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The evolution of nonhydrodynamic slow processes near the QCD critical point is explored with the novel
HYDRO+ framework, which extends the conventional hydrodynamic description by coupling it to additional
explicitly evolving slow modes describing long wavelength fluctuations. Their slow relaxation is controlled by
critical behavior of the correlation length and is independent from gradients of matter density and pressure that
control the evolution of the hydrodynamic quantities. In this exploratory study, we follow the evolution of the
slow modes on top of a simplified QCD matter background, allowing us to clearly distinguish and study, both
separately and in combination, the main effects controlling the dynamics of critical slow modes. In particular, we
show how the evolution of the slow modes depends on their wave number, the expansion of and advection by the
fluid background, and the behavior of the correlation length. Nonequilibrium contributions from the slow modes
to bulk matter properties that affect the bulk dynamics (entropy, pressure, temperature, and chemical potential)
are discussed and found to be small.
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I. INTRODUCTION

Is there a critical point (CP) in the QCD phase diagram
that connects the rapid but smooth crossover between color
confined (hadron gas) and color deconfined matter (quark-
gluon plasma) at small baryon chemical potential μ [1–4] with
a first-order phase transition at large μ [5,6]? Much recent
effort has gone into answering this still unresolved question
[6–18]. One of the most promising suggestions for searching
for signatures of the CP is through critical fluctuations in
relativistic heavy-ion collisions [9,10,12,13,15,16], based on
the idea that near a critical point the correlation length for
fluctuations of the order parameter of the phase transition
should diverge (see, e.g., Ref. [19]). Complications with this
suggestion arise from the fact that the hot and dense QCD mat-
ter created in such heavy-ion collisions evolves very rapidly,
expanding within a time period of several 10 ioctoseconds
from energy densities of up to hundreds of GeV/fm3 to much
less than 1 GeV/fm3 (see, e.g., the reviews [17,20]), giving
those critical fluctuations not enough time to reach thermody-
namic equilibrium [21]. This implies that reliable predictions
of observable fluctuation signatures require complex dynami-
cal simulations of the nonequilibrium dynamics of the critical
fluctuation modes, coupled with a comprehensive dynamical
evolution package for the medium in which these fluctuations
arise [22–33].

We here use the newly developed HYDRO+ framework [28]
to study the coupled dynamics of out-of-equilibrium fluctua-
tions and the bulk hydrodynamic evolution. This is the second
such paper, with the first [18] having studied a slightly simpler
limit in which the CP is close to the temperature axis at

μ= 0, avoiding the need for dynamically evolving also the net
baryon density of the underlying dynamic medium. Here we
consider the more generic and likely situation that the CP, if it
exists, is located a relatively large baryon chemical potential,
�400 MeV [34–36], which requires simultaneous evolution
of the net baryon density and baryon diffusion current of the
expanding fluid.

Although we recently developed the (3+1)-dimensional
BESHYDRO code [37] for this task (see also related work in
Ref. [38]), we will not use it in the present work but rather
replace it by an analytically solvable model, ideal Gubser flow
[39,40], as our background for the nonequilibrium fluctuation
dynamics. As already noted in Ref. [18], the nonequilibrium
evolution of critical fluctuations is affected by several differ-
ent physical mechanisms: (i) the space-time evolution of the
thermodynamic properties of the background fluid; (ii) the ad-
vection of critical fluctuations from the inside to the outside of
the fireball by radial hydrodynamic flow; and (iii) the critical
dynamics of the correlation length for these fluctuations in
fluid cells that pass close to the CP. Using the analytically
known ideal Gubser flow for the hydrodynamic background
allows us to surgically isolate and study these effects both
separately and in combination, without giving up on the si-
multaneous existence of both longitudinal and transverse flow
in the expanding medium, by applying appropriate analytic
manipulations to the background.1 The disadvantage of our

1In Ref. [18], the transverse expansion was modeled numerically
instead of analytically, but this approach cannot easily be generalized
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approach here is that, unlike Ref. [18], it does not allow us
to account for the back-reaction of the nonequilibrium fluctu-
ation dynamics on the underlying medium flow because this
would destroy the Gubser symmetry that enables the analytic
treatment in the first place. Inclusion of back-reaction effects
will therefore be left for a future comprehensive study with
BESHYDRO+, a generalization of BESHYDRO [37] that cou-
ples BESHYDRO to the nonequilibrium evolution of the critical
slow modes discussed in the present paper. However, based
on the findings of Ref. [18] and the results presented here, we
expect these back-reaction effects to be very small and not
of primary phenomenological interest: Even after accounting
for the real QCD CP being located at large nonzero baryon
chemical potential, which alters the critical behavior of the
correlation length and changes the space-time evolution of the
equilibrium values and relaxation rates of the critical fluctua-
tions, we still find back-reaction effects that are never larger
than ≈10−4 times the background hydrodynamic fields.

The paper is organized as follows: We start by briefly
reviewing in Sec. II the dynamics of hydrodynamic fluctu-
ations, specifically that of the slowest mode near the QCD
critical point, following the HYDRO+ [28] and “hydro-kinetic”
[41] approaches. In Sec. III, we summarize the corrections
to the bulk properties of the system that are induced by the
nonequilibrium evolution of the slow fluctuating degrees of
freedom [28] and describe their computation at nonzero net
baryon density. Details of the dynamical setup used in this
work are specified in Sec. IV. Section V is the heart of this
paper: By studying various simplified limits of the expansion
of the underlying thermalized medium in which the slow
modes are allowed to evolve, we are able to isolate and discuss
separately the effects of expansion, advection, and critical
correlations on the fluctuation dynamics, before studying their
combined effects in a more realistic model where the medium
expands both longitudinally and transversally according to
ideal Gubser flow [39,40]. We discuss the radial and temporal
profiles of the slow modes as a function of their wave number
Q and study their combined effect on the total entropy content
of the expanding fireball. Our key findings are summarized
in Sec. VI. The present work focuses on identifying the dif-
ferent mechanisms affecting the dynamics of slow fluctuation
modes near the critical point and discussing their interplay in
an analytical model for the fireball expansion (ideal Gubser
flow) that incorporates crucial features of realistic heavy-ion
collision dynamics. A full (3+1)-dimensional study without
simplifying geometrical and dynamical assumptions that, in
addition, fully includes the back-reaction of the slow-mode
dynamics on the bulk evolution is left for the future. The
validation of the (3+1)-dimensional BESHYDRO+ code de-
veloped in this work that will be used in this future analysis is
documented in the Appendix.

In this work, we use a metric gμν with negative signature
as well as natural units where h̄ = c = 1.

to large nonzero net baryon density short of developing a comprehen-
sive (3+1)-dimensional hydrodynamic approach such as BESHYDRO

[37].

II. FLUCTUATION DYNAMICS

After briefly discussing hydrodynamic fluctuations and
their correlations in Sec. II A, we focus in Sec. II B on the
equilibrium value of the slowest mode near the QCD critical
point. Out-of-equilibrium fluctuations and their equations of
motion are studied in Sec. II C, where we also compare the
different models used in this work with each other and with
those introduced in Refs. [18,28,41].

A. Hydrodynamic fluctuations

We begin by introducing one- and two-point functions
of hydrodynamic quantities, following the treatment in
Refs. [28,42,43]. One-point functions of hydrodynamic quan-
tities �m(t, x) are denoted as 〈�m(t, x)〉, where m labels
energy density, net baryon density, components of the flow
velocity, etc., and 〈. . . 〉 indicates the ensemble average over
the classically statistically fluctuating thermal ensemble de-
scribing the fluid cell at point (t, x). The ensemble-averaged
quantities 〈�m(t, x)〉 vary only slowly with x on a scale of
inhomogeneity � and evolve deterministically according to
hydrodynamic evolution equations [28,42,43].

Next we define equal-time two-point functions [also re-
ferred to as (equal-time) correlation functions or correlators]
in the local fluid rest frame (LRF),2

Gmn(t, x1, x2) = 〈δ�m(t, x1)δ�n(t, x2)〉
≡ 〈�m(t, x1)�n(t, x2)〉

− 〈�m(t, x1)〉〈�n(t, x2)〉 , (1)

where

δ�m(t, x) ≡ �m(t, x) − 〈�m(t, x)〉 (2)

are the fluctuations of �m(t, x) [28,42,43]. In this paper, our
interest will focus on the “slowest critical mode” [28], i.e.,
the slowest evolving correlator associated with critical fluctu-
ations near the QCD critical point, and therefore we mostly
suppress the matrix subscripts m, n from here onward.

Expressing the correlator (1) as a function of the midpoint
x ≡ (x1+x2)/2 and separation �x ≡ (x1−x2), we can write

G(x,�x) = 〈
δ�

(
t, x+ 1

2�x
)
δ�

(
t, x− 1

2�x
)〉
, (3)

where x ≡ (t, x) [28,42,43]. (Remember that �x is the two-
point separation in the LRF.)

The following discussion relies on a separation of scales
between the (microscopic) correlation length ξ and the
(macroscopic) hydrodynamic (in)homogeneity length �: As-
suming that approximate thermal equilibrium is reached
over regions of size � (i.e., a length scale over which the
macroscopic hydrodynamic quantities can be considered ap-
proximately constant), this length � will also define the range

2In expanding fluids, the LRF is a function of space and time,
and formulating the equal-time condition in the LRF covariantly
requires some care [42,43]. We will write the equal-time (in the LRF)
correlators noncovariantly, using LRF coordinates. For a covariant
treatment, see Ref. [42,43].
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of x over which G(x,�x), considered as a function of the
midpoint coordinate, will vary appreciably. As a function of
the separation �x, on the other hand, the correlator G(x,�x)
typically falls off exponentially, with the decay length given
by the correlation length ξ . We will follow Refs. [28,42,43]
and assume ξ � �, i.e., G(x,�x) varies much more rapidly
with �x than with x. In this so-called thermodynamic limit
V ∼ �3 � ξ 3, the fluctuations are small and their probability
distribution is approximately Gaussian, a fact which will be
used for calculating the equilibrium value of the correlators
[28,44] [cf. Eq. (8) below].

Given the scale separation ξ � �, it is convenient to in-
troduce the mixed Fourier transform (i.e., Wigner transform)
with respect to the separation vector �x for the correlator
[28,42,43]:

WQ(x) =
∫

d3(�x) G(x,�x) eiQ·�x

=
∫

�x

〈
δ�

(
t, x+1

2
�x

)
δ�

(
t, x−1

2
�x

)〉
eiQ·�x. (4)

WQ(x) can be thought of as a mode distribution function, sim-
ilar to the particle phase-space distribution function f (x, Q)
in kinetic theory, where the mode index Q specifies the wave
vector of the mode in the LRF [28].3 The scale separation
implies an infrared momentum cutoff for Q: �−1 � Q ∼ ξ−1,
with Q being the magnitude of Q (see Sec. II C).

B. Equilibrium fluctuations

In the HYDRO+ framework [28], attention is focused on the
most slowly evolving correlator associated with critical fluc-
tuations. Near the QCD critical point, Ref. [28] identifies the
slowest mode as the diffusion of fluctuations in the entropy per
baryon at fixed pressure, δ(s/n).4 In this work, we consider a
special partial-equilibrium state where, except for the slowest
mode, all other fluctuations have achieved a sufficient degree
of local equilibrium on length scales � [28] so that they can
be described by dissipative fluid dynamics. Since the slowest
mode needs more time to thermalize, it will be described
dynamically. This special case captures the situation near a
critical point where the correlation length ξ becomes large and
the relaxation rates for different fluctuation modes, scaling
with different critical exponents, are suppressed by different
powers of ξ .

The relaxation rate for δ(s/n) satisfies �Q ∝ (λT /cp) Q2,
with Q being the wave number [28,41]. δ(s/n) is the slowest
critical mode near the QCD critical point since the heat capac-
ity cp is the most rapidly divergent equilibrium susceptibility,
diverging quadratically with the correlation length, cp ∝ ξ 2,
while the heat conductivity λT in the numerator diverges only

3As shown in Refs. [28,42], a specific linear combination of the
matrix elements W mn

Q (x) can be identified with the phase-space distri-
bution function of phonons with momentum Q at point x and shown
to satisfy a Boltzmann equation.

4As shown in Refs. [28,41], the fluctuation of s/n is a diffusive
eigenmode of linearized hydrodynamics whose evolution decouples
from that of other hydrodynamic fluctuations.

linearly, λT ∝ ξ (see, e.g., Refs. [28,43]). Thus, the relaxation
rate for Q ∼ ξ−1 is �ξ ∝ ξ−3, which is the most strongly
suppressed relaxation rate of all critical modes. Consequently,
the specific entropy fluctuations δ(s/n) are the first to fall out
of equilibrium when the system passes through the critical
region [41].

δ(s/n) can be written in terms of the fluctuations of the
hydrodynamic variables δ�m(x), and its correlator

φQ(x) ∼
∫

�x

〈
δ

s

n

(
t, x+1

2
�x

)
δ

s

n

(
t, x−1

2
�x

)〉
eiQ·�x (5)

is therefore some combination of the matrix elements W mn
Q (x).

The normalization of φQ is irrelevant [see discussions after
Eq. (22)] and therefore left arbitrary. φQ are the nonhydrody-
namic slow degrees of freedom (d.o.f.) near the QCD critical
point, added in HYDRO+ as additional dynamical variables
[28].5 In Sec. III, we will see how these additional d.o.f.
affect the bulk properties of the system, e.g., its entropy and
pressure.

Due to the separation of scales �−1 � Q ∼ ξ−1, the values
of the hydrodynamic fields e, n, uμ are approximately constant
over the range |�x| � 1/|Q| over which the integral (5) re-
ceives nonvanishing contributions, and the spatial correlator in
the integrand can be taken as approximately translation invari-
ant. Assuming also spatial isotropy in the local rest frame, this
implies [28] that the dependence of the equilibrium correlator
φ̄Q on Q and ξ involves only the magnitude Q = |Q| and must
enter in the critical regime near the critical point through a
universal scaling function f2,

φ̄Q =
∫

�x

〈
δ

s

n
(�x)δ

s

n
(0)

〉
eiQ·�x (6)

= φ̄0 f2(Qξ,�), (7)

where � = �(e, n) is a scaling variable [28] and both sides
of the equation (although not explicitly indicated) depend on
the position x = (t, x) through the local values of e and n.
The equilibrium value φ̄0 of the static mode is obtained as
the Q → 0 limit (the hydrodynamic limit) of the first of these
equations [Eq. (6)],

φ̄0(x) = V
〈(

δ
s

n
(x)

)2〉
= cp

n2
(x) , (8)

where the homogeneity volume around the point x, V ∼ �3,
arises from integrating out �x in Eq. (6) and then using the
Gaussian probability distribution of fluctuations in the ther-
modynamic limit [28,44]. Here, the heat capacity at constant
pressure cp is given by [41]

cp = nT

(
∂ (s/n)

∂T

)
p

. (9)

The scaling function is normalized to f2(0,�) = 1. We fol-
low Ref. [28] and neglect its � dependence, f2(Qξ,�) →

5Even though they represent the fluctuations of the single ther-
modynamic field s/n, we refer to them in the plural as critical
slow modes since they are labeled by a continuous spectral index
Q representing their wave number in the LRF.
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f2(Qξ ), and assume f2 to have the Ornstein-Zernike form
[19]6

f2(x) = 1

1 + x2
. (10)

With the simplifications made above, the full Q and ξ depen-
dence of the equilibrium value of the slow mode is given by

φ̄Q = φ̄0 f2(Qξ ) =
[

cp,0

n2

(
ξ

ξ0

)2] 1

1 + (Qξ )2
; (11)

here cp,0 denotes the “noncritical” value of the heat capacity
in a system with “noncritical correlation length” ξ0. Far away
from the critical point when ξ → ξ0 � Q−1, the mode spec-
trum (11) becomes independent of Q and reduces to Eq. (8).

Equations (7) and (10) show that in thermal equilibrium
the shape of the spectrum φQ of critical slow modes (i.e., their
dependence on the wave number Q) is controlled by the evo-
lution of the correlation length ξ [through f2(Qξ )] as the fluid
cell x passes through the critical region of the phase diagram.
In addition to the Q dependence, the critical behavior of ξ also
affects the zero mode φ̄0 in Eq. (8) through the critical growth
of the heat capacity cp ∝ ξ 2. Note that the critical behavior
of cp near the QCD critical point is different from that of the
specific heat (at fixed volume) cV in the 3D Ising model. The
latter diverges as ξα where the critical exponent is α ≈ 0.11.
In contrast, since the order parameter field at the QCD critical
point is a linear combination that includes a baryon density
component, cp diverges more strongly, as ξ 2 (see, for example,
Sec. II B of Ref. [41] for more details).

C. Nonequilibrium fluctuations

Through its dependence on the local hydrodynamic
variables, the equilibrium mode spectrum φ̄Q evolves dynam-
ically. Expansion of the fluid on the macroscopic scale drives
both the background fluid and the slow mode spectrum out of
thermal equilibrium while microscopic interactions push the
system back toward (a modified) local equilibrium state. The
evolution of the dissipative nonequilibrium corrections to the
hydrodynamic variables is handled by viscous fluid dynamics;
here we discuss the out-of-equilibrium evolution of the critical
slow modes.

The authors of Ref. [28] first introduced a set of relaxation
equations for these modes (which they called “fluctuation
kinetic equations” or briefly “kinetic equations;” see also
Ref. [42]) using an educated ansatz that was later refined in the
form of so-called “hydro-kinetic equations,” derived within
the “hydro-kinetic approach” to fluctuating hydrodynamics
[41,43,45], first in the hydrodynamic regime (Q � ξ−1) and
then generalized to the scaling regime near a critical point
(ξ−1 � Q � �−1

0 , where �0 is a microscopic length scale, e.g.,
�0 ∼ 1/T in a conformal system). By interpolating between
these two regimes, they could also cover the region Q ∼ ξ−1.

6In Refs. [18,41], the function is taken as 1/(1 + x2−η ), where η is
a critical exponent (≈0.036 in the 3D Ising model). Here we set it to
zero for simplicity as was also done in Refs. [18,28,41].

For completeness, we here briefly summarize the results of
[41], calling the slow-mode evolution equations simply their
“equations of motion.”

1. Dynamics in the hydrodynamic regime

In the hydrodynamic regime (Q � ξ−1), slow-mode dy-
namics is governed by the relaxation equations [28,41]

DφQ = −�Q (φQ − φ̄0) , (12)

where D ≡ uμdμ (with dμ denoting the covariant derivative
which reduces to a simple partial derivative for scalar fields
such as φQ) is the LRF time derivative7 and φ̄0 (i.e., φ̄Q in
the hydrodynamic limit) is given by Eq. (8). The Q-dependent
relaxation rate �Q takes the form [28,41]

�Q ≡ 2DpQ2 = 2

(
λT

cp

)
Q2 , (13)

where the factor 2 arises from the fact that this describes
the relaxation of a two-point function and Dp is a diffusion
coefficient, related to the thermal conductivity λT though the
Wiedemann-Franz type of relation, Dp = λT /cp, consistent
with the expectation that the relaxation rate is proportional to
the transport coefficient (λT ) over the susceptibility (cp). Note
that Eq. (13) is the equilibrium value of the relaxation rate
[18] and ignores off-equilibrium corrections to the relaxation
process [41].

A few comments are in order here. First, when the system
evolves, the relaxation of the slow modes (originally from the
fluctuations of entropy per baryon, both conserved quantities
in an ideal fluid) requires transport of conserved quantities
through diffusion [42]. This explains why the equilibration
rate for φQ is proportional to the diffusion coefficient Dp.
Second, since the relaxation is through diffusive processes,
the relaxation rate is proportional to Q2. Third, in the hydro-
dynamic regime Q � ξ−1, φQ relaxes for all wave numbers Q
to the static (Q = 0) equilibrium value φ̄0.

As observed in Ref. [41], since the equilibrium value φ̄0

evolves as Eq. (8) when the system evolves, its fractional
change per unit time is controlled by the scalar expansion rate
θ of the system,

θ ≡ dμuμ = ∂μuμ + �λ
λμuμ , (14)

where �λ
λμ are the Christoffel symbols [46]. Deviations from

the equilibrium value, on the other hand, decay with the relax-
ation rate �Q ∝ Q2; i.e., short wavelength modes equilibrate
faster than long wavelength modes. For any given wave num-
ber Q, the dynamics of φQ thus results from the competition
between the expansion of the system (controlled by the expan-
sion rate θ of the background fluid) and the relaxation of the
slow modes (controlled by the relaxation rate �Q), and there
should exist a (dynamical) wave-number scale Qneq, which

7Note that D is the LRF time derivative at fixed wave number Q in
the LRF. In fully covariant notation, this constraint requires replacing
the covariant derivative by the “confluent derivative” [42,43] (see
also footnote 2).
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separates approximately thermalized fluctuation modes from
those that strongly deviate from equilibrium [41].

This competition between expansion and relaxation to-
ward equilibrium is generic and persists in the critical scaling
regime near the critical point, as will be seen formally in the
following subsection and studied numerically in Sec. V. To
characterize this competition quantitatively it is convenient to
introduce the “critical Knudsen number” for the slow modes
as the ratio between the scalar expansion and relaxation rates:

Kn(Q) ≡ θ/�Q . (15)

Slow modes with large critical Knudsen numbers will lag
behind, not being able to follow the hydrodynamic evolution
of the equilibrium value φ̄Q(x). Very roughly, the scale Qneq

defined in the preceding paragraph should correspond to crit-
ical Knudsen numbers of order 1.

2. Dynamics in the scaling regime

To extend the slow-mode evolution equation (12) from
the hydrodynamic regime Q � ξ−1 to the scaling regime
ξ−1 � Q � �−1

0 (including the transition region Q ∼ ξ−1) we
generalize it [41] by replacing on the right-hand side the equi-
librium value φ̄0(x) for the zero mode without critical scaling
by the Q-dependent equilibrium value φ̄Q(x) from Eq. (11),

DφQ = −�Q (φQ − φ̄Q) , (16)

and the relaxation rate �Q by the ξ -dependent expression

�Q = �ξ f� (Qξ ), (17)

where

f� (Qξ ) ≡ (Qξ )2[1 + (Qξ )2], (18)

�ξ ≡ 2

(
λT

cp,0ξ 2

)(
ξ0

ξ

)2

. (19)

The factor (ξ0/ξ )2 in (19) accounts for the critical scaling of
cp; the extra factor 1/ξ 2 in (19) compensates with a factor ξ 2

in f� such that f�/ξ 2 → Q2 in the hydrodynamic limit Q �
ξ−1. Equations (16)–(19) reduce to Eqs. (12) and (13) in the
hydrodynamic limit ξ → ξ0 � Q−1. Note that the factor Q2 in
Eqs. (13) and (18) strongly reduces the thermalization rate for
slow modes with small wave numbers Q � ξ−1, even without
critical enhancement of the correlation length. In the critical
region, where ξ becomes large, the ξ dependence of �ξ in
(19) causes additional “critical slowing down” of relaxation
processes even for modes with more typical wave numbers
Q ∼ ξ−1: �ξ ∝ ξ−z with critical exponent z = 4.

This model for the evolution of the critical slow modes
agrees with the one derived in Refs. [28,41] and recently
studied in Ref. [18] up to the following differences: First,
the authors of Ref. [28] formulate the slow-mode evolution
equation (16) in terms of a relaxation rate �Q that differs from
the one used here and in Refs. [18,41] by a factor φQ/φ̄Q

(which approaches unity in equilibrium). Second, the assumed
scaling behavior with the correlation length ξ depends on the
assumed universality class of the critical point: Following the
classification of Ref. [19], Ref. [18] uses “model A”, Ref. [41]
and the present work use “model B,” while Ref. [28] uses

“model H.” Let us briefly summarize the differences in the
dynamical critical exponent z introduced above and in the
shape of the scaling functions f� (Qξ ) resulting from these
model choices.

Reference [18] studies dynamics at μ ≈ 0 where the order
parameter is the nonconserved chiral condensate (model A).
Reference [41] and this work place the critical point at large
nonzero μ but ignore the critical behavior of λT (model B).
Model H, used in Ref. [28], correctly describes the dynam-
ical universality class of the QCD critical point, where the
order parameter is a combination of the chiral condensate and
baryon density.

(1) Model A has z = 2, �Q = �ξ f� (Qξ ) ∝ ξ−z · C ∝
ξ−z when Q � ξ−1, and �Q ∝ ξ−z · (Qξ )z ∝ Qz when
Q � ξ−1.

(1) For model B z = 4, �Q = �ξ f� (Qξ ) ∝ ξ−z · (Qξ )2 ∝
Q2ξ 2−z when Q � ξ−1, and �Q ∝ ξ−z · (Qξ )4 ∝
Q4ξ 4−z when Q � ξ−1.

(3) Finally, in model H z = 3, �Q = �ξ f� (Qξ ) ∝ ξ−z ·
(Qξ )2 ∝ Q2ξ 2−z when Q � ξ−1, and �Q ∝ ξ−z ·
(Qξ )3 ∝ Q3ξ 3−z when Q � ξ−1.8

In this exploratory study, we follow Ref. [41] and use
model B, but it would be straightforward to implement model
H instead. In contrast to model A, these two models both
feature a Q-dependent slow-mode relaxation rate �Q ∝ Q2

which delays the relaxation of low-Q modes.
To summarize, the dynamics of the slow modes in our

work is given by Eqs. (11) and (16)–(19). Our slow mode
is the diffusion of fluctuations in entropy per baryon at con-
stant pressure, δ(s/n); this agrees with Ref. [28] and, up to
a normalization factor, with Ref. [41] [whose authors studied
n δ(s/n)], whereas the authors of Ref. [18] studied diffusion
of fluctuations in the chiral condensate. Our work differs from
Ref. [28] by using model B instead of model H for the relax-
ation rate �Q of specific entropy fluctuations, while Ref. [18]
uses model A for the relaxation rate of chiral fluctuations.
Model differences exist also outside the critical region where
Ref. [18] uses a constant relaxation rate �0 while we follow
Ref. [41] and set it proportional to λT /cp; Ref. [28] uses the
simplified prescription Dp = λT /cp = T/(6πηξ0).

A final difference arises from the fact that Ref. [41] ignores
advection by setting the fluid velocity to zero while we and
Ref. [18] include advection effects arising from the fluid’s ex-
pansion in the dynamics of the slow modes. The competition
between growth of critical fluctuations near the critical point
and advection from hydrodynamic expansion of the fluid will
be studied in Sec. V.

8Reference [28] uses the Kawasaki function [47] for
f� (Qξ ) according to mode-coupling theory, K (x) = 3

4 [1 +
x2 + (x3−x−1) tanh−1(x)], where K (x) → x2 for x � 1 and
K (x) → (3π/8)x3 for x � 1. For x � 1, K (x) has the same
limit as f� (x) in Eq. (18) but the two disagree in the opposite limit
x � 1 limit (see Fig. 1).
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FIG. 1. Comparison between the function f� (Qξ ) (18) and the
Kawasaki function defined in footnote 8. Large-Q modes relax faster
with f� than with K .

III. PARTIAL-EQUILIBRIUM EQUATION OF STATE

We now discuss the influence (“back-reaction”) of the
critical slow modes, whose evolution was discussed in the
preceding section, on the background fluid, through the equa-
tion of state (EoS). The slow modes carry energy and entropy
and thus contribute to the pressure of the system by adding
to the thermal equilibrium values of these quantities in the
background fluid. The resulting “partial-equilibrium EoS” or
“quasiequilibrium EoS” is a central ingredient of HYDRO+
[28].

The slow modes add new, nonequilibrated degrees of
freedom to the quantum states of the system. Denoting the
complete-equilibrium entropy density of the d.o.f. describing
the hydrodynamic background fluid by s(e, n) and additional
entropy density contributed by the additional nonequilibrated
d.o.f. as �s, the partial-equilibrium entropy density can be
written as

s(+)(e, n, φ) ≡ s(e, n) + �s(e, n, φ) = log �(e, n, φ) , (20)

where �(e, n, φ) is the number of quantum states of the
system with (e, n, φ).9�s is always negative and describes
how much entropy the state with nonequilibrium fluctuations
or correlations is missing compared to a state in which the
fluctuations are completely equilibrated [28]. When φ relaxes
to its equilibrium value φ̄(e, n), the entropy s(+) should also
approach its maximum value s(e, n):

max s(+)(e, n, φ) = s(+)(e, n, φ̄) = s(e, n) . (21)

In principle, the equilibrium entropy s(e, n) should include
the thermodynamic behavior near the critical point. In past
work, however, which mostly ignored the back-reaction of the
off-equilibrium fluctuations on the partial-equilibrium EoS,
the critical scaling properties near the critical point were also
ignored in the complete-equilibrium EoS.

9Here φ is short for the mode spectrum φQ.

FIG. 2. Illustration of the contribution �sQ to the entropy density
by a single slow mode with wave number Q (x ≡ φQ/φ̄Q). �sQ is
negative whether φQ is below or above its equilibrium value [cf.
Eq. (22) below].

The slow-mode contribution to the partial-equilibrium en-
tropy density10 is given explicitly by [28]

�s(e, n, φ) ≡
∫

dQ �sQ

=
∫

dQ
Q2

(2π )2

[
log

φQ

φ̄Q(e, n)
− φQ

φ̄Q(e, n)
+ 1

]
,

(22)

where the local equilibrium value φ̄Q of the slow mode φQ

is determined by the local values of e and n [see Eq. (11)]
and we used local isotropy to simplify the integration measure
(the factor 1

2 arises from φ being related to the width of the
fluctuations [28])

1

2

∫
d3Q

(2π )3
= 1

2

∫
4πQ2dQ

(2π )3
=

∫
Q2dQ

(2π )2
. (23)

Equations (16) and (22) show that (for purpose of calculat-
ing the back-reaction) the normalization of φ̄Q is irrelevant
since only the ratio φQ/φ̄Q appears. The normalization of
φ̄Q controls the magnitude of the contribution of the critical
fluctuations to any fluctuation observable, but we shall not
compute such observables here. The function in square brack-
ets, log(x) − x + 1, and hence the nonequilibrium entropy
correction (22) is negative semidefinite and plotted in Fig. 2
for illustration. In the derivation of Eq. (22), |�s| is assumed
to be much smaller than s. Therefore, s(+) remains positive
definite within the domain of the applicability of Eq. (22).
Note also that in deriving this expression [28] the separation
of scales �−1 � Q was used and only the contribution of the
slowest mode to �s was included.

The off-equilibrium contribution from the slow mode to the
entropy density s(+) modifies the pressure to p(+), given by the

10In natural units h̄ = c = 1, �s has units of [fm−3] while �sQ has
units of [fm−2].
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generalized thermodynamic relation [28]

s(+) = β(+) p(+) + β(+)e − α(+)n , (24)

with modified inverse temperature and chemical potential de-
fined by

β(+) =
(

∂s(+)

∂e

)
nφ

≡ 1

T
+ �β ,

α(+) = −
(

∂s(+)

∂n

)
eφ

≡ μ

T
+ �α , (25)

where the corrections are

�β ≡
(

∂�s

∂e

)
nφ

, �α ≡ −
(

∂�s

∂n

)
eφ

. (26)

Solving Eq. (24) for p(+) ≡ p + �p [where s = β(e+p) − αn
with β ≡ 1/T and α ≡ μ/T ], one finds

�p = [−(e+p)�β + n�α + �s]/β(+), (27)

with �β and �α given by [using Eqs. (22) and (26)]

�β =
∫

dQ
Q2

(2π )2

φQ − φ̄Q

(φ̄Q)2

(
∂φ̄Q

∂e

)
n

,

�α = −
∫

dQ
Q2

(2π )2

φQ − φ̄Q

(φ̄Q)2

(
∂φ̄Q

∂n

)
e

. (28)

Using φ̄Q from Eq. (11) and defining the dimensionless
quantities ˜̄φ0 = φ̄0/fm3 and ξ̃ = ξ/fm, we find the following
expressions for the two derivatives of φ̄Q:(

∂φ̄Q

∂e

)
n

=
[(

∂ log ˜̄φ0

∂e

)
n

− 2 Qξ f2(Qξ )

(
∂ log ξ̃

∂e

)
n

]
φ̄Q ,

(
∂φ̄Q

∂n

)
e

=
[(

∂ log ˜̄φ0

∂n

)
e

− 2 Qξ f2(Qξ )

(
∂ log ξ̃

∂n

)
e

]
φ̄Q , (29)

where, for a given EoS, the two derivatives of log ˜̄φ0 can
be calculated from φ̄0 = cp,0/n2(ξ/ξ0)2 and do not depend
on Q, and the two derivatives of log ξ̃ only depend on the
parametrization of the equilibrium correlation length ξ . The
shifts in temperature and chemical potential are obtained by
plugging the expressions (29) into Eqs. (28).

In this work, we focus on the nonequilibrium slow-mode
correction �s (22) to the entropy density as a proxy for esti-
mating the expected size of back-reaction effects on the bulk
hydrodynamic evolution. More precisely, such hydrodynami-
cal effects would be driven by the gradients of the modified
pressure p(+) = (s(+) + α(+)n)/β(+) − e [see Eqs. (24) and
(25)]. We expect the fractional nonequilibrium slow-mode
corrections to the entropy density and pressure gradients to
be of similar orders of magnitude.

IV. SETUP OF THE FRAMEWORK

We now describe our HYDRO+ setup as executed in this pa-
per. Similarly to Ref. [18], we explore a simplified expansion
geometry (boost-invariant longitudinal coupled to azimuthally
symmetric transverse expansion), but with an analytic solu-
tion for the hydrodynamic expansion of the hydrodynamic

background (ideal Gubser flow) rather than the numerical
solutions studied in Ref. [18]. The analytic background flow
facilitates the study of the slow-mode evolution, for which
we explore a different scenario than in Ref. [18] by moving
the critical point away from the temperature axis to a region
of non-negligible net baryon density. We thus explore a sit-
uation with a different critical scaling behavior than the one
studied in Ref. [18], and we include finite net baryon density
effects in the computation of the contribution to the entropy
density caused by off-equilibrium critical fluctuations. Un-
like Ref. [18], we here ignore the back-reaction of the slow
modes on the dynamical evolution of the background fluid.
For the specific expansion geometry studied in Ref. [18],
the authors found very small back-reaction corrections to the
background evolution. In this work, we confirm that also for
the (ideal) Gubser flow studied here the off-equilibrium slow-
mode contribution �s to the entropy density is generically
small [�s/s ∼ O(10−5–10−4)], so we expect similarly small
modifications to the background flow caused by them. A full
(3+1)-dimensional simulation that includes both dissipation
and back-reaction from critical fluctuations in the evolution of
the fluid medium is in progress and will be reported elsewhere.

We start by supplying in Sec. IV A the necessary
parametrizations of the correlation length ξ , heat conduc-
tivity λT , and specific heat capacity cp,0, which control the
relaxation dynamics of the critical slow modes. In Sec. IV B,
we briefly review for completeness the hydrodynamic evo-
lution equations for the background fluid undergoing ideal
Gubser flow. In Sec. IV C, we show how to evaluate the
off-equilibrium slow-mode correction �s to the entropy den-
sity on an isothermal hypersurface � within Gubser flow;
this lays the groundwork for future computations of a full
set of hydrodynamic observables including nonequilibrium
slow-mode corrections on the freeze-out hypersurface of a
heavy-ion collision.

A. Parametrization

At finite net baryon density, one should expect the equi-
librium correlation length to be a function of both e and n,
ξ (e, n). For our exploratory study, we take it as a function
of temperature only (i.e., we neglect its dependence on the
baryon chemical potential μ).11 We explore two parametriza-
tions: First, we consider the form used in Ref. [18],

ξ (T ) = ξ0{
tanh2

( T −Tc
�T

)[
1 − (

ξ0

ξmax

)4] + (
ξ0

ξmax

)4}1/4 , (30)

with parameters

Tc = 160 MeV, �T = 0.4 Tc, ξ0 = 1 fm, ξmax = 3 fm.

(31)

11Note that in the context of the present work this does not imply
that we cannot simulate the effects of a critical point, situated at a
unique location (Tc, μc ) in the temperature-chemical potential plane:
The specific background flow assumed in this work (ideal Gubser
flow) will be seen to evolve at constant μ/T , and we will simply as-
sume that the critical point lies on that trajectory, i.e., μ/T = μc/Tc.
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(a) (b)

FIG. 3. (a) Parametrization of the equilibrium correlation length ξ (T ) according to Eqs. (30) (solid blue [18]) and (32) (dashed black). The
horizontal dashed line indicates the background correlation length ξ0 = 1 fm far away from the critical point. The inset plot shows the derivatives
of ξ (T ) with respect to T . (b) Time evolution of the equilibrium correlation length ξ (T (τ )) for ideal Bjorken flow with T (τ ) = T0(τ0/τ )1/3,
where τ0 = 1 fm, for two choices of T0 as indicated in the legend. Solid and dashed lines refer to the corresponding equilibrium parametrizations
in panel (a).

Without the cutoff ξmax � ξ0, this parametrization gives ξ ∝
|T − Tc|−1/2 for small |T − Tc| as motivated by mean field
theory [18]. We here cut off this singular growth at ξmax =
3 fm but in such a way that the first derivative of ξ (T ) still
changes very rapidly near T = Tc [see inset in Fig. 3(a)]. Note
that our �T is twice that used in Ref. [18], to avoid the special
treatment found necessary in Ref. [18] to deal with very sharp
peaks in the correlation length. While general arguments say
that the equilibrium value of ξ should diverge at Tc, in an
expanding system the actual correlation length will always
remain finite due to critical slowing down [21]. Regulating the
critical divergence of the equilibrium correlation length at Tc

as done in Eq. (30) should therefore not make much of a dif-
ference in practice. However, Eq. (30) leads to large temporal
gradients ∂t φ̄Q/φ̄Q, resulting from large derivatives dξ/dT ,
near T = Tc. To explore their importance for the dynamics,
we also study a second parametrization ξ ′(T ) which does not
share this feature,

ξ ′(T ) = ξ0 + �ξ exp

[
− (T − Tc)2

2σ 2
T

]
, (32)

with σT = 0.3 �T = 0.12 Tc and �ξ = ξmax − ξ0, whose
temperature derivative dξ ′/dT now changes much more
slowly near Tc [see inset in Fig. 3(a)]. The two parametriza-
tions (30) and (32) are compared in Fig. 3(a); one sees that
for the given choice of the Gaussian width σT Eqs. (30) and
(32) have very similar overall shapes, but Eq. (32) avoids
the sharpness of the peak at Tc. Figure 3(b) shows the re-
sulting evolution of the correlation length ξ (τ ) for the two
parametrizations shown in Fig. 3(a), for a fluid undergo-
ing Bjorken expansion with two different initial temperature
values T0 at time τ0 = 1 fm as shown in the figure. While qual-
itatively very similar, parametrization (32) leads to smoother
time dependence as the systems pass through Tc, but also to a
faster return to the background value ξ0 as the system moves
away from the critical point. We will study the evolution of
the slow mode with these two parametrizations in Sec. V A.

The noncritical heat capacity cp,0 [fm−3] and heat conduc-
tivity λT [fm−2] are parametrized as follows [41]:

λT = CλT 2 , cp,0 = s2

αn
. (33)

Here Cλ is a unitless free parameter and α = μ/T . We choose
Cλ such that the relaxation rate �Q ∼ O(1/fm) [18]. In prin-
ciple, cp,0 should be derived from the EoS of the medium
using cp,0 = nT [∂ (s/n)/∂T ]p. However, in the conformally
symmetric background we will be using in Sec. IV B, any
parametrization with the correct units should give the same
(Gubser or Milne) time dependence, up to an overall normal-
ization,12 and for not too large values of α the parametrization
(33) of cp,0 is numerically quite accurate for the ideal massless
gas EoS [(40) and (41)] used in this work.

With cp,0 from (33) and φ̄0 = (cp,0/n2)(ξ/ξ0)2, we can

evaluate the derivatives (∂ log ˜̄φ0/∂e)n and (∂ log ˜̄φ0/∂n)e

occurring in Eqs. (29). It is then easy to improve the
calculation for more realistic choices of the correla-
tion length ξ (μ, T ) = ξ (e, n), by tabulating the derivatives
(∂ log ξ̃ /∂e)n and (∂ log ξ̃ /∂n)e (which do not depend on the
dynamics of the slow modes) and having the dynamical evo-
lution code read and interpolate that table. This is what we do
in BESHYDRO+; the details will be reported when presenting
first results for realistic (3+1)-dimensional simulations with
full backreaction in an upcoming work.

B. Background fluid

In this work, we evolve the slow modes in an externally
prescribed background fluid undergoing ideal Gubser flow
[39,40], ignoring their back-reaction onto this background
dynamics. In this subsection, we briefly describe this back-

12This holds only as long as back-reaction is neglected because the
slow-mode dynamics breaks conformal symmetry.
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ground, referring the reader to Refs. [37,39,40] for technical
details.

Although it is known how to include dissipative corrections
in Gubser flow [37,39,40], we here exploit the ideal fluid limit
where the energy momentum tensor and baryon number cur-
rent have the simple decompositions T μν = euμuν − p�μν ,
Nμ = nuμ, where uμuν and �μν ≡ gμν − uμuν project on the
temporal and spatial directions in the LRF, respectively. We
use the Landau frame for the LRF in which the flow velocity
uμ (normalized by uμuμ = 1) is defined as the timelike eigen-
vector of T μν , T μνuν = euμ, with the LRF energy density
e as the eigenvalue. In this setup, the conservation laws for
energy, momentum, and baryon number, dμT μν = 0 = dμNμ

(where dμ denotes the covariant derivative in a generic system
of coordinates), reduce to [48]

Dn = −nθ , (34a)

De = −(e+p)θ , (34b)

Duμ = ∇μ p/(e+p). (34c)

D = uμdμ stands for the time derivative in the LRF, θ = dμuμ

is the scalar expansion rate, ∇μ = ∂ 〈μ〉 (where generally
A〈μ〉 ≡ �μνAν) denotes the spatial gradient in the LRF,
and σμν = ∇〈μuν〉 (where generally B〈μν〉 ≡ �

μν

αβBαβ , with

the traceless spatial projector �
μν
αβ ≡ 1

2 (�μ
α�ν

β + �ν
α�

μ
β ) −

1
3�μν�αβ) is the shear flow tensor.

Gubser flow [39,40] is an analytic solution to these
equations that describes a static system with flow velocity
components13 ûμ = (1, 0, 0, 0) in a particular curvilinear co-
ordinate system (“Gubser coordinates”) x̂μ = (ρ, ϑ, φ, ηs),
where

ρ(τ, r) ≡ − sinh−1

(
1 − q2τ 2 + q2r2

2qτ

)
, (35)

ϑ (τ, r) ≡ tanh−1

(
2qr

1 + q2τ 2 − q2r2

)
, (36)

with an arbitrary energy scale q that controls the physical
size of the system, relates the Gubser coordinates to Milne
coordinates xμ = (τ, r, φ, ηs). Mapping the static flow ûμ back
to Milne coordinates in Minkowski space, one obtains the
Gubser flow profile

uτ (τ, r) = cosh κ (τ, r) , (37a)

ux(τ, r) = x

r
sinh κ (τ, r) , (37b)

uy(τ, r) = y

r
sinh κ (τ, r) , (37c)

uφ (τ, r) = uη(τ, r) = 0 , (37d)

13All quantities expressed in terms of Gubser coordinates are la-
beled with a hat. For dimensionful quantities, such as the energy
density e, the corresponding hatted quantity is made dimensionless
by multiplying it with appropriate powers of τ (e.g., ê = τ 4e).

where x = r cos φ, y = r sin φ, and κ (τ, r) is the transverse
flow rapidity, corresponding to the transverse flow velocity

v⊥(τ, r) = tanh κ (τ, r) ≡ 2q2τ r

1 + q2τ 2 + q2r2
. (38)

In Cartesian coordinates, this flow profile combines boost-
invariant longitudinal expansion with azimuthally symmetric
transverse expansion with the particular profile (38).

The Gubser velocity profile (38) is an exact solution of the
ideal fluid dynamic equations (34) as long as all macroscopic
densities depend only on the timelike coordinate ρ ∈ R (“de
Sitter time”). Such systems are conformally symmetric. With
this symmetry, the LRF time derivative D reduces to ∂ρ , and
the energy and baryon number conservation laws (34a) and
(34b) turn into a coupled set of ODEs in ρ:

∂ρ n̂ + 2 tanh ρ n̂ = 0 , (39a)

∂ρ ê + 2 tanh ρ ê = −2 tanh ρ p̂ . (39b)

However, since critical dynamics near the critical point breaks
conformal symmetry and in particular Weyl invariance [39,40]
by introducing the correlation length ξ and the wave num-
ber Q, the evolution equations (16) lose their simple form
when recast in Gubser coordinates and expressed in terms
of Gubser-rescaled quantities φ̂Q̂, �̂Q̂ (see footnote 13). How-
ever, since we ignore the back-reaction from the slow modes
to the conformal background fluid, we can solve Eq. (16) in
Milne coordinates (which are also the coordinates in which
BESHYDRO+ is formulated), using the Gubser profile (37) for
the Milne components of uμ as externally prescribed.

For consistency with the conformal symmetry of Eqs. (39),
we specify for the equilibrium EoS an ideal gas of quarks
and gluons with Nc = 3 colors and Nf = 2.5 massless quark
flavors of baryon number 1/3, each carrying baryon chemical
potential μ/3.14 Its pressure and baryon density are given by

p

T 4
= p0 + Nf

[
1

2

( μ

3T

)2
+ 1

4π2

( μ

3T

)4
]

, (40)

n

T 3
= Nf

[
1

3

( μ

3T

)
+ 1

9π2

( μ

3T

)3
]

, (41)

where p0 = [2(N2
c −1) + (7/2)NcNf ]π2

90 . Using α = μ/T ,
this can be rewritten as [49]

e = 3p ≡ f∗(α)T 4 , n = g∗(α)μT 2 ≡ αg∗(α)T 3 , (42)

and thus

s = 1

T
(e + p − μn) = T 3

(4

3
f∗(α) − α2g∗(α)

)
≡ h∗(α)T 3 ,

(43)
with the unitless coefficients

f∗(α) = 3p0 + Nf

6
α2 + Nf

108π2
α4 , (44a)

g∗(α) = Nf

9
+ Nf

81π2
α2 , (44b)

h∗(α) = 4p0 + Nf

9
α2. (44c)

14This agrees with EOS3 in Ref. [37].
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One easily verifies that Eqs. (39) together with the con-
formal EoS (42) are solved consistently if α = μ/T is a
ρ-independent constant.15 The corresponding temperature
evolution is [39]

T̂ (ρ) = C

(cosh ρ)2/3
, (45)

or, equivalently, in Milne coordinates

T (τ, r) = C

τ

(2qτ )2/3

[1 + 2q2(τ 2+r2) + q4(τ 2−r2)2]1/3
, (46)

where C is a constant of integration.
We see that the background fluid is defined by providing

three constants, the size parameter q (with larger q corre-
sponding to smaller transverse size), the chemical potential
in units of the temperature α = μ/T (with larger α corre-
sponding to lower collision energies which are characterized
by larger baryon number stopping), and the normalization
constant C (which should increase with collision energy). To
simulate central Au+Au collisions, we follow Ref. [39] and
set q−1 = 4.3 fm. For phenomenological guidance on how
to fix α = μ/T , we follow Ref. [49] and note that, since
ideal Gubser flow evolves at constant α, we can determine
the latter from experimental data at chemical freeze-out. A
thermal analysis of hadron yield ratios measured in Au+Au
and Pb+Pb collisions at the Relativisitic Heavy Ion Collider
(RHIC) and the Large Hadron Collider (LHC) leads to the
following collision energy dependence of the temperature and
baryon chemical potential at chemical freeze-out [50]:

T (μ) = a − bμ2 − cμ4 , μ(
√

s) = d

1 + e
√

s
, (47)

where a = 0.166 GeV, b= 0.139 GeV−1, c = 0.053 GeV−3,
d = 1.308 GeV, e = 0.273 GeV−1, and

√
s is the collision en-

ergy per nucleon pair in GeV. This curve can be well described
by [49,50]

α(
√

s) = μ

T
(
√

s) ≈ d/(a e
√

s) ≈ 29 GeV/
√

s ; (48)

for
√

s = 200 GeV this yields α ≈ 0.145.16 Using Nf = 2.5
in Eqs. (44) this leads to

f∗ ≈ 13.91 , g∗ ≈ 0.28 , h∗ ≈ 18.54 . (49)

15This is generally not true for dissipative Gubser flow at nonzero
baryon density.

16This value of α is not large, implying that at this collision en-
ergy the system will not pass close to the critical point if the latter
is at μc � 400 MeV [34,35]. The large-α regime is studied at the
lower end of the range of collision energies explored in the RHIC
BES program [51]. However, since our intent is not to do BES
phenomenology but to explore the mechanisms that drive critical
fluctuation dynamics, we select

√
s = 200 GeV which facilitates

comparison with previous work [39,49]. Purely for this convenience,
we are therefore imagining (similar to Ref. [18]) a critical point at a
small value of μc/Tc; however, where Ref. [18] focused on the influ-
ence of such a critical point on dynamics at μ = 0, we here explore
its influence on fluctuation dynamics for a system passing close to the
critical point on a trajectory with nonzero baryon chemical potential,
μ �= 0.

Finally, we fix C from the total entropy produced in the
collision. Again, since ideal Gubser flow conserves entropy,
this can be determined from the experimentally measured final
charged hadron multiplicity. Following Ref. [39], we estimate
the entropy per unit space-time rapidity ηs (which is conserved
in ideal fluid dynamics with longitudinal boost-invariance)
from the measured pseudorapidity density of charged particles
as

dS

dηs
≈ 7.5

dNch

dη
≈ 5000 , (50)

where we used boost invariance to identify ηs = η (which also
makes dS/dηs independent of ηs) and inserted dNch/dη � 660
for the most central Au+Au collisions at

√
s = 200 GeV. C is

now fixed by evaluating dS/dηs with the entropy density (43)
corresponding to the ideal Gubser temperature profile (46), by
integrating the entropy flux sμd3σμ through a suitably chosen
hypersurface � over the entire fireball,

dS

dηs
=

∫
�

sμ(τ, r)
d3σμ(τ, r, ηs)

dηs
, (51)

where sμ = s uμ. Using for simplicity a τ = const. surface with
d3σμ = (τ 2πr dr dηs, 0, 0, 0), this simplifies to [39]

dS

dηs
= 2πh∗

∫ ∞

0
T 3(τ, r) uτ (τ, r) τ r dr = 4πh∗C3, (52)

where in the last step we inserted Eq. (37a) in the form

uτ (τ, r) = 1 + q2τ 2 + q2r2

[1 + 2q2(τ 2+r2) + q4(τ 2−r2)2]1/2

as well as Eq. (46) and performed the integral.17 Comparing
this expression with Eq. (50) yields C � 2.8.

C. Entropy correction on a closed hypersurface

After evolving the slow modes on top of this background
Gubser flow we can use equations (22) and (27) to calcu-
late the off-equilibrium corrections from the slow modes to
the bulk properties of the background fluid. Reference [18]
studied these corrections at different proper times; in this
subsection, we discuss how to evaluate them on an arbitrary
hypersurface (for example, an isothermal surface).

Equation (22) allows us to compute the nonequilibrium
slow-mode correction to the entropy density, �s(x). The cor-
responding correction to the entropy current is denoted by
δsμ ≡ uμ�s. When integrated over a hypersurface � that
encloses the entire system, this generates a correction to the
total entropy

δS =
∫

�

δsμ(x) d3σμ(x) =
∫

�

�s(x) u(x) · d3σ (x) . (53)

Parametrizing the surface � in Milne coordinates (τ, x, y, ηs)
as

�μ(x) = (τ f (x, y, ηs), x, y, ηs) , (54)

17Due to scale invariance and entropy conservation, the integral is
independent of both q and the value of τ that defines the hypersur-
face.
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where τ f (x, y, ηs) is the longitudinal proper time associated
with the surface point located at spatial position (x, y, ηs), the
surface normal vector at point x is given by

d3σμ(x) = −εμνκλ

∂�ν

∂x

∂�κ

∂y

∂�λ

∂ηs

√−gdxdydηs

=
(

1,−∂τ f

∂x
,−∂τ f

∂y
,−∂τ f

∂ηs

)
τ f dxdydηs . (55)

Here εμνκλ is the Levi-Civita symbol, and
√−g = τ is the

metric determinant for Milne coordinates.
The expressions (54) and (55) are completely general

and allow us to parametrize any hypersurface � [although
τ f (x, y, ηs) may be multivalued]. We here want to apply
them to our Gubser background flow without back-reaction
from nonequilibrium slow modes, which possesses longitu-
dinal boost invariance and azimuthal symmetry, and study
the slow-mode correction to the entropy per unit space-time
rapidity dδS/dηs on an isothermal hypersurface defined by
T (τ f (r), r) = Tf . For this situation, it is advantageous to use
polar coordinates (r, φ) instead of (x, y) in the transverse
plane, such that Eq. (55) simplifies to

d3σμ(x) =
(

1,−∂τ f

∂r
, 0, 0

)
τ f rdrdφdηs (56)

and the entropy correction becomes

dδS

dηs
= 2π

∫ rmax

0
�s

(
uτ − ur ∂τ f

∂r

)
τ f (r)rdr . (57)

Here the finite upper limit rmax accounts for the finite radial
extent of this isothermal surface—for points with r > rmax

the temperature never exceeds Tf . Using that on the sur-
face T (τ f (r), r) = Tf is constant and hence dT (τ f , r) =
(∂T/∂r)dr + (∂T/∂τ f )dτ f = 0, the second term under the
integral (57) can be evaluated as follows [52]:

∂τ f

∂r
= −

[(
∂T

∂r

)(
∂T

∂τ

)−1]
Tf

. (58)

The two factors inside square brackets are easily evaluated
using the ideal Gubser temperature profile (46).

Before moving to numerical studies, let us quickly
estimate the expected slow-mode contribution to the partial-
equilibrium entropy density with the setup described in this
section. As argued, the typical Q contributing to �s in Eq. (22)
is of the order Qneq. Therefore, �s � 1

3
1

(2π )2 Q3
neq or, as a

fraction of the equilibrium entropy density s from Eq. (43),

�s

s
∼ 1

3

1

(2π )2

1

h∗

(
Qneq

T

)3

. (59)

Using h∗ from Eq. (49) and (Qneq/T ) � 1, we arrived at
(�s/s) ∼ O(10−4).

V. RESULTS AND DISCUSSION

We now exploit this framework to study the dynamics
of the slow modes near the QCD critical point. Here, the
availability of analytic expressions for the ideal Gubser flow
hydrodynamic background turns out to be helpful: By taking

different limits of the background flow, we can easily separate
critical dynamics from flow-induced effects. For example,
we can turn off transverse flow by taking the limit q → 0,
corresponding to an infinite transverse radius of the fireball,
and we can turn off critical effects by replacing the correlation
length ξ by a constant ξ0 = 1 fm, the assumed correlation
length far away from the critical point. We focus on collective
expansion effects on slow-mode evolution in Sec. V A, on
advection effects in Sec. V B, and on critical dynamics due to
the growth of the correlation length near the critical point in
Sec. V C. In the last subsection, Sec. V D, we give the reader
a feeling for the expected magnitude of phenomenological
effects resulting from nonequilibrium slow-mode dynamics,
by studying the space-time evolution of nonequilibrium cor-
rections to the entropy of the fireball and their imprint on the
freeze-out hypersurface.

To simplify the discussion, let us introduce some notation.
Throughout this section, we use a background medium whose
hydrodynamic evolution starts at τ0 = 1 fm, with initial ve-
locity and temperature profiles (37) and (46). We introduce
the shorthand �≡ cp,0/n2 = φ̄0,ξ0 for the equilibrium value of
the static (Q = 0) slow mode (which depends on space-time
position x through the medium properties) and denote by
�0 ≡ �(τ0, r) its initial r profile at τ0. We further introduce

� ≡ �ξ0 = 2(λT /(cp,0ξ
2
0 )) [cf. Eq. (19)] with ξ0=1 fm and de-

note by �0 ≡ �ξ0 (τ0, r) its initial profile at τ0. To simplify
the discussion of critical effects induced by the growth of the
correlation length ξ near the critical point, we introduce the
“noncritical reference value” φ̄Q,ξ0 ≡ (cp,0/n2)/[1 + (Qξ0)2],
i.e., the equilibrium value for the mode with wave number Q
in a system with constant correlation length ξ0. When focusing
on effects from critical dynamics, we therefore plot ratios such
as

φ̄Q

φ̄Q,ξ0

=
(

ξ

ξ0

)2 f2(Qξ )

f2(Qξ0)
=

(
ξ

ξ0

)2[1 + (Qξ0)2

1 + (Qξ )2

]
. (60)

When simultaneously looking at the Q dependence, we plot

φ̄Q

φ̄0,ξ0

=
(

ξ

ξ0

)2

f2(Qξ ) =
(

ξ

ξ0

)2[ 1

1 + (Qξ )2

]
. (61)

To facilitate comparison, we follow Ref. [18] and initialize the
slow modes φQ at their equilibrium values φ̄Q.

A. Medium expansion

1. Constant correlation length

In this subsection, we focus on effects on the fluctuation
dynamics arising from the space-time dependence of the hy-
drodynamic fields caused by the expansion of the background
fluid. We do so by tracing the nonequilibrium evolution of the
slow mode φQ, as well as its equilibrium value φ̄Q, in a non-
critical expanding medium with constant correlation length
ξ = ξ0. To focus on the dilution and cooling effects caused by
the expansion, rather than the collective flow that accompanies
it, we remove the spatial gradients in the medium (i.e., advec-
tion affects), by letting q → 0. According to Eqs. (37), this
results in uτ ≈ 1 and ur ≈ 0, i.e., one-dimensional Bjorken
expansion along the longitudinal direction with the tempera-
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(a) (b) (c)

FIG. 4. Q dependence of the dynamics of the slow modes in a system undergoing Bjorken expansion (i.e., Gubser expansion in the limit
q → 0) with constant ξ = ξ0. Lines with different colors correspond to different times as identified in the legend. (a) Comparison of the
Q dependences of the scaled equilibrium (φ̄Q/�0, dashed) and nonequilibrium (φQ/�0, solid) values of the correlator φQ, as functions of
wave number Q. (b) Q dependence of the nonequilibrium/equilibrium ratio φQ/φ̄Q. (c) Q dependence of the nonequilibrium entropy density
correction arising from the slow mode with wave number Q, �sQ. Initial conditions are T0 = 1.2 fm−1, �0 = 1.0 fm−1, and �0 = 1.0 fm−3 at
τ0 = 1 fm.

ture profile [see Eq. (46)]

T ≈ C(2q)2/3

τ 1/3
≡ T0

(τ0

τ

)1/3
, (62)

where C ∝ q−2/3 → ∞ as q → 0 so that T0 ≡ C(4q2/τ0)1/3

remains finite. With our conformal EoS, this implies the well-
known Bjorken scaling laws

n ∝ 1

τ
, s ∝ 1

τ
, e ∝ 1

τ 4/3
(63)

as q → 0, and the parametrization (33) gives

φ̄Q ∝ cp,0

n2
∝ (s2/n)

n2
∝ τ , �Q ∝ λT

cp,0
∝ T 2

(s2/n)
∝ τ 1/3 .

(64)
One sees that in this geometry, and without critical correla-
tions, both �Q and φ̄Q increase monotonically with τ as the
system expands:

φ̄Q(τ ) = τ

τ0
φ̄Q(τ0) = τ

τ0
�0 f2(Qξ0), (65)

�Q(τ ) =
( τ

τ0

)1/3
�Q(τ0) =

( τ

τ0

)1/3
�0 f� (Qξ0). (66)

With this Bjorken flow profile, the equation of motion for φQ

turns into an ODE,

∂τφQ(τ ) = −�Q(τ )[φQ(τ ) − φ̄Q(τ )] , (67)

which we solve numerically. As the normalization of φQ is ar-
bitrary, and the heat conductivity λT contains a free parameter
Cλ, we simply set �0 = 1 fm3 and �0 = 1 fm−1 for the initial
conditions in Eqs. (65) and (66) [18].

Figure 4 shows several snapshots of the Q dependence of
φQ [Figs. 4(a) and 4(b)] and of the corresponding nonequi-
librium entropy correction �sQ [Fig. 4(c)] that illustrate
their time evolution. Figure 4(a) shows that the equilibrium
value φ̄Q (dashed lines) increases with time but decreases
with growing wave number Q, reflecting the scaling function
f2(Qξ0) (65). The solid lines showing the nonequilibrium
value φQ exhibit an interesting feature: While they approach
their corresponding equilibrium values at large Q, they stay

close to their initial value �0 f2(Qξ0) at small wave number.
This reflects the Q dependence of the relaxation rate, �Q ∝ Q2

for Q � ξ−1 and �Q ∝ Q4 for Q � ξ−1. This feature sets a
scale Qneq(τ ) which decreases with time that separates modes
that can equilibrate within time τ from those that cannot. For
small Q, φ̄Q increases with time but φQ remains basically
frozen, causing the ratio φQ/φ̄Q to decrease with time, as
shown in Fig. 4(b). On the other hand, the same panel also
shows that, since the relaxation rate �Q increases and the
expansion rate θ decreases with time, at sufficiently late times
even the low-Q modes equilibrate (i.e., Qneq decreases with
times). As Q decreases from large to smaller values, the de-
creasing ratio φQ/φ̄Q implies a larger (negative) contribution
�sQ to the entropy density, but as Q approaches zero these
are cut off by the phase space factor (Q/2π )2 [see Eq. (22)].
The largest contribution to |�s| thus arises from modes with
Q ∼ Qmax ∼ O(Qneq) (which decreases with time), as shown in
Fig. 4(c) (see also Ref. [18]).

Another way to illustrate this is shown in Fig. 5 where
we plot the time evolution of �sQ for three typical Q values:

FIG. 5. Time evolution of the correction �sQ to the entropy
density for three wave numbers Q = 0.2, 0.5, 1.0 fm−1, for the same
setup as in Fig. 4.
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(a) (b) (c)

FIG. 6. Comparison of the time evolution of the Q-integrated nonequilibrium entropy density correction �s for different dynamic models:
I, constant ξ = ξ0 (colored dashed lines); II, ξ = ξ ′(T ) [Eq. (32)] with time-independent � = �0 and � = �0 (black dashed lines); and III, full
dynamics with evolving �, �, and ξ = ξ ′(T ) (colored solid lines). The three panels correspond to different initial conditions: (a) T0 = 1.2 fm−1

and �0 = 1.0 fm−1; (b) T0 = 1.2 fm−1 and �0 = 1.65 fm−1; and (c) T0 = 2.0 fm−1 and �0 = 1.0 fm−1. The vertical black dashed lines show
the time τ = 3.24 fm in panels (a) and (b), and τ = 15 fm in panel (c) when the temperature passes through Tc where ξ peaks.

Q = 0.5 fm−1(which is close to Qmax) as well as Q = 0.2 and
1.0 fm−1(which are below and above Qmax). As time evolves,
the modes first drop out of equilibrium (and thus begin to
contribute to �s) but later re-equilibrate (with their contri-
bution to �s peaking and later decreasing). We note that the
entropy contributed by the nonequilibrium slow modes, both
for a fixed wave number Q and integrated over Q, initially
decreases as the slow modes are driven out of equilibrium
by the large initial longitudinal expansion rate. As already
explained, the negative sign of �s simply reflects the fact that,
as long as the slow modes are out of equilibrium, the system
has not yet reached a state of maximum entropy. For large
Q, |�sQ| peaks early and ceases rather quickly, and for small
Q the entropy contribution peaks and decays later. At first
sight, it looks as if the time integral of �sQ might diverge as
Q → 0, but we checked numerically that infrared convergence
is ensured by the phase-space factor (Q/2π )2.

2. Critical correlations in an expanding medium

In this subsection, we add critical effects, by generalizing
the results from the preceding subsection for Bjorken expan-
sion to include a temperature-dependent correlation length
which peaks at a critical temperature Tc. We start with the

Gaussian parametrization (32), showing the corresponding Q-
integrated nonequilibrium entropy density corrections �s(τ )
in Fig. 6, and then compare with the parametrization (30) in
Fig. 7 to get a feeling for how strongly different parametriza-
tions of ξ might affect the evolution of the critical fluctuations.
In each panel, we compare three dynamical scenarios for
the slow modes (the hydrodynamic background remains al-
ways the same): a constant correlation length ξ = ξ0 as in
the preceding subsection (I); a correlation length ξ (T ) which
changes with the time-evolving temperature T while the tem-
perature and resulting time dependence of cp,0/n2 and λT /cp,0

is ignored [i.e., �= �0 and � = �0 are frozen at their initial
values [18] (II)]; and (III) a fully dynamical scenario where
not only ξ , but also the ratios cp,0/n2 and λT /cp,0 (i.e., � and
�) change with the evolving temperature. The three panels
in each figure correspond to three different initial condi-
tions: a lower initial temperature T0 = 1.2 fm−1 in Figs. 6(a),
7(a), 6(b), and 7(b) and a 60% higher initial T0 = 2 fm−1 in
Figs. 6(c) and 7(c), combined with a somewhat slower relax-
ation controlled by �0 = 1.0 fm−1 in Figs. 6(a), 7(a), 6(c),
and 7(c) and a faster relaxation �0 = 1.65 fm−1 in Figs. 6(b)
and 7(b).

Comparison of the colored dashed and solid lines for
scenarios I and III shows that at times corresponding to tem-

(a) (b) (c)

FIG. 7. Same as Fig. 6, but with the correlation length ξ (T ) parametrized by Eq. (30).
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peratures far above or below Tc (where the time corresponding
to T = Tc is identified by a thin vertical black dashed line
[see Fig. 3(b)] the nonequilibrium entropy density corrections
agree—they differ only around Tc where the correlation length
ξ is critically enhanced, leading to larger entropy corrections
|�s|. Figures 6(c) and 7(c) with the higher initial tempera-
ture T0 = 2.5 Tc are interesting: Without critical slowing down
(scenario I) the nonequilibrium entropy density correction
peaks early and has largely decayed (i.e., the slow modes have
largely equilibrated) by the time the system passes through
Tc; in scenario III, on the other hand, critical slowing down
near Tc allows the slow modes to fall out of equilibrium for a
second time (starting when T � Tc +�T ), leading to a sec-
ondary peak of |�s| near Tc. In scenario II, both the relaxation
rates �Q and equilibrium values φQ change only because ξ

evolves with temperature, and therefore |�s| closely tracks the
evolution of ξ , with a single peak near Tc [18]. The shift of the
ξ -driven peaks in |�s| toward temperatures T > Tc is the re-
sult of a competition between relaxation toward equilibrium of
the slow modes and the rate of expansion of the hydrodynamic
medium which drives the slow modes away from equilibrium.
Since the expansion rate falls like 1/τ , the balance is shifted
away from equilibrium at T > Tc (earlier times) and toward
equilibrium at T < Tc (later times), giving rise to the observed
asymmetry and shift of the peak in |�s|.

Comparison of Figs. 6 and 7 shows that this asymmetry
and shift is less pronounced for the parametrization (30) for
ξ (T ) which peaks more sharply at Tc, making the peak in |�s|
less sensitive to the changing hydrodynamic expansion rate
between T � Tc and T � Tc.18,19 At a sufficiently detailed
level, the choice of parametrization for ξ is thus seen to have
a noticeable effect on the evolution of the off-equilibrium
modes, especially close to the critical point. Since Eq. (30)
is the more realistic parametrization, we will from now on use
it as our default.

B. Transverse flow effects on slow-mode dynamics

We now turn our attention to transverse flow effects on
slow-mode dynamics. As already mentioned in the introduc-
tion, advection by transverse flow can affect the evolution
of the nonequilibrium fluctuations by carrying them outward
from the middle to the edge of the fireball [18]. The ana-
lytically known structure of the ideal Gubser solution makes
it possible to study this effect semianalytically, without hav-
ing to solve a (3+1)-dimensional set of coupled differential
equations. Things become particularly simple and clear in the
early time regime τ � 1/q [49,53,54]. In this limit, the flow
velocity can be approximated by

uτ ≈ 1 + O(τ 2) , ur ≈ 2q2τ r

1 + q2r2
. (68)

18The sharper peak of ξ (T ) causes dξ/dT to get large near Tc, caus-
ing disequilibrating expansion effects on the slow mode ∼∂τ φ̄Q/φ̄Q

to dominate over equilibrating relaxation dynamics especially close
to Tc, thereby causing the peak in |�s| near Tc.

19Note that the colored dashed lines describing scenario I (with a
constant ξ = ξ0) are, of course, identical in Figs. 6 and 7.

Since we will ignore the O(τ 2) corrections, this approxima-
tion breaks down when τ ∼ 1/q [49,53,54]. The expansion
rate is approximated by θ ≈ ∂rur + 1/τ + ur/r, and the equa-
tions of motion become (∂τ + ur∂r )φQ = −�Q(φQ−φ̄Q), or
equivalently,

∂τφQ = −�Q(φQ − φ̄Q) − ur∂rφQ . (69)

The last term, driven by the transverse radial flow ur , modifies
the Bjorken dynamics studied in the previous subsection, by
contributing with a negative sign to the time derivative of
the slow mode φQ if its gradient ∂rφQ points along the flow
direction. The approximate temperature profile is

T (τ, r) ≈ C

τ 1/3

(2q)2/3

(1 + q2r2)2/3
≡ T0

(τ0

τ

)1/3
F2/3(r) , (70)

with F (r) ≡ 1/(1 + q2r2) and T0 ≡ C(4q2/τ0)1/3. The func-
tion F (r) encodes the r dependence of the temperature profile.
From the temperature and the condition α = μ/T = const.,
the other thermodynamic quantities can be derived using the
EoS. Comparing Eqs. (70) and (62), we see that at the early
times the τ dependence of the profile agrees with the one for
Bjorken flow while the radial profile is modified by the factor
F (r). This is expected since for τ � 1/q the expansion is
dominantly along the longitudinal direction [39,40]. In this
limit, the background fluid can be considered as a superposi-
tion of fluid cells undergoing Bjorken expansion with different
initial conditions. Still, the evolution equation (69) for the crit-
ical fluctuations now has the additional source term −ur∂rφQ

on its right-hand side, and comparing the following results
to those presented in Sec. V A therefore allows us to isolate
advection effects caused by transverse expansion flow through
this term. To gain intuition about transverse flow effects, we
will in this subsection use this picture to late times (≈15 fm)
as a simplified background, even though the approximation
breaks down for τ > 1/q; i.e., it no longer represents Gubser
flow at such late times.

We simplify the dynamics further by setting �= �0 and
� = �0, i.e., by ignoring the time dependence of cp,0/n2 and
λT /cp,0 [18], in order to focus on flow and suppress effects
simply caused by cooling through expansion. The time depen-
dence of φ̄Q and �Q will then arise solely from the temperature
and resulting time dependence of ξ :

φ̄Q = �0F−2(r)

(
ξ

ξ0

)2

f2(Qξ ) , (71)

�Q = �0 F−2/3(r)

(
ξ0

ξ

)4

f� (Qξ ) . (72)

Even if ξ were a constant, φ̄Q and �Q still depend on r because
they depend on the temperature of the medium whose spatial
variation is described by the profile F (r). In the general case,
these quantities acquire additional r dependence through the
T (τ, r) dependence of ξ (T ). Initial conditions for φ̄Q and
�Q are computed with �0 = 1.0 fm−3 and �0 = 0.9 fm−1,
using an initial temperature T0 = 2.2 fm−1 at τ0 = 1 fm. The
corresponding initial temperatures for cells at transverse posi-
tions r = 1.69 and 5.64 fm are T (r=1.69 fm, τ0) = 2.0 fm−1

and T (r=5.64 fm, τ0) = 1.2 fm−1, with initial relaxation
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(a) (b) (c)

FIG. 8. Evolution of the mode with Q = 1.0 fm−1 in three dynamic models: I, with transverse flow ur and constant ξ = ξ0; II, without
transverse flow (i.e., setting ur = 0) but ξ = ξ (T ); and III, with transverse flow ur and ξ = ξ (T ). Dashed lines show the equilibrium values
φ̄Q, while solid lines show the nonequilibrium values φQ. Different colors indicate different times, τ = 3, 7, 11, 15 fm. The initial temperature
and relaxation rate at r = 0 are T0 = 2.2 fm−1 and �0 = 0.9 fm−1, respectively.

rates �(r=1.69 fm, τ0) = 1.0 fm−1 and �(r=5.64 fm, τ0) =
1.65 fm−1. The latter agree with the initial conditions studied
in Figs. 7(b) and 7(c) in the preceding subsection, to facilitate
comparison.

We shall see that the additional r dependence introduced
by the profile factor F (r) in Eqs. (71) and (72) results in qual-
itatively different evolution of the slow modes in this work
compared to Ref. [18]. In Fig. 8, we compare, for a single
slow mode with wave number Q = 1 fm−1, three dynamic
models: I [Fig. 8(a)], constant correlation length ξ = ξ0 with
nonzero radial flow ur ; II [Fig. 8(b)], temperature-dependent
correlation length ξ = ξ (T ) without radial flow, ur = 0; and III
[Fig. 8(c)], temperature-dependent ξ = ξ (T ) combined with
nonzero radial flow ur .20 Note that by setting ur = 0 in (II),
fluid cells at different transverse positions r do not affect
each other and, with the profile (70), evolve independently
from each other following Bjorken dynamics; in other words,
transverse flow is turned off in scenario (II). For each of these
three scenarios, the plots show snapshots at four different
times of the radial profiles of the equilibrium (dashed lines)
and nonequilibrium (solid lines) values of the slow mode, φ̄Q

and φQ, respectively.
In Fig. 8, we first draw the reader’s attention to the generic

upward-sweeping behavior at large r of both equilibrium and
nonequilibrium values of the slow mode. This dependence
arises directly from the profile factor F (r) in Eq. (71) and
reflects the fact that in the expression φ̄0 = cp,0/n2 the square
of the baryon density n2 decreases faster with decreasing
temperature and hence increasing r than the heat capacity
cp,0. From Eq. (72), it is clear that �Q shares with φ̄Q this
monotonic rise with r, at a somewhat slower rate. Since
cp,0 ∝ T 3 ∝ n, meaning that φ̄0 ∝ 1/n, the upward rise of this
measure of fluctuations at large r corresponds to the increase
in fluctuations in a region where there are few particles. In
any future phenomenological analysis, it will contribute little
to observables. In our model study, however, we shall see that

20Note that we do not change the flow velocity of the background
fluid—we only turn on or off the ur term in the evolution equation
for the slow modes.

this r dependence is useful as a device that will enable us to
visualize important physical effects.

In scenario I [Fig. 8(a)], the equilibrium value φ̄Q (dashed
line) remains frozen at its initial value because ξ = ξ0 is con-
stant and independent of temperature. However, the radial
gradient of φQ couples to the nonzero radial flow ur and causes
φQ to evolve differently at different radial positions r. Since
the gradient ∂rφQ points along ur , the time derivative of the
slow mode φQ gets a negative contribution in Eq. (69) from
−ur∂rφQ, and thus φQ is pushed downward (or rather outward)
further as time progresses. This outward transport of φQ by
radial flow is known as “advection” [18] although (due to
the different profile functions F) it manifests itself differently
here than in Ref. [18]. As expected, at r = 0 the transverse
flow vanishes, ur (0) = 0, and the slow mode does not evolve.

In scenario II, without transverse flow [Fig. 8(b)], cells at
different r evolve independently. In this scenario, the temper-
ature dependence is included for ξ (T ). Since the temperature
(70) is highest at r = 0, the location of Tc moves inward (due
to cooling by longitudinal expansion) as time proceeds. In
Figs. 8(b) and 8(c), this is reflected by the leftward movement
of the “bumps” on the dashed curves which correspond to the
location where the temperature of the medium is in the range
where ξ (T ) has its peak. When plotted in this way, the upward
sweep of the curves is more apparent to the eye than the
bumps. Recalling, though, that this upward sweep occurs by
definition in regions with small n that would contribute little
to observable consequences, we plot in the following Fig. 9
a unitless ratio which serves to eliminate this r dependence,
making the effects of the critical fluctuations—which arise in
regions with larger n—more apparent. Figures 9(b) and 9(c)
are in this sense the better way to visualize the consequences
of our analysis, but the dynamics in the equations that govern
φ are more easily understood from Figs. 8(b) and 8(c), so we
shall inspect these first. We see that the dashed lines move
around with time, as the temperature of the plasma changes in
space and time and as the region where ξ peaks move inward.
We then see that in Fig. 8(b) the solid lines follow the dashed
lines and become closer to the dashed lines as time proceeds.
This clearly demonstrates relaxation toward equilibrium in the
absence of any effects of transverse flow.

054911-15



DU, HEINZ, RAJAGOPAL, AND YIN PHYSICAL REVIEW C 102, 054911 (2020)

(a) (b) (c)

FIG. 9. Same as Fig. 8, but using unitless ratios for the vertical axes and an extended range up to r = 10 fm for the horizontal axes. Dashed
lines show the rescaled equilibrium values φ̄Q/φ̄Q,ξ0 , while solid lines show the corresponding nonequilibrium values φQ/φ̄Q,ξ0 . Here φ̄Q,ξ0

denotes φ̄Q for ξ = ξ0 for each respective r at τ0 [i.e., the dashed line in Fig. 8(a)]. The two vertical dashed lines show the two radial distances
r = 5.64 and 1.69 fm where the initial temperatures are 1.2 and 2.0 fm−1 and the initial relaxation rates are 1.65 and 1.0 fm−1, respectively,
corresponding to the cases studied in Figs. 7(b) and 7(c).

Scenario III, shown in Fig. 8(c), combines the dynamical
effects included in scenarios I and II. Transverse flow effects
can be uniquely identified by comparing Figs. 8(b) and 8(c):
The radial profiles showing snapshots of the nonequilibrium
evolution of φQ (solid lines) are pushed outward by advec-
tion and thereby away from the corresponding equilibrium
profiles φ̄Q (dashed lines)—disequilibration caused by radial
flow gradients wins over equilibration by relaxation. As we
noted above, the growth of φQ toward the dilute periphery of
the fireball can be intuitively understood by remembering the
increasing relative importance of density fluctuations when
the average density gets small. A unitless fluctuation mea-
sure that correctly absorbs this trivial Poisson-statistical effect
would be the product n φQ. With our parametrization of cp,0 =
s2/(αn), removing the profile function F (r) by dividing φQ

by the factor φ̄Q,ξ0 denoting the initial value at τ0 at each
position r of φ̄Q for fixed ξ = ξ0 [shown as the dashed line in
Fig. 8(a)] achieves the same end. This unitless ratio is shown,
for both equilibrium (dashed) and nonequilibrium (solid) slow
modes, in Fig. 9. This way of plotting φQ de-emphasizes the
peripheral, low-density regions and brings out more clearly
those features that will be phenomenologically relevant in
future computations of experimental fluctuation signals.

With this in mind, we now discuss Fig. 9. In scenario
I [Fig. 9(a)], the normalized equilibrium value φ̄Q/φ̄Q,ξ0

(dashed horizontal line) remains frozen at 1. Furthermore,
as expected from Eq. (69), the minimum value of the scaled
φQ matches the maximum of the transverse flow ur , resulting
from a maximum (negative) contribution from the advection
term −ur∂rφQ in (69).

In scenarios II and III, shown in Figs. 9(b) and 9(c), the r
dependence from F (r) drops out from the normalized equilib-
rium ratio φ̄Q/φ̄Q,ξ0 . In consequence, the peaks of the dashed
lines in Figs. 9(b) and 9(c) unambiguously reflect the peak at
Tc of the correlation length ξ (T ) which enters in the numerator
of that ratio. Following the location of the critical point at Tc,
these peaks in Fig. 9(b) move inward as time proceeds and the
system cools by expansion.

The difference between Figs. 9(b) and 9(c) is in the dynam-
ical evolution of the (normalized) nonequilibrium slow mode
φQ/φ̄Q,ξ0 (solid lines), with [Fig. 9(c)] and without [Fig. 9(b)]
advection by transverse radial flow. Figure 9(b) isolates and
nicely illustrates the effects of critical slowing down: For
example, at r = 1.69 fm, where ξ (T ) increases monotonically
from the red (bottom left) to the blue (top left) lines, we see
that φQ trails behind the evolution of φ̄Q and always below the
equilibrium value; at r = 5.64 fm, on the other hand, which
for τ > 3 fm sits on the falling side of the ξ (T ) curve, we see
that φQ first trails below φ̄Q when ξ is still growing but moves
above φ̄Q (again trailing behind the equilibrium value) once T
drops below Tc and ξ (T ) begins to decrease again at this radial
position. Generically, the transverse expansion rate is smaller
and the slow-mode relaxation rate is larger at large r, so that at
large r the slow modes relax faster to their equilibrium value
than near the center; this, too, is clearly visible in this panel.

In scenario III [Fig. 9(c)], we see that when transverse
flow is included, the nonequilibrium value φQ falls behind
φ̄Q further as time proceeds, except at r = 0 where ur = 0
and thus the evolution is the same as in Fig. 9(b). At larger
r � 8 fm, on the other hand, the advection effects seen and
discussed in Fig. 8 cause the r dependence of the normalized
ratio φQ/φ̄Q,ξ0 in Fig. 9(c) to develop similarities with what
is seen in Fig. 9(a), especially at late times when the system
has passed the critical region and ξ goes back to ξ0. In the
intermediate region, r ≈ 4 fm where the flow is the largest,
the r dependence of the solid lines is complicated by the fact
relaxation effects are gradually being overshadowed by the
transverse flow and advection effects which grow with time.

Note that, unlike Ref. [18], we do not see clear signs of
a second peak in Fig. 9(c); i.e., the critical fluctuation peak
is not transported outward to larger r by the transverse flow.
The main model feature responsible for this difference is the
profile function F (r) in our expression (72) for the relaxation
rate �Q of the slow mode which accelerates relaxation of
φQ at large r. We confirmed that when the r dependence is
removed in Eqs. (71) and (72) we observe a second outgoing
peak as shown in Fig. 7 of Ref. [18]. We note that even if
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(a) (b)

FIG. 10. Evolution of the Q-integrated nonequilibrium entropy density correction �s at two radial distances, r = 5.64 fm (left) and r =
1.69 fm (right), for the scenarios I, II, and III shown in Figs. 9(a), 9(b), and 9(c), respectively. The dashed vertical lines indicate the times
when the fluid passes through T = Tc. Lines labeled by II correspond to the same evolution as those with the same label shown in Figs. 7(b)
and 7(c).

such an outward-moving (advected) second peak in φQ were
to show up in our model, it would be dwarfed at large r by the
upward-sweeping noncritical fluctuations and would become
essentially invisible after normalization with φ̄Q,ξ0 as done in
Fig. 8. Furthermore, in our model the profile function F (r)
increases the relaxation rate in the dilute periphery.

The back-reaction of this nonequilibrium slow-mode dy-
namics on the entropy density of the medium (i.e., the
nonequilibrium entropy correction �s) is shown as a function
of time in Fig. 10. The two panels show how this plays out
at two different transverse distances from the fireball center, a
larger one at r = 5.24 fm [Fig. 10(a)] which passes through
Tc first at τ ≈ 3.24 fm and a smaller one at r = 1.69 fm
[Fig. 10(b)] which passes through Tc later at τ ≈ 15 fm (verti-
cal dashed lines). The black dashed lines describe scenario II
without transverse flow and reproduce the identically labeled
lines from Figs. 7(b) and 7(c). The colored dashed lines for
scenario I show that transverse flow can induce large |�s| even
for a constant correlation length ξ = ξ0, i.e., without critical
slowing down. When critical behavior of ξ (T ) is added in sce-
nario III (solid colored lines), the magnitude of �s increases
strongly in the critical region around Tc. The crossing of the
dashed and solid lines at τ ≈ 20 fm in Fig. 10(b) must be
attributed to critical slowing down in scenario III, which keeps
φQ from reacting to the time-increasing transverse flow effects
as quickly as it can when ξ = ξ0 is a (small) constant.

A qualitative feature of the entropy density evolution
shown in Fig. 10 is that (for the background flow pattern
assumed in this subsection) transverse flow appears to cause a
nonequilibrium entropy correction from slow-mode dynamics
that increases approximately linearly with time at late times.21

This can be understood from Figs. 9(a) and 9(c), by following
the ratio φQ/φ̄Q (i.e., the ratio between the solid and dashed

21Physically this is, of course, an artifact because the flow pattern
studied in this subsection results from an approximation that should
not be used at large times τ > 1/q.

colored lines) in time along the two vertical dashed lines indi-
cating the r positions studied in Fig. 10: One sees that, for both
constant (a) and temperature-dependent (c) correlation length
ξ , φQ/φ̄Q decreases monotonically with time, explaining the
growing magnitude of the entropy correction �s at late times
seen in Fig. 10.

We close this subsection with a discussion of transverse
flow effects on anisotropic perturbations of the transverse pro-
file. In the early time limit, τ � 1/q, the perturbed solution is
available analytically [40,49,54]:22

T = Tiso(1 − εnAnδ) ,

ur = ur
iso − εnνs(δur ) ,

uφ = −εnνs(δuφ ) . (73)

Here εn is related to the eccentricity, δ and νs are parameters
controlling the fluctuations of temperature and flow velocity,
and the deformation profile is

An(r, φ) ≡
(

2qr

1 + (qr)2

)n

cos(nφ) , (74)

which is ∝ Yn,n(ϑ, φ) + Yn,−n(ϑ, φ) (here (ϑ, φ) are polar
coordinates in de Sitter space [39]). The flow profile defor-
mations are related to An by [49,54]

δur = 2qτ

1 + (qr)2
∂ϑAn (75)

= n
(2qr)n−1(2qτ )[

1+(qr)2
]n

[
1−(qr)2

1+(qr)2

]
cos(nφ) ,

δuφ = τ∂φAn = −nτ

[
2qr

1+(qr)2

]n

sin(nφ) . (76)

We assume εn � 1 so that we can linearize in εn, e.g.,
e = eiso(1 − εnAnδ)4 ≈ eiso(1 − 4εnAnδ), and similarly for

22Here and below the undeformed (“isotropic”) profiles [e.g., those
in Eqs. (68) and (70)] are labeled by a subscript “iso.”
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FIG. 11. Transverse flow effects in an anisotropic profile at τ = 3 fm. (a) Temperature contours in the transverse plane, elongated along
the y direction. Arrows indicate the anisotropic transverse flow. Panels (b) and (c) show the correction �sQ to the entropy density arising from
the mode with wave number Q = 1.0 fm−1; panel (b) assumes constant ξ = ξ0 (scenario I) while panel (c) assumes temperature-dependent
ξ (T ) (scenario III). In all three panels, the white dashed contour indicates T = Tc while the two black dashed contours show TH = Tc + �T =
224 MeV and TL = Tc − �T = 96 MeV (where �T = 64 MeV), respectively.

the slow modes (remembering �0 ∝ T −3 and �0 ∝ T −1):

�0 ≈ �0,iso(1 + 3εnAnδ) , �0 ≈ �0,iso(1 + εnAnδ) . (77)

Using these linearized expressions in Eqs. (71) and (72), we
obtain deformed profiles for φ̄Q and �Q. Here we only con-
sider elliptic deformations (n = 2) and follow Refs. [49,54]
by setting δ = 1, νs = − 3/2, and ε2 = 0.15. Using Eq. (77)
together with the temperature and flow profiles in Eqs. (73),
solving the equations of motion for the slow modes as before,
one can explore the anisotropic evolution.

The results are shown in Fig. 11. Figure 11(a) shows the
temperature distribution in the transverse plane (which is
clearly elongated in y direction) and the anisotropic transverse
flow. In Figs. 11(b) and 11(c), we compare, for the same dy-
namical scenarios I and III studied above, the entropy density
modification �sQ arising from the nonequilibrium evolution
of the slow mode with wave number Q = 1 fm−1. In scenario
I with constant correlation length ξ = ξ0, shown in Fig. 11(b),
�sQ does not feel the critical temperature and is sensitive only
to effects arising from the anisotropic transverse flow; the
location of the maximum of |�sQ| basically coincides with
that of the maximum flow velocity which can be identified
in Fig. 11(a) by scanning for the longest flow arrows. In
scenario III with a temperature-dependent correlation length
ξ (T ), shown in Fig. 11(c), the |�sQ| maxima are clearly
shifted closer to the T = Tc critical contour. As time proceeds,
this contour moves inward due to cooling by longitudinal
expansion. This means that the peak of φ̄Q associated with the
critical peak of ξ (T ) moves inward, too, and that φQ tries to
catch up with it. At τ = 3 fm, the flow is not yet very strong,
so φQ does not lag too far behind its equilibrium value, and the
nonequilibrium effects causing |�sQ| are tightly constrained
to the critical contour. However, since the relaxation rate �Q

increases with r through F (r) in Eq. (72), the deviations from
equilibrium tend to be smaller outside than inside the T = Tc

contour, explaining the slight inward shift of the maxima

of |�sQ| from the critical contour.23 We see that, similar to
Fig. 11(b), the azimuthal variation of the flow velocity causes
the appearance of four “hot spots”24 of |�sQ| at angles corre-
sponding to flow maxima, but that the radial position of these
maxima is strongly biased toward Tc by the critical peaking of
the correlation length.

The anisotropic entropy density correction �s from the
slow modes “reacts back” on the expanding medium and
affects its geometric eccentricity. We can define a slow-mode
induced change of ellipticity, �ε2, by using the definition of
ε2 in terms of the expectation value of cos(2φ), with a confor-
mally weighted entropy density [49,54] as weight function:

ε2 + �ε2 = −
∫

rdrdφ (s+�s) {(qr)2/[1+(qr)2]} cos(2φ)∫
rdrdφ (s+�s) {(qr)2/[1+(qr)2]} .

(78)
The uncorrected background gives ε2 = 0.182284. Including
only the contribution to the correction �s from the slow
mode with Q = 1.0 fm−1 and weighting it by a Q-bin width
�Q = 1 fm−1, we find that at τ = 3 fm the entropy correction
changes the ellipticity to ε2 + �ε2 = 0.182293 for scenario
I in Fig. 11(b) and to ε2 + �ε2 = 0.182302 for scenario III
in Fig. 11(c). Transverse flow thus leads to a slight increase
of the ellipticity, resulting from the slightly reduced particle
emission (lowered entropy density) from the “hot spots”24

indicated Figs. 11(b) and 11(c); the ellipticity correction is
larger for scenario III which includes critical behavior of
the correlation length ξ . (Note that altogether the ellipticity
correction is tiny, of relative order � 10−4 [consistent with the
estimate (59)], reflecting the smallness of the nonequilibrium
entropy correction on the scale of the overall entropy density
of the background fluid.)

23This reasoning is supported by studying the τ = 3 fm radial pro-
files of φQ and φ̄Q in Fig. 9(c).

24More accurately, these should be called “cold spots” because �sQ

is negative and thus reduces the effective temperature.
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(a) (b) (c) (d)

FIG. 12. Radial profiles of the temperature T (r) (a), scalar expansion rate θ (r) (b), and correlation ξ (r) (c) at four different times
τ = 1, 2, 3, 4 fm, as well as the time evolution ξ (τ ) of the correlation length (d) at four different transverse distances r = 0, 2, 4, 6 fm,
for ideal Gubser flow. The black dashed lines in panels (c) and (d) indicate the constant value ξ0 = 1 fm.

C. Combined nonequilibrium dynamical effects
in full Gubser flow

In the last two subsections, we focused on the effects of
background medium expansion and advection on slow-mode
dynamics, and these studies were facilitated by taking certain
limits of the background flow [(0+1)-dimensional Bjorken
flow in Sec. V A, early-time limit for ideal Gubser flow
in Sec. V B]. While some discussion of the specific effects
caused by critical growths of the correlation length ξ near the
critical point was already included in these subsections, we
will now extend the discussion of correlation length effects to
the full (unapproximated) ideal Gubser flow.

The exact temperature profile for ideal Gubser flow was
given in Eq. (46). For the discussion in this subsection, we
take C = 2.78 from Sec. IV B for the normalization. For the
equilibrium values and the damping rates of the slow modes,
we use

φ̄Q = �0

F3(τ, r)

(
ξ

ξ0

)2

f2(Qξ ) , (79)

�Q = �0

F (τ, r)

(
ξ0

ξ

)4

f� (Qξ ) , (80)

where F (τ, r) ≡ T (τ, r)/T (τ0, 0), �0 = 1.0 fm−3, and
�0 = 0.9 fm−1.

Figure 12 shows snapshots of the key temperature
[Fig. 12(a)], expansion rate [Fig. 12(b)], and correlation
length [Fig. 12(c)] profiles for different times, as well as the
time evolution of correlation length in Fig. 12(d) for different
transverse positions. Figure 12(a) shows that fireball remains
hottest at r = 0 until all of it has cooled below Tc and that (due
to cooling by a combination of longitudinal and transverse
expansion) the critical surface T (τ, r) = Tc moves inward with
time. Figure 12(b) shows that, generically, the expansion rate
decreases with time, driven by the slowing rate of longitudinal
expansion, θ‖ ∼ 1/τ ; this facilitates equilibration of the slow
modes at later times. However, the bump at r ≈ 3.5 fm of the
expansion rate at τ = 4 fm in Fig. 12(b) also demonstrates
the increasing contribution θ⊥ from transverse flow as time
increases, causing the expansion rate to increase with time
for τ > 3 fm in the periphery r > 4 fm. For our initial con-
ditions, transverse expansion does not, however, dominate

the expansion rate until the entire fireball has cooled below
Tc. Figure 12(c) illustrates that the peak of the correlation
length moves inward together with Tc as time proceeds, and
Fig. 12(d) shows that fluid cells pass through the critical point
earlier at large r than at smaller r, with cells at r > 6 fm
starting out and remaining subcritical.

In Fig. 13, we study the dynamical evolution of the ac-
tual and equilibrium values [Figs. 13(b) and 13(c)] of slow
modes with three different wave numbers, Q = 0.1 fm−1 <

ξ−1
max (top row, I), ξ−1

max < Q = 0.6 fm−1 < ξ−1
0 (middle row,

II), and Q = 1.2 fm−1 � ξ−1
0 (bottom row, III), as well as

of two related Q-dependent quantities, the critical Knudsen
number θ/�Q [Fig. 13(a)], reflecting the competition between
disequilibrating collective expansion and equilibrating mode
relaxation, and the nonequilibrium slow-mode correction �sQ

to the entropy density in [Fig. 13(d)]. Throughout, dashed
lines reflect noncritical dynamics with constant correlation
length ξ = ξ0 while solid lines show the results for critical
dynamics with a correlation length ξ (T ) that peaks at Tc.

For noncritical dynamics (ξ = ξ0, dashed lines), the critical
Knudsen number θ/�Q in Fig. 13(a) is seen to decrease with
time throughout the fireball, basically following the scalar
expansion rate θ shown in Fig. 12(b). Because of the factor
Q2 in �Q, the critical Knudsen numbers are roughly 100
times larger in the top row than in the bottom row, severely
hindering relaxation of the slow mode toward equilibrium.
In comparison with the dashed lines, the solid lines show
the additional effect of critical slowing down caused by the
critical enhancement of the correlation length ξ (T ) near Tc.
This effect can be up to a factor ≈10 (mostly due to the factor
ξ 2

0 /ξ 2 in �ξ ) in the top panel (small Q) but is seen to be
significantly smaller for more typical Q values like the one
shown in the bottom panel (due to the compensating factor
1+Q2ξ 2 in f�).

Because of the small Q value in the top row, the critical
Knudsen numbers shown in Fig. 13(Ia) are huge (ranging
from the tens to the hundreds). This implies that relaxation
toward equilibrium plays practically no role in the dynamical
evolution of this particular slow mode and that the evolu-
tion patterns seen in Figs. 13(Ib) and 13(Ic) are entirely due
to advection. For noncritical dynamics (dashed lines), the
normalized equilibrium value shown in Fig. 13(Ib) remains
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FIG. 13. Comparison for the dynamics of three slow modes with widely different wave numbers: Q = 0.1 fm−1 (I, top row), Q = 0.6 fm−1

(II, middle row), and Q = 1.2 fm−1 (III, bottom row). Dashed colored lines indicate evolution with constant correlation length ξ = ξ0, and solid
colored lines use a temperature-dependent correlation length ξ (T ) that peaks at Tc. Similar to Fig. 12, the three left columns [(a)–(c)] show
radial profiles at different times, for the critical Knudsen number (a), the (normalized) slow-mode equilibrium (b), and actual nonequilibrium
values (c). The right column (d) shows the time evolution at four different transverse distances of the contribution �sQ to the nonequilibrium
entropy density correction arising from these three slow modes. Characteristic differences for small and large wave numbers are seen when
comparing the top and bottom rows while the middle row shows a mixture of these characteristics at an intermediate wave number (see text
for details).

frozen at 1 by definition while the normalized nonequilibrium
value in Fig. 13(Ic) decreases with time, similar to Fig. 4(b)
at small Q and Fig. 9(a). For critical dynamics (solid lines),
comparison of Figs. 13(Ib) and 13(Ic) shows how advection
pushes the critical peak of φQ outward while the peak of
its equilibrium value would follow the critical temperature
inward as time proceeds. For the modes with the larger wave
numbers shown in the two lower rows, the equilibrium value
of the slow mode in Figs. 13(IIb) and 13(IIIb) follows qual-
itatively the same pattern as for the small-Q mode shown
in Fig. 13(Ib), although the critical effects are significantly
reduced at the higher Q values. Because of the much smaller
critical Knudsen numbers for the mode with Q = 1.2/fm in
the bottom row, Figs. 13(IIIb) and 13(IIIc) show quite dif-
ferent evolution patterns, reflecting the competition between
relaxation (thermalization) and advection: The critical peak
of φQ is now no longer pushed outward by advection but
moves inward via relaxation toward equilibrium. For the mode
with an intermediate wave number Q = 0.6 fm−1(row II), on

the other hand, the dynamics shows a mixture of the char-
acteristics seen in rows I and III—one can still recognize in
Fig. 13(IIc) at r � 6 fm the initial peak being advected out-
ward while being damped by relaxation [this is the dominant
feature in Fig. 13(Ic)] while at the same time the relaxation
dynamics that dominates in Fig. 13(IIIc) causes the solid lines
in Fig. 13(IIc) at intermediate r values to rise above the dashed
lines as time proceeds.

Taken together, the three rows of Fig. 13 illustrate that there
are two effects at play: (i) The initial peak in the fluctuations
is carried outward by advection while it is at the same time
damped by relaxation and (ii) as the location where critical
fluctuations would occur in equilibrium [indicated by the
peaks in the curves shown in Fig. 13(b)] moves inward toward
smaller r values, the actual out-of-equilibrium fluctuations at
these smaller values of r increase, with the solid curves in
Fig. 13(c) relaxing upward toward the same-colored curves in
Fig. 13(b), but more slowly due to critical slowing down. In
principle, both effects are present in all three rows, but the
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FIG. 14. Q dependence of the dynamics of the slow modes with ξ = ξ0 (top row, I) and ξ = ξ (T ) (bottom row, II), at r = 0 fm [left two
columns (a) and (b)] and r = 4 fm [right two columns (c) and (d)]. At r = 0 fm (4 fm), ξ approaches its maximum at τ ≈ 3.5 fm (2.5 fm) [see
Fig. 12(d)]. The dynamics at r = 0 fm (4 fm) before τ = 3.5 fm (2.5 fm) (“approaching CP”) is shown in panels (a) [panels (c)]; for later times
(“leaving CP”) it is shown in panels (b) and (d), respectively. [Note that the noncritical dynamics shown in the top row does not feel the critical
point CP.] In all eight panels, dashed (solid) lines show the equilibrium (nonequilibrium) values of φQ, both scaled by �0(r). See text for
discussion.

first effect is invisible in row III because at larger values of
Q the initial peak dissipates more rapidly and in addition it is
rapidly dwarfed by the increase in the noncritical fluctuations
φQ ∝ 1/n at larger r, and the second effect is invisible in row
I because relaxation is very slow at such a small value of Q.

Figure 13(d) (which should be compared with Figs. 7 and
10) shows the time evolution of the nonequilibrium entropy
density correction �sQ arising from the three modes studied
in the three rows, at four different radial positions. Again,
dashed (solid) lines reflect noncritical (critical) dynamics. The
differences in Fig. 13(Id) are qualitatively similar to those
observed between scenarios I and III in Fig. 10, while the
differences between dashed and solid lines in Fig. 13(IIId)
are more similar to those observed between scenarios I and
III in Fig. 7. This is because low-Q modes are more affected
by advection (which was included in Fig. 10) than high-Q
modes which can successfully fight advection effects (which
Fig. 7 did not include). Depending on when the system enters
the critical regime, the evolution of |�sQ(τ )| can feature two
peaks, one due to expansion before reaching Tc and another
arising from critical slowing down when entering the critical
region. While both peaks are seen in Fig. 13(IIId) at r = 0 and
2 fm [cf. Fig. 7(c)], only a single peak is observed for r � 4 fm
[cf. Figs. 7(a) and 7(b)]. Consistent with the dynamics plotted
in Fig. 13(IIc), we see in Fig. 13(IId) that the time evolution of
|�sQ| for the intermediate-Q mode interpolates smoothly be-
tween Figs. 13(Id) and 13(IIId). A notable feature, however, is
the much larger magnitude of |�sQ| in Fig. 13(IId) compared
to Figs. 13(Id) and 13(IIId): It is explained by referring to

Fig. 5 where we noted that, while off-equilibrium dynamical
effects are stronger at small Q, their contribution to |�s(τ )|
peaks at an intermediate wave number Qmax ∼ O(Qneq), due
to phase-space suppression by the factor (Q/2π )2 at small Q.

We close this subsection by showing for two radial po-
sitions (r = 0 [Figs. 14(a) and 14(b)] and 4 fm [Figs. 14(c)
and 14(d)]) seven different time snapshots (as detailed in
the legend) of the entire Q spectrum of the slow modes, for
both noncritical (top row) and critical dynamics (bottom row).
Solid lines show the dynamically evolving slow modes spec-
tra, and dashed show lines their corresponding equilibrium
spectra.25 For clarity, the dynamics is shown separately for
the system approaching Tc [Figs. 14(a) and 14(c)] and reced-
ing from Tc [Figs. 14(b) and 14(d)]; for r = 0 [Figs. 14(a)
and 14(b)] Tc is reached at τ ≈ 3.5 fm, while at r = 4 fm
[Figs. 14(c) and 14(d)] this happens somewhat earlier at τ ≈
2.5 fm. In the bottom row, the equilibrium expectation for the
magnitude of the slow modes (dashed curves) rises with time
while approaching the critical point and then begins to drop
as the critical point is passed. Note, however, that at very late
times it rises again since, as the density keeps decreasing,
the equilibrium φ̄Q grows like 1/n, as we have discussed
in Sec. V B. In all plots, high-Q modes are seen to closely
follow their equilibrium values, hardly affected by advection.
At r = 0 [Figs. 14(a) and 14(b)], low-Q modes are basically

25Note that at each r we normalize φ̄Q and φQ by �0(r), i.e., by the
initial equilibrium value for ξ = ξ0 at the same position.
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FIG. 15. Full ideal Gubser space-time evolution of (a) temperature T (contour lines) and flow velocity (uτ , ur ) (white arrows), (b) critical
Knudsen number θ/�Q for Q = 1.2 fm−1 (contour lines), and (c) entropy modification −�sQ contributed by this mode (contour lines), for a
temperature-dependent correlation length ξ (T ). The white dashed line in these panels denotes the T (τ, r) = Tc = 160 MeV isotherm; the black
dashed lines show isotherms for T (τ, r) = TH = 224 MeV and T (τ, r) = TL = 96 MeV which enclose the critical region. The dotted white line
in panel (c) shows the “freeze-out contour” with temperature T (τ, r) = Tf = 148 MeV.

frozen at their initial values while at r = 4 fm [Figs. 14(c) and
14(d)] they are visibly affected by advection: Even though
�Q = 0 at Q = 0, φ0 is seen to decrease with time instead of
being frozen because advection moves the smaller value of φ0

at smaller r to r = 4 fm.
The short summary of this subsection is that low-Q slow

modes are most strongly affected by the phenomenon of criti-
cal slowing down near a critical point.

D. Space-time evolution of nonequilibrium slow-mode effects
and modified particle emission

In this subsection, we will study, for the same setup
as in the preceding subsection, the space-time structure of
the nonequilibrium slow-mode contribution to the entropy
density, �s(τ, r). Since this observable integrates over all
slow-mode wave numbers Q, each of which evolves dif-
ferently, it provides us with a global view of the interplay
between off-equilibrium effects caused by expansion and ad-
vection before and after reaching the critical region, as well as
their additional enhancement by critical slowing down in the
critical region.

Figure 15 shows the space-time evolution of the back-
ground fluid [Fig. 15(a)] and of the critical Knudsen number
[Fig. 15(b)] and nonequilibrium entropy density modification
−�sQ for a single representative slow mode with wave num-
ber Q = 1.2 fm−1 � ξ−1 [Fig. 15(c)]. Figure 15(a) shows the
evolution of the temperature contours and of the hydrody-
namic flow, indicated by vectors. Figure 15(b) demonstrates
that critical Knudsen number is initially very large, due to
the 1/τ divergence of the longitudinal expansion rate at early
times, and afterward decays monotonically in time and also
almost monotonically in radial direction. At later times (τ � 4
fm), growing radial flow causes the critical Knudsen number
surface in (τ, r) to develop a weakly pronounced ridge along
the direction pointing to the upper right corner. Figure 15(c)
shows that the slow-mode entropy correction �sQ vanishes
on the initial condition surface at τ0 = 1 fm: This is a reflec-
tion of our (model-dependent) equilibrium initial conditions.
Quickly thereafter, however, the large longitudinal expansion
rate causes the slow mode to go out of equilibrium and

generate a sizable amount of |�sQ|, which then does not, how-
ever, decrease with the critical Knudsen number as naively
expected but, owing to the effects of critical slowing down,
remains high until the system has cooled below Tc (denoted by
the thick dashed white line), at which point it starts decreas-
ing precipitously. On the Tf = 148 MeV “freeze-out surface”,
|�sQ| is already very small and will hardly affect the particle
emission rate; the dominant phenomenological effects will
likely be of second order, arising from the integrated effects
of �sQ(τ, r) on the evolution history once the back-reaction
onto the medium is taken into account (see Ref. [18]).

The Q-integrated entropy density modification effects from
nonequilibrium slow-mode dynamics are illustrated in Fig. 16.
The four panels show four different dynamical models, as
described in the caption. For the full dynamics shown in
panel (I), the nonequilibrium entropy modification is strongly
peaked near the critical isotherm. Turning off advection
in Fig. 16(II) (which emulates the dynamics studied in
Ref. [41]) pushes the contours of constant �s closer to the
center, showing that conversely advection moves some of the
nonequilibrium entropy effects to larger radii r. Removing the
critical behavior of the correlation length ξ (T ) in Fig. 16(III),
by setting ξ = ξ0 = 1 fm, strongly reduces and largely washes
out the entropy modification effects; removing instead the
temporal evolution of cp,0/n2 and λT /cp,0 from the calculation
of the slow-mode damping rate and their equilibrium values
in Fig. 16(IV) (emulating the dynamics studied in Ref. [18])
leads to both a reduction (by about a factor 3) and a tightening
around Tc of the nonequilibrium entropy modification effects.
Interestingly, Fig. 16(IV) features a second branch of large
entropy modification at r � 6 fm, moving outward with the
expanding fluid. This is because when the peak of φ̄Q/φ̄Q,ξ0

moves inward with Tc, the peak of φQ/φ̄Q,ξ0 from the initial
condition moves outwards by advection [see Fig. 13(Ic)].
Since near the peak φQ is much larger than the local φ̄Q, this
yields a peak of −�s. Something similar was also observed
in Ref. [18].

Finally, to obtain a quantitative idea about how much, in the
absence of back-reaction onto the medium, nonequilibrium
slow-mode dynamics might be able to affect particle emission
from the freeze-out hypersurface, we use Eq. (57) to com-
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FIG. 16. Full evolution of the Q-integrated entropy density mod-
ification −�s(τ, r) for four different dynamic models: (I) full
dynamics of the slow modes, (II) dynamics with the advection effects
turned off by setting ur = 0 in the slow-mode evolution equations,
(III) dynamics with constant correlation length ξ = ξ0, and (IV)
dynamics with � = �0 and � = �0, i.e., without accounting for the
evolution of cp,0/n2 and λT /cp,0. The black and white dashed lines
are the same as in Fig. 15.

pute the total change in entropy per unit space-time rapidity,
dδS/dηs, integrated over the freeze-out surface. Since �s
drops rather precipitously below Tc, we can ballpark the uncer-
tainty of this prediction by working it out on three isotherms
with T = Tc = 160, 155, and 148 MeV. Table I shows the
entropy modification per unit rapidity on the three isotherms
T = 160, 155, and 148 MeV. We see that in all cases the ab-
solute modifications are tiny, of order 10−4 of the unmodified
value. Using the variation among the results obtained on the
three different isotherms, we estimate the uncertainty in our
calculation of the magnitude of this tiny effect to be at the few
tens of percent level. We also note that the smallness of this ef-
fect is similar in magnitude to the changes in ellipticity caused

TABLE I. The entropy modification −dδS/dηs from Eq. (57) at
midrapidity on three isotherms with T = 160, 155, and 148 MeV,
for the four dynamical scenarios shown in Figs. 16(I)–16(IV). “abs”
stands for the absolute modification while the number next to it gives
the relative modification (in units of 10−4), obtained by dividing by
the initial total entropy content dS/dηs(τ0) ≈ 5000 at midrapidity.

Case I Case II Case III Case IV

|dδS/dηs| abs 10−4 abs 10−4 abs 10−4 abs 10−4

T = 160 MeV 1.230 2.46 1.019 2.04 0.319 0.64 0.446 0.89
T = 155 MeV 1.202 2.40 0.969 1.94 0.354 0.71 0.340 0.78
T = 148 MeV 1.056 2.11 0.804 1.61 0.409 0.82 0.254 0.51

FIG. 17. (a) Estimation of the hydrodynamic homogeneity
length � ∼ 1/θ for the ideal Gubser flow used in Secs. V C and V D.
(b) Estimation of the ratio ξ/� ∼ ξθ . The black and white dashed
lines are the same as in Fig. 15.

by nonequilibrium slow-mode effects studied in Sec. V B and
consistent with the rough estimate (59).

We note that although the slow-mode contribution to
the entropy density is very small, its space-time evolution
still provides an interesting reflection of the off-equilibrium
slow-mode dynamics: Since the magnitude of �s traces the
magnitude of the expected critical point signatures (such
as cumulants of fluctuations of produced particle yields
[9,10,12,13,15,16]), Fig. 16 indicates which space-time re-
gions of the fireball might contribute most prominently to such
signals.

E. Limits of the HYDRO+ framework

In this final subsection, we return to the groundwork of this
study laid in Sec. II. The HYDRO+ framework is based on the
assumption of a separation of scales, namely ξ � � where ξ is
the correlation length and � is the hydrodynamic homogeneity
length. For a quasi-one-dimensional expansion geometry such
as Gubser flow, there is only one macroscopic length scale pa-
rameter describing the (in)homogeneity of the system, related
to the scalar expansion rate: � ∼ 1/|θ |. The necessary scale
separation (see Sec. II A) thus requires ξθ � O(1).

For ideal Gubser flow, the scalar expansion rate (14) can
be computed from the flow profile (37). Its inverse, propor-
tional to the hydrodynamic homogeneity length � ∼ 1/θ , is
plotted in Fig. 17(a). The right panel, Fig. 17(b), shows the
ratio ξ/� ∼ ξθ which needs to be sufficiently small [< O(1)]
for the HYDRO+ framework to be valid. One sees that the
framework gets stressed mostly in a narrow region around Tc

but elsewhere it works well, even at very early times where the
homogeneity length � is short. If we had used a more realis-
tic parametrization of the correlation length ξ as a function
of both T and μ, which exhibits critical growth only near
a critical point (Tc, μc) instead of on a critical isotherm Tc

as here, the (τ, r) region where HYDRO+ might break down
would shrink correspondingly.

Real heavy-ion collisions exhibit an additional feature that
is not shared by Gubser flow and therefore not reflected in
Fig 17: event-by-event quantum fluctuations in the initial spa-
tial energy density profile (also known as “bumpiness”). This
bumpiness arises from small ratios between the nucleon and
nuclear radii and between the color correlation length inside
a nucleon and the nucleon’s radius (see Refs. [55,56] for
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relevant recent studies at BES energies). Initial-state density
fluctuations on subnucleonic length scales are of particular
phenomenological importance in collisions involving small
nuclei, such as proton-proton and proton-nucleus collisions
[57]. They have the potential of reducing the range of va-
lidity of the HYDRO+ framework in small collision systems
below what is shown in Fig. 17(b) by locally shrinking the
homogeneity length � below the inverse expansion rate plot-
ted in Fig. 17(a) and thereby generating local bumps for the
ratio ξ/�.

VI. SUMMARY AND CONCLUSIONS

We presented a systematic study of critical slow-mode
evolution in an expanding quark-gluon plasma (QGP) that
passes close to a critical point in the QCD phase diagram.
To achieve conceptual clarity of the mechanisms control-
ling the critical slow-mode dynamics we used an analytical
model, ideal Gubser flow, for the expansion of the QGP back-
ground fluid which includes key features of the dynamics of
the hot and dense medium created in relativistic heavy-ion
collisions, in particular simultaneous and mutually coupled
longitudinal and transverse flows. While the use of such a
simplified expansion model robs us of the opportunity to make
direct comparison with experimental data [this will be left
for future work employing the (3+1)-dimensional numerical
BESHYDRO+ code developed in the context of the present
work and briefly described in the Appendix], it provides us
with the opportunity to selectively zoom in onto key mecha-
nisms driving the critical slow-mode evolution, by tuning the
background flow analytically.

Just like other dissipative phenomena in a relativistic fluid,
critical slow-mode dynamics is controlled by the competition
between the rate of macroscopic hydrodynamic expansion
(which drives the critical slow modes away from thermal equi-
librium) and relaxation processes on length scales of order the
correlation length ξ and shorter, encoded in a wave number
dependent relaxation rate �Q, that help the slow modes to
thermalize. Slow-mode relaxation, as well as any other dis-
sipative effects to which slow-mode relaxation contributes,
is affected by critical slowing down, i.e., by a dramatic re-
duction of the relaxation rate �Q close to the critical point
where the correlation length ξ for order parameter fluctuations
becomes large.26 This comes in addition to a leading quadratic
(∼Q2) wave-number dependence of �Q which slows down
the thermalization of long wavelength fluctuations already
in the absence of a critical point. The competition between
macroscopic expansion and microscopic relaxation is cap-
tured by the (Q-dependent) critical Knudsen number Kn =
θ/�Q which was shown in this work to be a good predictor
for the (in)ability of the critical slow modes to follow the
dynamical evolution (via expansion of the background fluid)
of their space-time dependent equilibrium value.

26In fact, the critical slowing down of slow-mode nonequilibrium
dynamics is known to contribute, through its correction �p to the
equilibrium pressure, to the critical slowing down of the relaxation
of the bulk viscous pressure [18,28].

An important aspect of critical slow-mode dynamics in an
expanding background is the phenomenon of advection, i.e.,
the outward transport of the slow mode with the expanding
fluid by collective transverse flow which was ignored in some
earlier work (e.g., Ref. [41]): As the system cools by lon-
gitudinal expansion, the critical surface T (τ, r) = Tc moves
inward but, especially for small Q where relaxation is anyhow
suppressed, the critical maximum of the slow mode does not
follow closely that inward motion of the critical surface but
may instead even move outward, driven by outward radial
flow transverse to the beam direction.

The present work is, to the best of our knowledge, the
first one that studies critical slow-mode dynamics in its full
complexity27 in a more or less realistic setting for relativistic
heavy-ion collisions. We presented the space-time evolution
of the full spectrum of wave numbers Q, as temporal pro-
files at fixed locations and as snapshots of spatial profiles
at varying times, and we also computed their contribution
to the overall entropy balance, in both space and time, in
order to gauge the importance of feedback effects of critical
slow-mode dynamics on the hydrodynamical bulk evolution.
While the critical slow modes φQ are expected to make a
substantial contribution to fluctuation observables, we found
that their corrections to the bulk entropy density and pres-
sure, as well as to other macroscopic characteristics of the
expanding fireball such as its elliptic geometric deformation
ε2 in noncentral heavy-ion collisions, are exceedingly small,
of relative order 10−4. This confirms similar estimates pre-
sented in Ref. [18] for a simpler dynamical setting for the slow
modes. We therefore expect this feature to survive in upcom-
ing fully realistic (3+1)-dimensional numerical simulations
of the coupled macroscopic near-equilibrium expansion and
the microscopic nonequilibrium kinetic slow-mode dynamics
that include all back-reaction effects; the tools for performing
such a comprehensive study were developed and presented in
this work.

Confirming the smallness of back-reaction effects from
nonequilibrium critical fluctuation dynamics onto the bulk
properties of the fluid will be important for two reasons: It
will firmly direct our attention away from bulk hydrodynamic
features and toward direct fluctuation measurements when
searching for critical point signatures, and it will simplify the
description of the hydrodynamic fireball evolution by allow-
ing us to ignore back-reaction effects without noticeable loss
of accuracy.
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APPENDIX: VALIDATION OF BESHYDRO+
Although in this work we studied the evolution of the slow

modes on top of a fixed ideal Gubser flow, with conformal
EoS and without back reaction, the HYDRO+ framework is
embedded in the BESHYDRO code [37], which can simulate
the dissipative hydrodynamics at nonzero baryon density with
realistic EoS for any expansion geometry; it also properly cou-
ples the evolution of the background fluid and the slow modes
by including the back reaction. In this Appendix, we illustrate
some numerical methods and the validation of BESHYDRO+.

At nonzero baryon density, one needs solve the “root-
finding” problem [37], where one computes (e, n) in LRF and
uμ from the energy-momentum tensor and net baryon current
in the global computational frame

T μν = e uμuν − p(+)�
μν + πμν, (A1)

Nμ = n uμ + μ, (A2)

where p(+) is given by,

p(+)(e, n) = p(e, n) + �p(e, n, φ(e, n)) , (A3)

which includes the back reaction �p from Eq. (27).
Here p(e, n) implicitly includes the bulk viscous pressure,
i.e., p(e, n) = peq(e, n) + �, and the equilibrium pressure
peq(e, n) is given by the EoS.

The modified root finder in Ref. [37] can be extended to
include contributions from the slow modes to solve the root-
finding problem in BESHYDRO+. We introduce

Mτ = T ττ − πττ = (e + p(+) )(u
τ )2 − p(+), (A4)

Mi = T τ i − πτ i = (e + p(+) )u
τ ui (i = x, y, ηs), (A5)

Jτ = Nτ − nτ = nuτ , (A6)

and the flow speed, v ≡
√

1 − 1/(uτ )2. Then we solve itera-
tively

v ≡ M

Mτ + p(+)
= M

Mτ + p(e, n) + �p(e, n, φ(e, n))
,

(A7)
where M ≡

√
(Mx )2 + (My)2 + τ 2(Mη )2 and (e, n) are both

functions of v:

e(v) = Mτ − vM , n(v) = Jτ
√

1 − v2 . (A8)

When �p is not added to Eq. (A7) (as done in this work), the
back-reaction is off and has no effects on the evolution of the
background fluid.

(a) (b)

FIG. 18. Comparison of φQ/φ̄Q from semianalytical solutions
(solid lines) and numerical results from BESHYDRO+ (dashed lines)
for two slow modes with (a) Q = 0.5 fm−1 and (b) Q = 1.2 fm−1.
For the comparison, the ideal Gubser flow provided by BESHYDRO

[37] was used with τ0 = 1 fm, q = 1 fm−1, and C = 1.2; for critical
dynamics, the parametrization of the correlation length in Eq. (32)
was used; and otherwise the setup is the same as in Sec. V C. The
overall agreement is excellent, though some small wiggles can be ob-
served in the numerical solution which originate from the numerical
methods used to simulate the background fluid (see also Ref. [37]).

Another numerical issue involves solving the equations of
motion (16) for the slow modes which share similarities with
the evolution equations for the dissipative flows, including
μ, πμν , and especially �. For the dissipative flows, those
equations are numerically solved by the Kurganov-Tadmor
(KT) algorithm [58], with a second-order explicit Runge-
Kutta (RK) ordinary differential equation solver [59] for the
time integration step in BESHYDRO [37], after being written
in first-order flux-conserving form. Similarly, Eq. (16) can be
rewritten in the same form as

∂τφQ + ∂x(vxφQ) + ∂y(vyφQ) + ∂η(vηφQ) = SQ, (A9)

where vi ≡ ui/uτ (i = x, y, ηs) is the 3-velocity of the fluid
and SQ is the source term

SQ = − 1

uτ
�Q(φQ − φ̄Q) + φQ∂iv

i . (A10)

Here we used ∂iv
i ≡ ∂xv

x + ∂yv
y + ∂ηv

η. The slow-mode
equations can then be solved using the same KT-RK algorithm
by straightforwardly extending BESHYDRO.

BESHYDRO has been tested by comparing to semianalytical
solutions [37], and in the same spirit, we validate the numer-
ical methods of the extended root finder (A7) and equations
of motion (A9) involving the slow modes, using the setup
described in the caption of Fig. 18. As one can see from the
figure, the agreement is excellent. Once such a numerically
precise evolution of the slow modes has been achieved it is
easy to derive the remaining off-equilibrium corrections, e.g.,
those to the pressure and entropy. The code is open source and
can be freely downloaded from Ref. [60]. Interested readers
are encouraged to repeat the test with the setup described in
the HydroPlus branch, especially after they make improve-
ments to the code.
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