the experimental observables to analytic
functions, such as the T matrix or the Green’s function. Here,
we briefly review their relations and explain our notations
used in the present paper, having in mind the resonances in the
meson-baryon system. The most typical observable to explore
resonances in the meson-baryon system is the meson-baryon
scattering cross section, σ , as shown in Fig. 1. σ is related to
the imaginary part of the T matrix via the optical theorem as

σ ∝ ImT . (6)

We can also think of other observables such as the meson-
baryon invariant or missing-mass distribution, which are
obtained by selecting the meson-baryon channel of interest as
a part of the final states of some reaction experiment as shown
in Fig. 2. The amplitude of the distribution, N , is proportional
to the imaginary part of the Green’s function as [10–12]

N ∝ ImG. (7)

FIG. 2. Diagram for the invariant or missing-mass distribution.
The circles with X’s represent the process which creates (annihilates)
the meson-baryon channel.

Since the full Green’s function, G, the free Green’s func-
tion, G0, and the T matrix, T , are related to each other by the
relation

(8)

the full Green’s function, G, should have the same analytic
structure as the T matrix. The following argument is based
on the analytic structure of Riemann surfaces and can be ap-
plied to either case. For our convenience, we use the Green’s
function in the following discussion.

We start from the spectral representation of the Green’s
function. The Green’s function can be written as the sum
of contributions of the bound states, |φB〉 (s = sB), and the
continuum, |φC〉 (s = sC ), as

G(s) =
∑

B

|φB〉 〈φB|
s − sB

+
∫ ∞

sth

dsC
|φC〉 〈φC |

s − sC
. (9)

This expansion corresponds to the contour shown in Fig. 3,
which detours the branch cuts that run from each threshold to
infinity on the complex s plane.

In general the Green’s function also has resonant poles,
which are located on the unphysical sheets of the complex
s plane. Since the Green’s function on the unphysical sheets
is just an analytic extension of the Green’s function on the
physical sheet, the contribution from a pole on an unphysical
sheet cannot be written in the same manner as the contribution

FIG. 3. The contour corresponding to the spectral representation,
Eq. (9). The contour detours the branch cuts that run along the real
axis.

055201-2



NEW METHOD TO EXTRACT INFORMATION OF … PHYSICAL REVIEW C 102, 055201 (2020)

from the physical sheet as

G(s) �=
∑

B

|φB〉 〈φB|
s − sB

+
∑

R

|φR〉 〈φ̃R|
s − sR

+ . . . , (10)

where sR are the pole positions on the unphysical sheets of
the complex s plane and |φR〉 and |φ̃R〉 are the biorthogonal
state vectors [13]. The information about resonant poles, such
as complex energies or residues, are only implicitly encoded
in the continuum contribution in Eq. (9). To decode the in-
formation about resonant poles, one must consider a different
variable that unfolds the Riemann sheets. This process of
unfolding the Riemann surface is called uniformization [3,14].
Uniformization is essential to treat the bound-state poles and
resonant poles in the same manner.

Before we discuss uniformization in detail, we note an
important property regarding the pole positions and residues
of the S matrix. The S matrix satisfies the condition

S∗({−k∗}) = S ({k}), (11)

where {k} represents the set of channel momenta, that is,
{k} = k in single-channel systems and {k} = k1, k2 in double-
channel systems. From Eq. (11), the poles of the S matrix
(and the Green’s function) are symmetric with respect to the
imaginary axis. Now consider that the Green’s function has
a pole at {k0} with a residue c0. The symmetry properties
imply that there is a pole at {k} = {−k∗

0 }. By keeping in mind
Eq. (11) and the orientation of a contour around {k} = {−k∗

0 },
it can be shown that the residue at {k} = {−k∗

0 } is −c∗
0. To

summarize, the poles of the Green’s function form a symmet-
ric pair about the imaginary axis of k, and the residues of these
symmetric poles are related by the complex conjugate of their
counterparts.

Now let us move on to the details of uniformization.
The appropriate kinetic variable to uniformize the Riemann
surface depends on the number of channels considered. For
single-channel systems, we define a variable q by

q =
√

s − ε2 =
√

ε

μ
k + O(k3), (12)

where ε is the threshold energy and μ is the reduced mass.
q is proportional to the momentum k, at the threshold. The
spectral representation (Fig. 3) corresponds to the contour in
Fig. 4(a). To explicitly write down the contributions from the
resonant poles, we deform the contour into the the unphysical
domain shown in Fig. 4(b).

The contour in Fig. 4(b) picks up contributions from all
the bound and resonant poles so that the Green’s function can
be written by a simple sum formation as the Mittag-Leffler
expansion [15–17],

G(q) =
∑

n

|φn〉 〈φ̃n|
q − qn

. (13)

(The Mittag-Leffler expansion of the Green’s function at finite
temperature is discussed in Ref. [18]).

The advantage of this representation, Eq. (13), is that each
component in the series is explicitly written in a simple form
by the residue and position of the pole. Now by imposing the

FIG. 4. Schematic of the poles and contours on the q plane.
The contour of Fig. 4(a) corresponds to the spectral representation,
Eq. (9) (Fig. 3). By deforming the contour as Fig. 4(b), we obtain the
Mittag-Leffler expansion, Eq. (13).

symmetry condition onto Eq. (13), we can write it in the form
of the sum of contributions from each pair as

G(q) =
∑

n

An(q) =
∑

n

(
cn

q − qn
− c∗

n

q + q∗
n

)
, (14)

where n denotes each pair. One notable point of Eq. (14)
is that by imposing the pole symmetry properties, each pair
contribution naturally behaves in the proper way at the thresh-
olds, except for the positive definite property. The positive
definiteness is satisfied by taking the sum of all pairs. Fun-
damentally, the pole symmetries and the threshold behaviors
both originate from the same condition: the unitarity of the S
matrix.

The imaginary part of An can be written as

ImAn(q) = Im
cn(q + q∗)

|q|2 + qn(q − q∗) − q2
n

. (15)

Under the threshold, q is purely imaginary, and therefore,
the contribution from a pair is identically 0. Right above the
threshold, the pair contributes linearly in terms of q. Thus in
the vicinity of

√
s = ε, the imaginary part of An can be written

as

ImAn(q) =
⎧⎨
⎩

0 (
√

s < ε),

−Im
2cn

q2
n

q + O(q2) (
√

s > ε). (16)

Equation (16) coincides with Eq. (3).
The spectral representation, Eq. (9), is nothing but the un-

subtracted dispersion relation and the integral may not always
converge. In this case, one should replace Eq. (9) with the
corresponding once-subtracted dispersion relation. Then the
Mittag-Leffler expansion differs from Eq. (13) by a constant
[originating from the outer circle in the contour in Fig. 4(b)].
By imposing the unitarity condition, however, the subtraction
constant of the amplitude is fixed real. Thus the imaginary part
of the amplitude will have no such ambiguity and will be the
same as the imaginary part of Eq. (14).

In the case of a double-channel system, the Green’s func-
tion has two branches with branch points at threshold energies
squared, ε2

1 and ε2
2, as shown in Fig. 5. To express the Green’s

function in the form of the Mittag-Leffler expansion, one must
choose an appropriate variable and unfold the four Riemann
sheets [3,14]. The basic strategy is as follows. By the change
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FIG. 5. The contour corresponding to the spectral representation,
Eq. (9), in the case of a double-channel system. The contour detours
two branch cuts that run along the real axis from each threshold, ε2

1

(blue) and ε2
2 (green), to ∞.

of variables, we send one of the branch points to infinity.
Then the structure of the Riemann surface becomes the same
as the single-channel case, which we can easily unfold. The
appropriate variable z is given by

z = 1 + √
u

1 − √
u
, u = q1 − 


q1 + 

, (17)

where qi =
√

s − ε2
i =

√
εi
μi

ki + O(k3
i ) and 
 =

√
ε2

2 − ε2
1.

By the same argument as in the single-channel case, the
Green’s function can be written in the variable z as

G(z) =
∑

n

An(z) =
∑

n

(
cn

z − zn
− c∗

n

z + z∗
n

)
. (18)

We call Eq. (18), the uniformized Mittag-Leffler expansion
(Fig. 6). Note that z → −z∗ when q1 → −q∗

1 and q2 → −q∗
2.

Thus, the same symmetric conditions hold for the poles in the
z plane:

S∗(−z∗) = S (z). (19)

FIG. 6. Schematic of the poles and contours on the z plane. The
contour in (a) corresponds to the spectral representation, Eq. (9)
(Fig. 3). By deforming the contour as in (b), we obtain the uni-
formized Mittag-Leffler expansion.

The threshold behaviors are given in the vicinity of
√

s = ε1

as

ImAn(z) =
{

0 (
√

s < ε1),

−Im
2cn

(zn − i)2

q1



+ O(q2

1 ) (
√

s > ε1)
(20)

and in the vicinity of
√

s = ε2 as

ImAn(z)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Im
2cn

1 − z2
n

− Re
4cnzn(

1 − z2
n

)2

q̃2



+ O

(
q̃2

2

)
(
√

s < ε2),

Im
2cn

1 − z2
n

− Im
2cn

(
1 + z2

n

)
(
1 − z2

n

)2

q2



+ O

(
q2

2

)
(
√

s > ε2),

(21)

where q̃2 is defined by q2 = iq̃2. Equations (20) and (21)
coincide with Eqs. (3) and (4), respectively.

For systems with three or more channels, the Riemann
surface of the Green’s function cannot be uniformized into
a single complex plane. For example, the Riemann surface of
a three-channel system is topologically equivalent to a torus
[3]. In these cases, there is no simple variable to express
the Green’s function in the form of Eq. (13). Nevertheless,
one can unfold a local region which may be sufficient when
considering a particular energy region.

To summarize, by appropriately uniformizing the Riemann
surface, we can expand the Green’s function or T matrix
by the uniformized Mittag-Leffler expansion. The symmetry
conditions on the poles naturally lead to the proper threshold
behaviors.

III. NEW PROPOSAL FOR DETERMINATION
OF COMPLEX RESONANCE ENERGIES

Based on the discussion above that observables can be
expressed as the imaginary part of the sum of all pole terms
in the uniformized complex plane, we propose the following
procedures to extract information on the complex energies
and residues of the resonance poles from observables in a
model-independent manner.

i. Find an appropriate kinetic variable, z, that uni-
formizes the system.

ii. Assume that the amplitude, A(z), whose imaginary
part gives observables such as the cross section, σ ,
and the invariant or missing-mass distribution, N , is
approximated by a few (m) pairs of the pole terms as

A(z) =
m∑

n=1

(
cn

z − zn
− c∗

n

z + z∗
n

)
. (22)

iii. Determine the complex pole positions and residues,
zn and cn, (n = 1, . . . , m), by fitting ImA(z) to the
experimental data, from which the complex energies
and residues of resonances are obtained.

Here, we clarify the reliability of the obtained results. If
one increases the number of pairs of poles in the sum, the
positions of the complex poles and residues, zn and cn, would
change in general. If the fitting is successful, then zn and cn
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FIG. 7. The fitted pole positions of ImT on the z plane when con-
sidering one, two, and three resonant pairs (m = 1, 2, 3). Note that
the fitted pole positions in the upper half-plane almost overlap the
exact positions in the case of m = 2, 3 for the pole near z = 1 (K̄N
threshold) and m = 3 for the pole closer to z = i (π� threshold).

would change little for the poles near the fitting energy region,
while they might change to some extent for the poles away
from the fitting energy region. Besides, the position of the
newly added pair should be most away from the fitting energy
region. Ideally, if this condition is met, one could conclude
that the fitting is successful, and the obtained complex posi-
tions and residues for the poles near the fitting energy region
are regarded as reliable results.

The counterpart of the resonance pole may be very far
from the physical region of interest. Then its contribution is
negligible, and the contribution of the resonance pole alone
gives the threshold behavior in practice. Nevertheless, the
inclusion of the resonance pole’s counterpart does not increase
the number of parameters and, therefore, does nothing wrong.

Also, note that the method is model independent in the
sense that the procedure does not depend on a particular
model. The only necessary information is the channels of the
relevant particles.

IV. RESULTS WITH MODEL THEORY

Here we apply the uniformized Mittag-Leffler expansion
to a model theory and compare the results, pole positions and
residues, to the exact model-calculated results. For the model
theory, we consider a meson-baryon scattering in a chiral-
unitary model [19–22] involving two channels, KN (I = 0)
and π�(I = 0). Since the system is a double-channel system,
the appropriate kinetic variable is given by z in Eq. (17). In
addition to the resonant poles, there is a pole at s = 0 (cor-
responding to two poles z± on the z plane) originating from
relativistic kinematics. Since the s = 0 poles are of kinematic
origin, they do not depend on the interaction strength of the
model,

z± =
√±iε1 + 
 + √±iε1 − 
√±iε1 + 
 − √±iε1 − 


, (23)

where, ε1 = mπ + m� , ε2 = mK + mN , and 
 =
√

ε2
2 − ε2

1.
Details about the numerical calculation of the model and the
s = 0 poles are discussed in the Appendix.

The fitted results are obtained by applying the method
in Sec. III, regarding the numerical model results as virtual
experimental data. We approximated the model-calculated T
matrix by the Mittag-Leffler expansion considering the con-
tributions from m-resonant pairs and the s = 0 poles as

Im T (z) =
m∑

n=1

(
cn

z − zn
− c∗

n

z + z∗
n

)
+

∑
±

d±
z − z±

, (24)

where the fitting parameters are cn, zn, and d± (d± is purely
imaginary). We have four real parameters for each pair of
resonance poles—two for the pole position and two for the
residue—and one for the residue of each kinematical pole
at z±. In the present case, the number of resonant poles in
the neighborhood of the thresholds is known from the model
calculation. There are three resonant pole pairs in the vicinity
of the two thresholds: two pairs on the (−+) sheet of the

√
s

plane and one pair on the (−−) sheet. (The four Riemann
sheets of the

√
s plane can be labeled by the sign of Imqi.

We label the sheets (sgn(Imq1) and sgn(Imq2) [7]). When
fitting actual experimental data, however, the number of poles

FIG. 8. The fitted pole positions of ImT on the
√

s plane when considering one, two, and three resonant pairs (m = 1, 2, 3). (a) The (−+)
sheet; (b) the (−−) sheet. The π� and K̄N labels on the real

√
s axis represent their threshold energies. Note that the fitted pole positions in

the (−+) sheet almost overlap the exact positions in the case of m = 2, 3 for the pole near the K̄N threshold and m = 3 for the pole closer to
the π� threshold.
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TABLE I. Fitted pole positions of ImT for the case of m = 1, 2, 3, and the exact pole positions from the model calculation. The upper
rows list the positions on the z plane (dimensionless), and the lower rows the positions on the

√
s plane (units of GeV).

m = 1 m = 2 m = 3 Exact

Pole: 1, 1∗ ±0.731 + 0.173i ±0.756 + 0.153i ±0.760 + 0.154i ±0.760 + 0.154i
1.435 ∓ 0.014i 1.436 ∓ 0.010i 1.435 ∓ 0.010i 1.435 ∓ 0.010i

Pole: 2, 2∗ ±0.355 + 0.453i ±0.409 + 0.397i ±0.413 + 0.395i
1.362 ∓ 0.069i 1.386 ∓ 0.072i 1.387 ∓ 0.071i

Pole: 3, 3∗ ±1.67 − 1.57i ±1.72 − 1.49i
1.396 ∓ 0.131i 1.407 ∓ 0.127i

that need consideration is unknown. Here, we start by fitting
the exact T matrix in the case of m = 1 and then increase
the number of resonant pairs considered. As we do so, we
presume that the positions of the preexisting pairs will move
toward the exact results, and a new pair is found farther away
from the region of interest. Then, at some point in the process,
all poles in the vicinity of the thresholds would converge and
we can regard these fitted results as the actual pole positions.

Figures 7 and 8 and Table I show the fitted positions of
the resonant poles of the T matrix when considering one, two,
and three resonant pairs, respectively. As expected from the
discussion in the previous paragraph, the fitted pole positions
converge to the exact model-calculated results as we increase
the number of resonant pairs from one to three. When we
increase the number of resonant pairs to four, however, an
overfitting occurs. For now, let us postpone the discussion
of overfitting and consider the case of fitting ImT with three
resonant pairs in more detail.

The fitted results of the imaginary part of the T matrix
are given in Figs. 9–11 and Tables II and III. In Figs. 9–11,

FIG. 9. Exact model results and fitted results of ImT for the
KN − KN component. We also show the contributions from each
pair of poles 1 + 1∗, 2 + 2∗, and 3 + 3∗ and the s = 0 poles for the
fitted ImT . The fitted results are indistinguishable from the exact
model results, exhibiting the validity of our method. The contribu-
tions from the s = 0 poles are insignificant. The specifications are
given.

we plot and compare the fitted uniformized Mittag-Leffler
expansion [Eq. (24)] to the results of the exactly calculated
ImT , in the case of m = 3. The difference between the fitted
results and the exact model results is hardly distinguishable.
Also shown in Figs. 9–11 are the contributions from each
pair of poles and the s = 0 poles. The contribution of the
1 + 1∗ pair explains most of the KN − KN component. For
the π� − KN component, the contribution of the 1 + 1∗ pair
is still the largest, but that of 2 + 2∗ is also considerable. For
the π� − π� component, the contributions of both 1 + 1∗
and 2 + 2∗ are essential, but the latter is larger than the former.
All 1 + 1∗, 2 + 2∗, and 3 + 3∗ pairs contribute above the
KN threshold for the π� − KN and π� − π� components.
The contribution of s = 0 poles is insignificant everywhere
in the range of interest. Thus, even if we do not consider the
contribution from the s = 0 poles, we expect that the fitted
results should hardly change. From the results above, we can
conclude that the poles 1 + 1∗ and 2 + 2∗ explain the peak
structures and 3 + 3∗ gives the background contributions of
the virtual experimental data.

In Tables II, and III, we show the fitted results of the pole
positions and residues of the T matrix in the z plane and√

s plane, respectively. The exactly calculated results in the
model theory are also shown for comparison for poles 1, 2,
and 3. From these results, combined with Figs. 7 and 8, we
can acknowledge that the fitted positions and residues of poles

FIG. 10. The same as Fig. 9, for the π� − KN component.
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FIG. 11. The same as Fig. 9, for the π� − π� component.

agree very well with those of the exact calculation. Pole 1 (1∗)
is located close to the real

√
s axis, and the difference between

the fitted and the exact results is minimal. As the distance from
the real

√
s axis increases, for pole 2 (2∗) and further for pole

3 (3∗), the difference between the fitted and the exact results
widens. However, even for pole 3 (3∗), the difference is still
rather small. We also note that the difference seems to increase
when moving from the complex z plane to the complex

√
s

plane.
As discussed in a prior paragraph, as we increase the num-

ber of resonant pairs to four, an overfitting occurs (Fig. 12).
Instead of locating a new pole farther from the threshold, it
accumulates near the third resonant pair. The overfitting is an
artifactual phenomenon due to the fitting procedure where the
contribution from the third resonant pair will split into two so
that the contribution from the first and second terms amount
to the contribution of the original term. Most likely, one has
to extend the fitting range to obtain a reasonable behavior of
the fourth pair. Thus, in the present case, we decide that it is
sufficient to consider three resonant-pair contributions, which
is inevitably the same as the number of resonant pairs in the
thresholds’ vicinity in the model calculation.

To summarize, the imaginary part of the model-calculated
T matrix can be expressed extremely well with the uni-
formized Mittag-Leffler expansion when considering three

FIG. 12. Overfitting when considering four resonant-pair contri-
butions. The fourth resonant pair accumulates near the third pair, and
its contribution cancels the third contribution, which amounts to the
original third contribution when considering three resonant pairs.

resonant pairs. The fitted poles and residues are in good agree-
ment with the exact model calculations.

V. CONCLUSION

From the results in Sec. IV, we conclude that if experi-
mentalists can provide us with data of sufficient quality and
quantity, we can perfectly reproduce the experimental data
and determine the complex energies and the residues in a com-
pletely model-independent manner. The method accurately
reproduces not only the peak structures but also continuous
spectra with proper threshold behaviors, in a natural way. Re-
alistically, however, the experimental circumstances may not
be perfect. Even in such a situation, the use of the uniformized
Mittag-Leffler expansion would provide us with a framework
which is theoretically more reasonable and practically more
useful than the usual methods in the sense that it automatically
incorporates the proper threshold behaviors.
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APPENDIX: DETAILS OF THE MODEL THEORY

In the model calculation in Sec. IV, we calculated the
T matrix of a two-channel system involving channels of

TABLE II. Fitted results of the pole positions and residues of iT in the z plane. Values in parentheses are the exact model results. Pole
positions are dimensionless and residues have units of fm.

Pole position (z) π� − π� π� − KN KN − KN

Pole: 1, 1∗ ±0.760 + 0.154i −0.901 ± 2.72i −1.56 ∓ 6.52i 11.4 ± 4.79i
(±0.760 + 0.154i) (−0.892 ± 2.72i) (−1.57 ∓ 6.51i) (11.4 ± 4.78i)

Pole: 2, 2∗ ±0.409 + 0.397i 3.27 ∓ 1.99i −2.35 ± 2.41 1.05 ∓ 2.10i
(±0.413 + 0.395i) (3.31 ∓ 1.85i) (−2.41 ± 2.34i) (1.11 ∓ 2.06i)

Pole: 3, 3∗ ±1.67 − 1.57i 6.00 ± 3.94i 4.67 ± 2.31i 2.25 ± 0.461i
(±1.72 − 1.49i) (4.83 ± 3.92i) (3.70 ± 2.30i) (1.95 ± 0.814i)
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FIG. 13. Ladder diagrams taken into account when calculating
the amplitude. The circle represents the complete meson-baryon
vertex. Dashed lines and solid lines with arrows represent the meson
and baryon propagators, respectively.

KN (I = 0) and π�(I = 0) using the chiral-unitary model.
The diagrams taken into consideration are shown in Fig. 13
and the interaction is given by the lowest-order meson-baryon
chiral Lagrangian,

LTW = i
Ci j

4 f 2
(ψφ†) j

←→
�∂ (φψ )i, (A1)

where i and j denote the channels of the particles (in this case
π� or K̄N) and Ci j are the Clebsh-Gordan coefficients. For
the channels of interest, Ci j is given by

Ci j =
⎛
⎝ 3 −

√
3
2

−
√

3
2 4

⎞
⎠,

where i, ( j) = 1 corresponds to K̄N (I = 0), and i, ( j) = 2
corresponds to π� (I = 0).

The basic outline of the calculation follows Ref. [22]. In
this paper, however, we have replaced the Klein-Gordon prop-

agators of the baryons with Dirac propagators. Thus, minor
changes were made in the calculations.

The T matrix of the scattering of channel i → j is given by

T ji = u j (p′
j )
(
�k′

j 1
)
[−(1 − GR(−))−1] ji

(
1
�ki

)
ui(pi ),

(A2)
where  and GR are 4 × 4 matrices, and the u(p)’s are free
Dirac spinors.  is the matrix which characterizes the strength
of the coupling between channels, and GR is the renormalized
one-loop contribution,

 ji = Cji

4 f 2
12×2, GR

ji = δ jiGR
i .

Here we denote the components of GR
i as

GR
i =

(GR
1i GR

0i

GR
2i GR

1i

)
.

The G’s are related to the one-loop contributions with Klein-
Gordon propagators, G’s, as

GR
0i = (�P + Mi )G

R
0i − GR

1i�P,

GR
1i = (�P + Mi )G

R
1i�P − GR

2i,

GR
2i = (P2 − M2

i )GR
1i�P − (�P − Mi )G

R
2i,

where P is the total momentum and Mi is the mass of the baryon in channel i. The G’s are explicitly given by

GR
0i(

√
s) = 2Mi

16π2

{
ai

0(μ) + log
M2

i

μ2
+ m2

i − M2
i + s

2s
log

m2
i

M2
i

+ q̄i√
s

log
φi

++φi
+−

φi−+φi−−

}
,

GR
1i(

√
s) = Mi

16π2

{
ai

1(μ) + log
M2

i

μ2
+ M2

i − m2
i

s
+

(
m2

i − M2
i + s

)2 + 4sq̄2
i

4s2
log

m2
i

M2
i

− q̄i√
s

m2
i − M2

i + s

2s
log

φi
++φi

+−
φi−+φi−−

}
,

GR
2i(

√
s) = 2Mi

16π2

{(
M2

i + m2
i

)(
ai

2(μ) + log
M2

i

μ2

)
+ s

2
− m2

i − 2q̄2
i +

(
M2

i − m2
i

)2

2s

−
(
m2

i − M2
i + s

)[(
m2

i − M2
i + s

)2 − 4s(q̄2
i + 2m2

i )
]

8s2
log

m2
i

M2
i

− q̄i√
s

(
m2

i − M2
i + s

)2 − 4s
(
q̄2

i + 2m2
i

)
4s

log
φi

++φi
+−

φi−+φi−−

}
,

(A3)

where s = P2, q̄i =
√

(s − (Mi + mi )2)(s − (Mi − mi )2)/4s, and φi
±± = ±s ± (M2

i − m2
i ) + 2q̄i

√
s. Mi and mi are the baryon

and meson masses in channel i, respectively. ai
0, ai

1, and ai
2 are the renormalization constants which are determined by the

renormalization condition.

TABLE III. Fitted results of the pole positions and residues of iT in the
√

s plane. Values in parentheses are the exact model results. Pole
positions and residues have units of GeV and fm/GeV, respectively.

Pole position (
√

s) π� − π� π� − KN KN − KN

Pole: 1, 1∗ 1.435 ∓ 0.010i ±31.7 − 10.7i ∓49.9 + 60.2i ∓35.2 − 140.i
(1.435 ∓ 0.010i) (±31.6 − 10.7i) (∓49.7 + 60.2i) (∓35.3 − 140.i)

Pole: 2, 2∗ 1.386 ∓ 0.072i ±1.81 − 12.1i ±1.12 + 10.7i ∓3.02 − 6.90i
(1.387 ∓ 0.071i) (±2.03 − 12.1i) (±1.03 + 10.8i) (∓2.95 − 6.907i)

Pole: 3, 3∗ 1.397 ∓ 0.131i ±18.7 + 55.4i ±18.3 + 38.3i ±12.1 + 14.3i
(1.407 ∓ 0.127i) (±13.0 + 49.8i) (±13.4 + 33.5i) (±9.01 + 15.0i)
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TABLE IV. Parameters used in the model calculation. The baryon and meson masses, M and m, the pion decay constant, f , and the
dimensional regularization parameter, μ, are given in units of GeV. The renormalization parameters, aK̄N and aπ� , are dimensionless and
satisfy the renormalization condition, Eq. (A5).

mK̄ mπ MN M� f μ aK̄N
0 aK̄N

1 aK̄N
2 aπ�

0 aπ�
1 aπ�

2

0.495 0.135 0.938 1.193 0.10377 0.630 −1.87 −1.66 −1.41 −1.95 −1.86 −1.81

By definition, q̄i behaves as O( 1√
s
) as s approaches 0. Observing the explicit form of the G’s given by Eq. (A3), the factors of

qi are always accompanied by a factor of
√

s or 1√
s
, and therefore the G’s will have a pole-type singularity at s = 0. The G’s only

depend on the structure of the propagators and are totally kinematic (all the information on the interaction is contained in matrix
). Thus the T matrix will have poles at s = 0 that are of kinematic origin, which does not depend on the interaction strength.

The T matrix can be expanded in powers of
√

s − M as

T ji = −u j (p′
j )
(
�k′

j 1
)
 ji

(
1
�ki

)
ui(pi ) + u j (p′

j ) jk

[
3

(
MkGR

1k − GR
2k

2Mk

)
(
√

s − Mk )

+ (
4GR

1k + GR
0k

)
(
√

s − Mk )2 + GR
1k

2Mk
(
√

s − Mk )3

]
kiui(pi ) + O(

√
s − M )2, (A4)

where the first and second terms correspond to the tree and one-loop contributions, respectively. Here we set the renormalization
condition so that at the lowest order of

√
s − M, the T ji is the same as the tree contribution, meaning that the loop contributions

should appear from the order of O(
√

s − M )2. By setting the renormalization condition as mentioned, the renormalization
parameters must satisfy the following equation:

2M2
i GR

1i(
√

s = Mi ) − GR
2i(

√
s = Mi ) = 0. (A5)

The parameters used in the numerical calculation are listed in Table IV.
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