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Instanton-motivated study of spontaneous fission of odd-A nuclei
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Using the idea of the instanton approach to quantum tunneling we try to obtain a method of calculating
spontaneous fission rates for nuclei with an odd number of neutrons or protons. This problem has its origin
in the failure of the adiabatic cranking approximation which serves as the basis in calculations of fission
probabilities. Self-consistent instanton equations, with and without pairing, are reviewed and then simplified
to non-self-consistent versions with the phenomenological single-particle potential and seniority pairing inter-
action. Solutions of instanton-like equations without the pairing and actions they produce are studied for the
Woods-Saxon potential along realistic fission trajectories. Actions for unpaired particles are combined with
cranking actions for even-even cores and fission hindrance for odd-A nuclei is studied in such a hybrid model.
With the mass parameters for neighboring odd-A and even-even nuclei assumed equal, the model shows that
freezing the Kπ configuration leads to a large overestimate of the fission hindrance factors. Actions with adiabatic
configurations mostly show not enough hindrance; instanton-like actions for blocked nucleons correct this, but
not sufficiently.
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I. INTRODUCTION

Nuclear fission is thought to be a collective process, classi-
cally envisioned in analogy to the fragmentation of a liquid
drop. In reactions induced by neutrons and light or heavy
ions, fission is one of many possible deexcitation channels
of a formed compound nucleus. On the other hand, sponta-
neous fission is a decay of the nuclear ground state (g.s.),
which exhibits its meta-stability and involves quantum tunnel-
ing through a potential barrier. In a theoretical approach, the
fission barrier follows from a model of the shape-dependent
nuclear energy. In practical terms, it is calculated either
from a self-consistent mean-field functional or a microscopic-
macroscopic model, as a landscape formed by the lowest
energies E (q) at fixed values of a few arbitrarily chosen
coordinates q = (q1, . . . , qi, . . .) (for simplicity assumed di-
mensionless) describing the nuclear shape. The obscure part
of the current approach relates to (a) the likely insufficiency
of included coordinates and (b) a description of tunneling
dynamics, essentially shaped after the Gamow method, but
without a clear understanding of mass parameters and con-
jugate momenta entering the formula for decay rate.

The experimentally well-established presence of pairing
correlations in nuclei gives a rationale for using cranking [1,2]
or the adiabatic time-dependent Hartree-Fock(-Bogolyubov)
[ATDHF(B)] approximation [3–5] in the description of fis-
sion in even-even (e-e) nuclei. Indeed, because the lowest
two-quasiparticle excitation in such nuclei has an energy of
at least twice the pairing gap, 2�, which in heavy nuclei
amounts to more than 1 MeV, one can, for collective velocities
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|h̄q̇| reasonably smaller than that, solve the time-dependent
Schrödinger (or mean-field) equation to first order in q̇ and ob-
tain the kinetic energy of shape changes: 1

2

∑
i j Bqiq j (q)q̇iq̇ j ,

with cranking (or ATDHFB) mass parameters Bqiq j (q). Then
one can apply the Jacobi variational principle to the imaginary
under-the-barrier motion to find the quasiclassical tunneling
path q(τ ) by minimizing action:

S[q(τ )] =
∫ qfin

qini

∑
i

pidqi

=
∫ qfin

qini

√
2Bqq(q(τ ))[E (q(τ )) − E0]dq. (1)

Here, pi = ∑
j Bqiq j (q)q̇ j are the conjugate momenta; q

(without index) is an effective coordinate along a path, usually
the one of qi that controls elongation of the nucleus; and
Bqq = ∑

kl Bqkql

dqk

dq
dql

dq is the effective mass parameter along
the fission path with respect to q. The Jacobi principle requires
that (a) qini and qfin—the initial and final points of the path
through a barrier—be fixed for all tunneling paths and (b)
on each trial path, E (q) − 1

2

∑
i j Bqiq j (q)q̇iq̇ j (the potential

minus kinetic energy) be constant and equal to E0 = E (qini ) =
E (qfin), usually chosen as Eg.s. + Ez.p.—the g.s. energy aug-
mented by the zero-point (z.p.) energy of oscillations around
the g.s. minimum in the direction of fission, Ez.p. = 1

2 h̄ω0.
The spontaneous fission rate is given to leading order by
( ω0

2π
)e−2Smin/h̄, with Smin being the minimal action. By the first

equality in Eq.(1), S equals the integral of twice the collective
kinetic energy, Bqqq̇2, with (h̄q̇)2 = 2[E (q)−E0]

Bqq
, over the time

of passing the barrier. Estimating a posteriori collective ve-
locities of the fictitious under-barrier motion for heavy nuclei,
with typical cranking mass parameter for the Woods-Saxon
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potential, Bqq � 200h̄2/MeV, and the fission barrier �7 MeV,
one obtains h̄q̇ � 0.25 MeV, so the error of the cranking
approximation might be believed moderate.

The situation changes rather dramatically for odd-Z or/and
odd-N nuclei. For an odd number of particles, their contribu-
tion to the cranking mass parameter Bqiq j , derived as if the
adiabatic approximation were legitimate, reads:

Bqiq j = 2h̄2

⎡⎣ ∑
μ,ν �=ν0

〈μ| ∂ ĥ
∂qi

|ν〉〈ν| ∂ ĥ
∂q j

|μ〉
(Eμ + Eν )3 (uμvν + uνvμ)2

+1

8

∑
ν �=ν0

(
ε̃ν

∂�
∂qi

− �∂ε̃ν

∂qi

)(
ε̃ν

∂�
∂q j

− �∂ε̃ν

∂q j

)
E5

ν

⎤⎦
+2h̄2

∑
ν �=ν0

〈ν| ∂ ĥ
∂qi

|ν0〉〈ν0| ∂ ĥ
∂q j

|ν〉
(Eν − Eν0 )3 (uνuν0 − vνvν0 )2. (2)

Here, the odd nucleon occupies the orbital ν0 in the g.s., ĥ
is the mean-field single-particle (s.p.) Hamiltonian, εμ are
its eigenenergies, ε̃ν = εν − λ, Eμ = (ε̃2

μ + �2)1/2, and u and
v are the usual BCS amplitudes. A common pairing gap �

and Fermi energy λ were assumed for the g.s. and its two-
quasiparticle excitations: those with the odd particle in the
state ν0 which contribute in the square bracket that has the
same form as the mass parameter for an e-e nucleus, and those
with the odd particle in the state ν �= ν0 and the orbital ν0

paired, given by the last term of the formula. The latter be-
comes nearly singular, ∝(Eν0 − Eν )−3, at close avoided level
crossings where Eν0 − Eν can be of the order of keV or less.

This invalidates the very assumption underlying the
cranking formula, except for ridiculously small collective ve-
locities. But there is still another deficiency: a departure from
the symmetry preserved on a part of the fission trajectory
often produces a negative contribution to the inertia param-
eter whose magnitude would depend on the proximity of
the relevant crossing of levels of different symmetry classes.
Although some calculations of fission half-lives for odd nu-
clei with the cranking mass parameters (2) were done in the
past, see, e.g., Ref. [6], the above-mentioned problems make
the precise minimization of action (1) for those nuclei both
questionable and practically very difficult—a good illustration
of a near-singular cranking mass parameter [calculated with
a formula more refined than Eq. (2)] in the odd nucleus is
provided in Ref. [7] (the middle panel of Fig. 4 there) [8].

The well-known experimental evidence, reviewed recently
in Ref. [9], shows that the spontaneous fission rates of odd
nuclei are three to five orders of magnitude smaller than
those of their e-e neighbors. Although the explanation usually
invokes the specialization energy—an increase in the fission
barrier by the blocking of one level by a single nucleon—a
quantitative understanding is lacking at present. In particular,
the combination of axial symmetry of the nuclear deformation
and very different densities of s.p. levels with low- and high-

quantum numbers (
 being the projection of the s.p. angular
momentum on the symmetry axis of a nucleus) could suggest
a higher specialization energy, and thus a smaller fission rate,

for configurations based on high-
 orbitals, but the data [9]
contradict this.

While estimates of fission half-lives rely on the assumption
of nearly adiabatic motion, doubtful for odd-A nuclei, the real-
time solutions of Schrödinger-like dynamics are regular for
any velocity profile q̇ and any avoided crossings. In general,
they lead to a population of levels above the Fermi energy. An
analogous possibility must exist in the fictitious imaginary-
time motion, pertinent to quantum tunneling. In this light, a
consideration of nonadiabatic tunneling—with fission paths
formed at least in part by nonadiabatic configurations—
presents itself as an interesting subject. Beyond-cranking
effects could provide corrections to the standard cranking
spontaneous fission rates in e-e nuclei and can be crucial for
spontaneous fission of odd-A nuclei and high-K isomers

In this paper, we present an attempt towards replacing
the adiabatic cranking approximation by a scheme including
nonadiabatic fission paths, motivated by the instanton method
[10–14]. Instantons are solutions with infinite period to time-
dependent mean-field equations in imaginary time τ = it ,
with the nuclear g.s. wave function as the boundary value.
They arise from the saddle-point approximation to the path
integral representation of the propagator and give the lead-
ing contribution to the spontaneous fission rate of the form
Ainst exp(−Sinst/h̄). Here, Sinst—the instanton action—is the
counterpart of 2S[q(τ )] in Eq. (1), while the prefactor Ainst—
the ratio of determinants including frequencies of quadratic
fluctuations around the instanton and the g.s. (for review see,
e.g., Refs. [15–17])—will not be considered in the following.
The instanton with the smallest action (there can be more than
one because the instanton equation determines the local min-
ima of action) gives the fission half-life without the necessity of
defining mass parameters. The resulting fission path involves
all degrees of freedom of the mean-field state, not only shape
parameters.

The difficulty in solving for a self-consistent instanton
including pairing is beyond that of solving real-time TDHFB
equations: the generically exponential τ dependence of the
HFB Z matrix [18], introducing components differing by or-
ders of magnitude, has to be found from equations nonlocal
in τ (see Sec. II C). Here, we treat the self-consistent the-
ory as a motivation and solve the imaginary-time-dependent
Schrödinger equation (iTDSE) with the phenomenological
Woods-Saxon (W-S) potential to calculate action along vari-
ous chosen paths. We use micro-macro energy for E (q). Since
we reject cranking mass parameters for odd-A nuclei, we have
to provide q̇ without them. To this end we use cranking mass
parameters of the neighboring e-e nucleus. With this prescrip-
tion, we can calculate manifestly beyond-cranking actions and
study their behavior. Although we formulate equations with
pairing, in the present paper we present iTDSE instanton-like
solutions without it. Then, we combine instanton-like solu-
tions for the odd nucleon with the cranking action with pairing
for the e-e core in a hybrid model to study fission hindrance
in odd-A nuclei. Within this model we calculate and compare
fission half-lives obtained with and without constraining the

π (with π parity) g.s. configuration.

The approach presented cannot be as yet a basis for the
systematic minimization of action over fission paths. More-

054603-2



INSTANTON-MOTIVATED STUDY OF SPONTANEOUS … PHYSICAL REVIEW C 102, 054603 (2020)

over, it differs from the instanton method by ignoring the
anti-Hermitian part of the imaginary-time mean field. We
think, however, that it presents some features of the instan-
ton method and may be useful for developing either a more
refined non-self-consistent method or ways to implement
the self-consistent instanton treatment of spontaneous fission
half-lives, including odd-A nuclei and high-K isomers.

The paper is organized as follows: in Sec. II we briefly
describe the instanton formalism with and without pairing,
specifying a simplification of each of them to a non-self-
consistent version with the phenomenological s.p. potential.
To provide an illustration of imaginary-time solutions, in
Sec. III we discuss the two-level model, in particular the
dependence of action on the interaction between levels and
the collective velocity. Properties of solutions and actions
obtained from the iTDSE with the realistic W-S potential
are described in Sec. IV, including an example of the action
calculation along the path through nonaxial deformations.
Section V contains a study of the fission hindrance in odd nu-
clei made within a hybrid model utilizing adiabatic cranking
action for the e-e core and the iTDSE action without pairing
for the odd nucleon. This approach is meant to mimic a model
with pairing which we have not solved yet. As a byproduct,
we study the effect of freezing the configuration along the path
of axially symmetric deformations on the fission rate. This is
done under the assumption that the collective velocity along a
given path in an odd-A nucleus is as if it had the mass param-
eter of the e-e neighbor; stated otherwise, the difference in q̇
between the odd-A nucleus and its e-e A − 1 neighbor comes
solely from their different fission barriers. A summary and
conclusions are given in Sec. VI. In the Appendixes we derive
expressions for the Floquet exponent and action for periodic
solutions within the cranking approximation (Appendix A),
describe the method of solution of the iTDSE (Appendix B),
test the reliability of the calculated actions (Appendix C), and
discuss the problem of calculating action along paths through
nonaxial shapes (Appendix D).

II. INSTANTON-MOTIVATED APPROACH

The instanton approach to nuclear fission was formulated
in the mean-field setting in Refs. [11,12,19–21]. After re-
viewing the self-consistent formulation without pairing in
Sec. II A, in Sec. II B, we formulate the non-self-consistent
version with the phenomenological nuclear potential, the so-
lutions to which we present in this work. For completeness,
because the pairing interaction is crucial to nuclear fission,
we review also the self-consistent equations with pairing in
Sec. II C and formulate the model with the phenomenological
potential and the monopole pairing with the self-consistent
pairing gap in Sec. II D.

A. Instantons of Hartree-Fock equations

A transition to imaginary time, t → −iτ , trans-
forms TDHF equations for s.p. amplitudes ψk (t ) into
imaginary-TDHF (iTDHF) equations for amplitudes
φk (x, τ ) = ψk (x,−iτ ), with the complex-conjugate
amplitudes ψ∗

k (t ) becoming ψ∗
k (x,−iτ ) = φ∗

k (x,−τ ),

so that the scalar products 〈ψk (t )|ψl (t )〉 transform to
〈φk (−τ )|φl (τ )〉. Mean-field solutions dominating the
quasiclassical tunneling rate are periodic [11,12], so the
iTDHF equations acquire the additional terms ζkφk , with ζk

being Floquet exponents with the dimension of energy, which
ensure periodicity:

h̄
∂φk (τ )

∂τ
= −(ĥ(τ ) − ζk )φk (τ ). (3)

The mean-field Hamiltonian ĥ(τ ) = ĥ[φ∗(−τ ), φ(τ )] is de-
fined by ĥ(τ )φk (τ ) = δH/δφ∗

k (−τ ), where H(τ ) is the energy
overlap 〈�(−τ )|Ĥ |�(τ )〉, playing the same role as energy in
the usual TDHF,

H(τ ) = H[φ∗(−τ ), φ(τ )]

=
∫

d3x

{∑
k occ

h̄2

2m
∇φ∗

k (−τ ) · ∇φk (τ )

+ V[φ∗(−τ ), φ(τ )]

}
, (4)

where | �(τ )〉 is the Slater determinant built of occupied or-
bitals {φk (τ )}, and V is a two-body interaction energy density
composed as in the HF but with φk (τ ) in place of ψk (t )
and φ∗

k (−τ ) in place of ψ∗
k (t ). The instanton solving Eq. (3)

that describes quantum tunneling, called bounce, has to ful-
fill specific conditions: amplitudes at the boundary are equal
to static Hartree-Fock (HF) solutions at the metastable state
(m.s.) minimum, φk (−T/2) = φk (T/2) = ψHF

k , with HF en-
ergy Em.s., while the states φk (τ = 0) form a normalized
Hartree-Fock state with the same energy Em.s. at the outer
slope of the barrier, which corresponds to the exit point from
the barrier qfin in Eq. (1). An infinite period T corresponds to
a decay from the m.s.; the evolution becomes infinitely slow
close to the m.s. minimum. Hence, ∂φk/∂τ become zero as
τ → ±∞, and Eqs. (3) reduce there to the static HF equa-
tions. So, in the self-consistent theory, the Floquet exponents
are equal to s.p. energies at the m.s. state.

Both energy overlaps H(τ ) and the mean-field Hamil-
tonian ĥ(τ ) depend on φk (τ ) and φk (−τ ), so Eqs. (3) are
nonlocal in τ and one cannot solve them as an initial value
problem. Together with the periodicity condition, this makes
the iTDHF equations a kind of a nonlinear boundary-value
problem in four dimensions.

Equations (3) conserve energy overlap H(τ ), diagonal
overlaps of solutions, and give the exponential τ dependence
to their nondiagonal overlaps. As the HF solutions at the
boundary are orthonormal, so remain the bounce solutions:

〈φi(−τ )|φ j (τ )〉 = δi j . (5)

From Ĥ† = Ĥ , one has H(−τ ) = H∗(τ ), and the mean
field Hamiltonian ĥ(τ ) is in general not Hermitian, but ful-
fils the condition: ĥ(−τ ) = ĥ†(τ ). It may be presented as
a sum of its Hermitian and anti-Hermitian parts, ĥ(τ ) =
ĥR(τ ) + ĥA(τ ), with ĥR(−τ ) = ĥR(τ ) = ĥ†

R(τ ) and ĥA(−τ ) =
−ĥA(τ ) = ĥ†

A(τ ); the τ -odd, anti-Hermitian part ĥA comes
from the τ -odd parts of densities building energy overlap
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H(τ ). In tunneling, at least one τ -odd density is pro-
vided by the current density j in imaginary time, given by
j(τ ) = ∑

k[φk (τ )∇φ∗
k (−τ ) − φ∗

k (−τ )∇φk (τ )]/2, [20], ful-
filling: j(−τ ) = −j∗(τ ). Decomposing amplitudes into τ -
even and τ -odd parts, φk (τ ) = ϕk (τ ) − ξk (τ ), φk (−τ ) =
ϕk (τ ) + ξk (τ ), one has

j =
∑
k occ

[Re(ϕ∗
k ∇ξk − ξ ∗

k ∇ϕk ) + iIm(ξ ∗
k ∇ξk − ϕ∗

k ∇ϕk )].

(6)
One can see that, even if φk are purely real, the τ -odd com-
ponents ξk in the first part of this expression generate the
τ -odd anti-Hermitian mean field ĥA. For small collective ve-
locities, the τ -odd mean field ĥA is a direct analogy in the
imaginary-time formalism of the Thouless-Valatin potential
of the ATDHF method in real time [22].

After finding iTDHF solutions, one can calculate action.
Since in the mean-field theory with a Slater determinant
�(t ), 〈�(t ) | ih̄∂t − Ĥ | �(t )〉 plays the role of Lagrangian,
action

∫
dt〈�(t ) | ih̄∂t | �(t )〉 in the imaginary-time version

becomes [11,12]

S = h̄
∫ T/2

−T/2
dτ

N∑
i=1

〈φi(−τ )|∂τφi(τ )〉

=
∫ T/2

−T/2
dτ

N∑
i=1

〈φi(−τ )|ζi − ĥ(τ )|φi(τ )〉, (7)

where the summation runs over the occupied s.p. states.
Contrary to the unfortunate and erroneous statement in

Ref. [20] [in the paragraph containing the formula (14) there],
repeated in Ref. [21] [after the formula (7) there], this expres-
sion is obviously composed of changes in φi(τ ) parallel to
φi(−τ ).

B. Non-self-consistent instanton-motivated approach

To gain some idea about solutions of imaginary-time-
dependent Schrödinger-like equations with instanton bound-
ary conditions and resulting actions we replace the mean-field
Hamiltonian ĥ[φ∗(−τ ), φ(τ )] by a simple one with the
phenomenological W-S s.p. potential. Releasing the self-
consistency makes these equations linear iTDSEs and re-
moves nonlocality in τ , thus considerably simplifying the
solution. Certainly, we lose generality: the non-Hermitian na-
ture of the mean potential in tunneling is lost, and we have to
resort to the usual parametrization of nuclear shapes and have
to externally provide the collective velocity q̇(τ ) which, in
the self-consistent theory, would follow from the energy con-
straint H(τ ) = Em.s.. However, we gain a possibility to study
iTDSE solutions and their actions for manifestly nonadiabatic
imaginary-time motions along trial fission paths, which in cur-
rent treatments of fission are commonly considered realistic.
To have an approximate energy conservation we assume the
effective collective velocity given by

Beven
qq (q)q̇2 = 2[E (q) − Em.s.], (8)

with

dτ = dq

q̇(τ )
. (9)

Here, E (q) is the microscopic-macroscopic energy and
Beven

qq (q) is the adiabatic mass parameter along the fission path
of the even-even nucleus—the one in question or the nearest
neighbor in the case of odd A. The motivation will be given
in Sec. V B. This whole procedure may be viewed as an
attempt to simplify the self-consistent theory to a micro-macro
version.

As a result, the phenomenological s.p. Hamiltonian ĥ(τ ) is

ĥ(q(τ )) = − h̄2

2m
∇2 + V (q(τ )), (10)

where V is the phenomenological s.p. potential, including
Coulomb repulsion for protons, depending on the collective
coordinate q which itself depends on τ . In solving Eq. (3)
with the above s.p. Hamiltonian along a given path we restrict
the calculation to the subspace spanned by N adiabatic s.p.
orbitals ψμ(q). In this subspace, there are N bounce solutions
φi(τ ), each of which tends to the s.p. orbital ψi(qmin) at
the metastable minimum as T → ±∞. By expanding these
solutions onto adiabatic orbitals

φi(τ ) =
∑

μ

Cμi(τ )ψμ(q(τ )), (11)

we obtain the following set of equations for the square matrix
of the coefficients Cμi(τ ):

h̄
∂Cμi

∂τ
+ q̇

∑
ν

〈
ψμ(q(τ ))

∣∣∣∣∂ψν

∂q
(q(τ ))

〉
Cνi

= [ζi − εμ(q(τ ))]Cμi. (12)

Here, ζi, i = 1, . . . ,N , are the Floquet exponents in imag-
inary time, which for the self-consistent instanton would
be equal to the s.p. energies at the metastable minimum,
ζi = εi(qmin). However, for a finite imaginary-time interval
[−T/2, T/2], ζi �= εi(qmin), although they should tend to this
limit when T → ∞.

The conservation of overlaps 〈φi(−τ ) | φ j (τ )〉 = δi j leads
to the following condition on Cμl (τ ):

N∑
μ=1

C∗
μi(−τ )Cμ j (τ ) = δi j . (13)

This means that the matrix Cμi(τ ) has the inverse C+(−τ ) and
the adiabatic states can be expanded on (all N ) bounce states:

ψμ(q(τ )) =
N∑
i=1

C∗
μi(−τ )φi(τ ) =

N∑
i=1

C∗
μi(τ )φi(−τ ), (14)

where in the second equality we assumed that q(τ ) = q(−τ )
which strictly holds for any real bounce observable: q(τ ) =∑

i occ〈φi(−τ ) | q̂ | φi(τ )〉 = q∗(−τ ). Then, the orthonormal-
ity of ψμ, combined with the overlaps (13), produces the
relation

N∑
i=1

Cμi(τ )C∗
νi(−τ ) = δμν. (15)
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Thus, the quantity pμi(τ ) = C∗
μi(−τ )Cμi(τ ) may be consid-

ered as a quasi-occupation (it can be negative or complex in
the general case) of the adiabatic level μ in the bounce solu-
tion i, with

∑
μ pμi(τ ) = 1, or as the quasi-occupation of the

bounce state i in the adiabatic state μ, where
∑

i pμi(τ ) = 1.
The sums over the occupied states:

∑
i occ pμi(τ ) are diagonal

elements ρμμ(τ ) of the analog of the density matrix ρμν (τ )
determined by ρμν (τ ) = 〈�(−τ ) | a†

νaμ|�(τ )〉.
From Eqs. (11) and (14) one obtains the relation:

φi(−τ ) =
N∑
j=1

( N∑
μ

Cμi(−τ )C∗
μ j (−τ )

)
φ j (τ )

=
N∑
j

[
C†(−τ )C(−τ )

]
jiφ j (τ ), (16)

where the matrix C†(−τ )C(−τ ) is Hermitian and positive.
One can define C†(−τ )C(−τ ) = exp[2Ŝ (τ )]T so that Ŝ (τ ) is
τ -odd and Hermitian and

φi(−τ ) = exp(Ŝ (τ ))ψ0i(τ ), φi(τ ) = exp(−Ŝ (τ ))ψ0i(τ ),
(17)

where the states ψ0i(τ ) are τ -even and orthonormal, so they
could be considered as some “mean” TDHF orbitals related to
the bounce solutions φi(τ ) [20].

Action is equal to the sum over the occupied iTDHF solu-
tions:

S = Re
∑
i occ

∫ T/2

−T/2
〈φi(−τ )|ζi − ĥ|φi(τ )〉

=
∫ T/2

−T/2

∑
i occ

N∑
μ=1

[ζi − εμ(q(τ ))]C∗
μi(−τ )Cμi(τ )dτ, (18)

so, using the quasi-occupations pμi, it can be written as

S =
∫ T/2

−T/2

∑
i occ

N∑
μ=1

[ζi − εμ(q(τ ))]pμi(τ )dτ. (19)

From this, the sum of actions for all individual s.p. bounce
states is the integral of a difference between two sums: of all
Floquet exponents and all adiabatic s.p. energies:

∑N
i=1(ζi −

εi ). It can be shown that this integral vanishes [23], so the sum
of all actions is zero.

When the collective motion is nearly adiabatic, one recov-
ers from this formalism action (1) with the cranking mass
parameter and, usually not mentioned, the related formula for
the Floquet exponent—see Appendix A.

C. Instantons with pairing interaction

In the presence of pairing interactions a proper mean-field
formalism is the imaginary-time-dependent HFB (iTDHFB)
method. The Bogolyubov transformation from the fixed,
time-independent creation operators a†

μ to the time-dependent

quasiparticle creation operators α
†
i (t ), after passing to imagi-

nary time t → −iτ , can be written as [20]

α
†
i (τ ) =

∑
μ

[Aμi(τ )a†
μ + Bμi(τ )aμ],

αi(−τ ) =
∑

μ

[A∗
μi(−τ )aμ + B∗

μi(−τ )a†
μ], (20)

where amplitudes Aμi(t ) and Bμi(t ) became functions of τ ,
and their complex conjugate A∗

μi(t ) and B∗
μi(t ) depend now on

−τ . The unitarity of the Bogolyubov transformation in real
time translates into the following condition in imaginary time:(

AT (τ ), BT (τ )
B†(−τ ), A†(−τ )

)−1

=
(A∗(−τ ), B(τ )

B∗(−τ ), A(τ )

)
. (21)

The Hamiltonian overlap 〈�(τ ) | Ĥ | �(−τ )〉 can be ex-
pressed by the following contractions:

〈�(τ ) | a†
νaμ | �(−τ )〉 = ρμν (τ ) = (B∗(−τ )BT (τ ))μν,

〈�(τ ) | aνaμ | �(−τ )〉 = κμν (τ ) = (B∗(−τ )AT (τ ))μν,

〈�(τ ) | a†
νa†

μ | �(−τ )〉 = κ̃μν (τ ) = (A∗(−τ )BT (τ ))μν,

(22)

which, due to conditions (21), have the following properties
when regarded as matrices:

ρ(−τ ) = ρ†(τ ),

κT (τ ) = −κ (τ ),

κ̃ (τ ) = κ†(−τ ). (23)

Using these properties and proceeding as in the derivation of
the TDHFB equations we arrive at the following imaginary-
TDHFB (iTDHFB) equations written symbolically (where
only the second index of the amplitudes is explicit):

h̄∂τ

(Ak (τ )
Bk (τ )

)
+
(

ĥ(τ ) − λ, �̂(τ )
−�̂∗(−τ ), −(ĥ∗(−τ ) − λ)

)(Ak (τ )
Bk (τ )

)
= ζk

(Ak (τ )
Bk (τ )

)
. (24)

Here, for a given two-body interaction
1
2

∑
μνγ δ vμνγ δa†

μa†
νaδaγ , the self-consistent potential

�μν (τ ) = ∑
γ δ (vμγ νδ − vμγ δν )ρδγ (τ ) and the pairing

potential �μν (τ ) = ∑
γ δ vμνγ δκγ δ (τ ) have the properties

�̂(−τ ) = �̂†(τ ), and �̂T (τ ) = −�̂(τ ). The same properties
hold for the mean fields with additional rearrangement terms
that follow from a density functional. These ensure the
property ĥ(−τ ) = ĥ† + (τ ) of the mean-field Hamiltonian (t̂
is kinetic energy) ĥ(τ ) = t̂ + �̂(τ ), and the same property
ĥ(−τ ) = ĥ†(τ ) of the total HFB mean-field Hamiltonian ĥ(τ )
given by the matrix in Eqs. (24). As a result of this, Eqs. (24)
conserve both energy overlap 〈�(τ ) | Ĥ | �(−τ )〉 and all
relations (21). The terms with constants ζk on the right-hand
side (r.h.s.) fix the periodicity of solutions and these constants
are equal to the quasiparticle energies at the HFB m.s. The
bounce solution to Eqs. (24) has to be periodic and provide a
path in the space of imaginary-time quasiparticle vacua which
connects the HFB m.s. | �(±T/2)〉 =| �gs〉 with some HFB
state | �(τ = 0)〉 at the same energy beyond the barrier.
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One has to emphasize that in Eq. (24) appears the Fermi
energy λ (this term is missing in Ref. [20]). It does not have to
appear in an initial-value problem because TDHFB equations
preserve the expectation value of the particle number, Tr(ρ),
both in real [24] and in imaginary time. Here we look for
a solution to the boundary-value problem. Without λ, Tr(ρ)
would be incorrect at the boundary and one has to enforce
its proper value. In particular, the solution has to tend to
the metastable HFB state |�(±T/2)〉 at the boundaries as
τ → ±T/2, and that fixes the value of λ.

Equations (24) have the property analogous to that of the
HFB equations, that if (Aμi(τ ), Bμi(τ )) is a periodic solution
with the Floquet exponent ζi, then (B∗

μi(−τ ), A∗
μi(−τ )) is also

a solution with the Floquet exponent −ζi. Thus, it suffices
to find half of the solutions. The proper state | �(τ )〉 should
contain exactly one of each pair of two solutions with ζi and
−ζi, which then corresponds to αi(τ ). For ground states of
e-e nuclei, it is natural to choose the solutions with ζi > 0 as
α

†
i since, in the limit τ → ±T/2, they correspond to positive

energies of quasiparticles. Thus the state |�(τ )〉 should be
composed of solutions with ζi, which at τ → ±T/2 corre-
spond to negative quasiparticle energies. This means that in
Eq. (22) for the density matrix, Aμi(τ ) and Bμi(τ ) correspond
at τ → ±T/2 to all positive ζi. As the boundary condition
fixes the correspondence with the initial HFB state, the con-
struction of matrices ρ and κ for odd nuclei is analogous to
that in the HFB method [18]: one of the solutions (A(τ ), B(τ ))
with positive ζi is replaced by (B∗(−τ ), A∗(−τ )) with −ζi.

Decay rate is determined by instanton action, which, for a
state |�(τ )〉, can be presented in terms of the amplitudes A
and B [20]:

S/h̄ =
∫ T/2

−T/2
dτ 〈�(τ )|∂τ�(−τ )〉

= 1

2

∫ T/2

−T/2
dτ Tr[∂τ A†(−τ )A(τ ) + ∂τ B†(−τ )B(τ )]

= −1

2

∫ T/2

−T/2
dτ Tr[A†(−τ )∂τ A(τ ) + B†(−τ )∂τ B(τ )].

(25)

Substituting ∂τ Aμi(τ ) and ∂τ Bμi(τ ) from the iTDHFB equa-
tion (24) and using conditions (21) we obtain for the action
integrand

−
∑
i occ

ζi

2
− 1

2

∑
μν

{[hμν (τ ) − λδμν][2ρνμ(τ ) − δμν]

+ κμν (τ )�∗
μν (−τ ) + κ∗

μν (−τ )�μν (τ )}. (26)

One can cast the instanton method into a form analogous
to the density-matrix formalism. The matrix

R(τ ) =
(

ρ(τ ), κ (τ )
−κ∗(−τ ), I − ρ∗(−τ )

)
(27)

satisfies the equation

h̄∂τR(τ ) + [ĥ(τ ),R(τ )] = 0, (28)

which follows directly from Eqs. (24) and (21). The matrix
R has the property R2(τ ) = R(τ ) as a result of ρ(τ )κ (τ ) =

κ (τ )ρ∗(−τ ) and ρ2(τ ) − κ (τ )κ∗(−τ ) = ρ(τ ). However, be-
ing non-Hermitian, it does not represent any real-time HFB
density matrix.

D. Phenomenological potential model with the self-consistent
pairing gap �(τ )

The above scheme can be simplified by replacing the mean
field ĥ by the s.p. Hamiltonian with the W-S potential and
using the pairing interaction with the constant matrix element.
The τ -dependent HFB transformation may be presented as a
composition a†

n → b†
μ → α

†
i , where the first transformation

diagonalizes the deformation-dependent W-S Hamiltonian in
the deformation-dependent basis ψμ(q) = b†

μ(q) | 0〉 [note
that now the time-independent operators a† carry the Latin
indices n, m, not the Greek indices as in the preceding part
of this section, which are now reserved for eigenstates of the
phenomenological ĥ(τ )]:

b†
μ(q) =

∑
n

C̃nμ(q)a†
n. (29)

The second transformation is a genuine HFB transformation:

α
†
i =

∑
μ

[Aμi(τ )b†
μ(q(τ )) + Bμi(τ )bμ(q(τ ))]. (30)

We assume the pairing interaction with the constant matrix
element G > 0 in the adiabatic basis which acts only between
pairs of particles in time-reversed states μμ̄. The only nonzero
matrix elements of this interaction are vμμ̄νν̄ = −G

2 , and those
related by the antisymmetry.

Since the matrix C̃ is q-dependent, it must be differentiated
in the iTDHFB equation (24), so that this equation in the
adiabatic basis becomes symbolically

h̄∂τ

(Ai(τ )
Bi(τ )

)
+
(

ε̂(q) + D̂, �̂(τ )
−�̂∗(−τ ), −ε̂(q) + D̂∗

)(Ai(τ )
Bi(τ )

)
= ζi

(Ai(τ )
Bi(τ )

)
. (31)

Here, ε̂(q) is a diagonal matrix with elements ε̂μν (q) =
δμν (εμ(q) − λ) (εμ are s.p. energies), D̂ is the matrix of
adiabatic couplings, Dμν (τ ) = h̄〈μ | ∂ν

∂τ
〉 = h̄q̇〈μ | ∂ν

∂q 〉, with

〈μ | ∂ν
∂τ

〉 = q̇(τ )
∑

n C̃∗
nμ(q)∂qC̃nν (q), and the only nonzero el-

ements of the matrix �̂ are �μμ̄(τ ) = −�μ̄μ(τ ) = −�(τ ),
where

�(τ ) = G
∑
μ>0

κ̄μμ̄, (32)

with κ̄ being the anomalous density in the adiabatic basis. The
connection between density matrices ρ̄ and κ̄ in the adiabatic
basis, and ρ and κ (with indices m, n) in the basis independent
of time, reads

ρ(τ ) = C̃(q(τ ))ρ̄(τ )C̃†(q(τ )),

κ (τ ) = C̃(q(τ ))κ̄ (τ )C̃T (q(τ )), (33)

where δμνεμ(q) = [C̃†(q(τ ))ĥ(q(τ ))C̃(q(τ ))]μν .
Next, we intend to further use the Kramers degeneracy of

s.p. states, already used in defining the pairing interaction.
This is quite natural for e-e nuclei. In odd-A nuclei, the odd
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nucleon perturbs the mean field, breaking its invariance under
time-reversal and the Kramers degeneracy; three new time-
reversal-odd densities emerge in the mean-field treatment
[25]. However, we neglect this effect here as if it is small (see
Ref. [26] for the effect of time-odd terms on the HF + BCS
barrier). This means that, also in odd-A nuclei, we assume two
groups of states, μ and μ̄, with εμ = εμ̄, Dμ̄ν̄ = D∗

μν . There
will be two sets of solutions, i and ī, with ρμν̄ = ρμ̄ν = κμν =
κμ̄ν̄ = 0, for which Eq. (31) separates into two independent
sets with matrices

(
ε̂(q) + D̂, −�(τ ) · Î

−�∗(−τ ) · Î, −ε̂(q) + D̂

)
and(

ε̂(q) + D̂∗, �(τ ) · Î
�∗(−τ ) · Î, −ε̂(q) + D̂∗

)
, (34)

with Î being the block unit matrix. Let the solutions with
ζi > 0 of the first set be amplitudes (Aμi(τ ), Bμ̄i(τ )), and
for the second set (Aμ̄ī(τ ), Bμī(τ )). Then the solutions with
ζi < 0 are (B∗

μ̄i(−τ ), A∗
μi(−τ )) for the second set of equa-

tions, and (B∗
μī(−τ ), A∗

μ̄ī(−τ )) for the first set of equations.

If, additionally, D̂ = D̂∗, which holds, for example, for a
mean field ĥ with the axial symmetry or the one having the
reflection symmetry in three perpendicular planes (like for
shapes with deformations: β, γ , β40, β42 = β4−2, β44 = β4−4,
etc.; cf. Sec. IV), � will also be real, and then the solu-
tions of the second set of equations are (Aμ̄ī(τ ), Bμī(τ )) =
(Aμi(τ ),−Bμ̄i(τ )). In such a case, both sets of equations pro-
duce the same sets of ζi: one has ρ̄μ̄ν̄ = ρ̄μν , κ̄μ̄ν = −κ̄μν̄ and
it suffices to know half of the density matrices (in the adiabatic
basis) which, from Eqs. (28) and (34), fulfill the equations (cf
., e.g., Ref. [27] for comparison with the TDHFB)

h̄∂τ ρ̄μν (τ ) = [εν (q) − εμ(q)]ρ̄μν (τ ) − κ̄μν̄ (τ )�(−τ )

+�(τ )κ̄μν̄ (−τ ) + [ρ̄(τ ), D̂]μν,

h̄∂τ κ̄μν̄ (τ ) = �(τ )[δμν − ρ̄μν (τ ) − ρ̄νμ(τ )]

−[εν (q) + εμ(q) − 2λ]κ̄μν̄ (τ ) + [κ̄ (τ ), D̂]μν̄ .

(35)

Equations (31) are a counterpart of Eq. (12) for instanton-like
solutions with pairing. One should notice that, in spite of using
a phenomenological potential in place of the self-consistent
one, we could not avoid nonlocality in time—the matrix in
Eqs. (31) depends on both �(τ ) and �(−τ ), and the function
�(τ ) has to be self-consistent, so it should fulfill the condition
(32). In the process of the iterative solution for �(τ ), its value
at the current step would differ in general from the value
�r (τ ), resulting from the integration of Eq. (31) in this step.
Using the equation for densities one has

h̄
∂�r

∂τ
= G

[
(Nr − N ) − 2

∑
μ>0

[εμ(τ ) − λ]κμ̄μ(τ )

]
, (36)

where Nr = 2
∑

μ>0 ρμμ(τ ) is the expectation value of the
number of particles, not necessarily equal to the assumed one,
and N is the number of included doubly degenerate levels. On
the other hand, from these equations,

h̄
∂Nr

∂τ
= 2

G
[�r (τ )�∗(−τ ) − �(τ )�∗

r (−τ )]. (37)

One can see that the expectation value of the number
of particles is constant for a self-consistent solution with
�r (τ ) = �(τ ).

Test solutions with a few adiabatic W-S levels indicate
that the (rather long) iterative procedure applied to Eq. (31),
equivalent to Eq. (35), leads to the exponential dependence of
�(τ ), which is large on the interval [−T/2, 0] and small on
[0, T/2], with a mild variation of the product �(τ )�(−τ ).
This case is considerably more involved than the equation
with the W-S potential alone.

Assuming that we have solutions to Eq. (31), one can write
down the action (25) for an e-e nucleus:

S =
∫ T/2

−T/2
dτ

{
−
∑
i>0

ζi −
∑
μ>0

{[2ρ̄μμ(τ ) − 1][εμ(τ ) − λ] + �(τ )κ̄∗
μμ̄(−τ ) + κ̄μμ̄(τ )�∗(−τ )}

}
(38)

=
∫ T/2

−T/2
dτ

{
−
∑
i>0

ζi −
∑
μ>0

[2ρ̄μμ(τ ) − 1][εμ(τ ) − λ] + 2
�(τ )�∗(−τ )

G

}
, (39)

where the summation runs over solutions i > 0 and states μ >

0, and the last equality holds for the self-consistent solution.
For an odd nucleus, one has to exchange in densities (23) one
amplitude with positive ζ by the other one with −ζ .

In the limit of no pairing, the positive Floquet exponents of
decoupled Eq. (31) are ζ NP

i − λ for amplitudes A of empty
states, and λ − ζ NP

i for amplitudes B of occupied states,
where ζ NP

i are Floquet exponents of solutions to Eq. (12).
Density ρ̄μμ, composed of amplitudes of occupied states,
expressed in terms of quasi-occupations pμi of Sec. II B,
is
∑

i>0,ζ NP
i <λ pμi. For solutions i > 0 one has 2ρ̄μμ − 1 =

∑
ζ NP

i <λ pμi − ∑
ζ NP

i >λ pμi (since
∑

i>0 pμi = 1). Hence,
the sum in the integrand (38) is equal to the difference∑

ζ NP
i <λ −∑

ζ NP
i >λ of the following expression: (ζ NP

i − λ) −∑
μ>0 pμi(εμ − λ). The terms with λ vanish after summation

as a consequence of
∑

μ>0 pμi = 1, so one is left with the
difference of sums of actions without pairing for solutions
i > 0: below minus above the Fermi level. We know from
Sec. II B that those sums add to zero; therefore, the result is
twice the sum of actions for i > 0 occupied solutions, which
is equal to action without pairing for all (i.e., i and ī) occupied
states.
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III. TWO-LEVEL MODEL

It turns out that a major difficulty in integrating Eq. (12)
is avoided crossings with a minuscule interlevel interaction—
see Sec. IV C. Here we study the dependence of bounce-like
action for such a crossing on the collective velocity and level
slopes in a simple model with two s.p. levels—a kind of
analogy with the Landau-Zener problem [28–30]. The Hamil-
tonian is

ĥ(q(τ )) =
(

E1(q(τ )) V

V ∗ E2(q(τ ))

)
, (40)

where q(τ ) is a time-dependent parameter, e.g., some nuclear
deformation. We assume V = V ∗, E1,2 = ±E (q − q0), so that
diagonal elements are linear in q and cross at q0. The states
|χ1〉 = (1, 0)T , |χ2〉 = (0, 1)T we call diabatic, and the basis,

|ψ1〉 =
(

cos θ
2

sin θ
2

)
, |ψ2〉 =

(− sin θ
2

cos θ
2

)
, (41)

in which ĥ is diagonal with eigenvalues

ε1,2 = ∓1

2

√
(E1 − E2)2 + 4V 2, (42)

we call adiabatic. Here, tan θ = 2V
E1−E2

. So, for q < q0, θ → 0
and adiabatic states tend to diabatic states, |ψ1,2〉 → |χ1,2〉. At
the pseudocrossing q0, θ = −π/2 and the mixing of diabatic
states is maximal. Due to the interaction, adiabatic energies do
not cross but at q0 approach their minimal distance ε2 − ε1 =
2V . For q > q0, θ → −π and |ψ1〉 → −|χ2〉 (note the change
of sign), |ψ2〉 → |χ1〉, so after passing the pseudocrossing the
adiabatic states exchange their characteristics. The coupling
of adiabatic states in the iTDSE is〈

ψ1

∣∣∣∣dψ2

dq

〉
= −1

2

dθ

dq
= 1

2

EV

E2(q − q0)2 + V 2

= 1

2

α

(q − q0)2 + α2
, (43)

where we introduced α = V/E . It has the Lorentz shape with
a maximum at q0 and the width and height regulated by α. In
the limit V → 0, i.e., α → 0, the coupling element tends to
the Dirac δ function.

To define the model we have to specify q(τ ) and the result-
ing collective velocity q̇(τ ). In the following we use the ansatz

q(τ ) = qfin − qini

cosh (�τ )
+ qini, (44)

where qini, qfin are the initial and final collective deformation
(e.g., the entrance and exit from the barrier). So defined, q(τ )
has an impulse shape, typical for an instanton, which means
that the motion takes place in a finite time interval around
τ = 0, while in the asymptotic region, τ → ±∞, q(τ ) → qini

with vanishingly small q̇. The equation reads

h̄ċ1 = −ε1c1 − h̄q̇〈ψ1|∂qψ2〉c2,
(45)

h̄ċ2 = −ε2c2 + h̄q̇〈ψ1|∂qψ2〉c1.

After using definitions of the model and introducing the
dimensionless time parameter z = τ

|E |
h̄ , the following form

0
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FIG. 1. Action S(α) for various parameters 1/β.

of iTDSE is obtained:

d

dz
c̃1 =

√
(q − q0)2 + α2 c̃1 + 1

2
β tanh (βz)(q − qini )

× α

(q − q0)2 + α2
c̃2,

d

dz
c̃2 = −

√
(q − q0)2 + α2 c̃2 − 1

2
β tanh (βz)(q − qini )

× α

(q − q0)2 + α2
c̃1, (46)

where c̃i(z) = ci(τ ) and β = h̄�/|E |. The following parame-
ters were fixed: qini = 0.2212, qfin = 0.7343, and q0 = 0.55.
Then, from Eqs. (46), bounce-like solutions c̃k (z) and action
depend on the two parameters α and β: S = S(α, β ). Pertinent
to the difficulties of realistic calculations are the nonobvious
changes in S for small α and β—see Sec. IV C. Accordingly,
other parameters were set as follows: � = 0.5 × 1021 s−1 (the
maximal possible velocity was |q̇max| ≈ 0.128 × 1021 s−1),
E = 5, 10, 15, . . . MeV define values of β, and V covers a
range of exponentially small values. Solutions were obtained
by the method described in Appendix B but, for small α,
Eq. (45) was solved in the diabatic basis.

In Fig. 1 the calculated action is displayed as a function
of the parameter α at fixed values of β. The parameter α is
proportional to V —the strength of interaction between levels.
The extremal cases are when V is very large or very small.
In the first case, levels are repelling each other and transitions
between the adiabatic levels are reduced—one can expect a
small action (note that the adiabatic limit of small β/α =
h̄q̇/V is not covered in Fig. 1). When V → 0, the transitions
between diabatic levels cease, and action tends to zero again.
A larger action can be expected for intermediate values of α

and there has to be at least one maximum of S. Calculated
values of S(α) in Fig. 1 show a maximum at some αmax,
while for smaller and larger values of α, respectively, action
rises from and falls down to zero. In the covered range of
α, one can observe an approximate scaling: S(log10 α, β ′) ≈
(β/β ′)S((β ′/β ) log10 α, β ).
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FIG. 2. (left) Pseudo-occupation of the lower adiabatic level for solutions with various α at fixed 1/β = 30.40. The corresponding S(α) is
shown in Fig. 1. The pseudocrossing occurs at τc ≈ −2.03. (right) The same in greater detail, close to τc.

For an illustration of nonadiabatic transitions, in Fig. 2 we
show the pseudo-occupation p11(τ ) defined in Sec. II B [after
the formula (15)]. It is displayed for the same α values which
were used to calculate S(α) in Fig. 1, for 1/β = 30.40. It can
be seen that, for α greater than αmax [log10(αmax) ≈ −3.95],
most of the time p11 is concentrated in the lower adiabatic
state; a transition to the upper adiabatic state takes place only
around the pseudocrossing, while behind it the system returns
to the lower state, i.e., p11(τ = 0) = 1. This behavior changes
when we approach the maximum of action—for log10(α) =
−4.39, the system behind the crossing remains partially ex-
cited to the upper adiabatic level [0 < p11(τ = 0) < 1]. For
still smaller α < αmax, behind the pseudocrossing the system
occupies exclusively the upper adiabatic level, until the end of
the barrier [p11(τ = 0) = 0, p21(τ = 0) = 1]. In such a case
we have a continuation of the diabatic state.

In Fig. 3 is shown a plot of action as a function of 1/β

at the fixed α, which corresponds to the fixed matrix element
〈ψ1|∂qψ2〉. One can see its jump-like character: for small 1/β,
the action is close to zero, over a short interval of 1/β it
rises rapidly to a maximal value, and then it decreases very

FIG. 3. Action S(1/β ) for various values of α.

slowly. The jump is more sharp and larger for smaller values
of α, which correspond to a sharper pseudocrossing between
the adiabatic levels. As 1/β ∼ 1/� ∼ 1/q̇max, the greater the
velocity, the stronger the coupling between the adiabatic levels
so, for sufficiently large q̇ (small 1/β), one can expect a
diabatic continuation (transition to an upper adiabatic level)
when passing through the pseudocrossing, which means a
small action. One should notice that action vanishing in the
limit of very large q̇ is an artificial property of the model with
a finite number of states—after reaching the highest state the
system cannot be excited anymore.

For smaller q̇, after passing through the pseudocross-
ing, pseudo-occupations of both adiabatic states become
comparable—action becomes sizable. For still smaller q̇,
the pseudo-occupation p21 of the upper adiabatic state is
nonzero only around the pseudocrossing, and action does
not change much. This can also be seen in Fig. 4, where
the pseudo-occupation of the lower adiabatic state is shown
for the lower iTDSE solution at the fixed value of α. The
diabatic behavior—a sharp fall of p11 from 1 to 0 at the
pseudocrossing (red and black lines)—gives way to an in-
termediate situation—0 < p11 < 1 behind the pseudocrossing
(green line)—and then to the adiabatic situation—p11 = 1
except the close neighborhood of the pseudocrossing (all other
lines). One can notice from Fig. 3 that a smaller α means a
larger domain of diabatic behavior in 1/β, i.e., as α decreases,
the interval of a diabatic-to-adiabatic transition shifts towards
smaller collective velocities (larger 1/β).

Presented solutions determine whether the evolution is dia-
batic, intermediate, or adiabatic. Since values of α pertinent to
nuclear potential with nonaxial deformation can be as small as
≈10−6−10−7, cf. Sec. IV C, this simple model demonstrates
a possibility of large variation in action for a fixed α, result-
ing from the dependence on the collective velocity q̇ at the
crossing. As Fig. 1 suggests, even for very small V one can get
sizable action. In a realistic case, with many interacting levels,
it is difficult to predict the effect of one pseudocrossing on the
value of action without solving for the instanton-like solution.

Independent of the above results, we checked that, in the
adiabatic limit of small q̇/V = β/α, the two-level model pro-
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FIG. 4. (left) Pseudo-occupation of the lower adiabatic level for solutions with various 1/β at fixed log10(α) = −5.86. The corresponding
action S(1/β ) is shown in Fig. 3. The pseudocrossing occurs at τc ≈ −2.03. (right) The same in greater detail, close to τc.

duces action which tends to the value given by the formula
(A12) with the cranking mass parameter, see Ref. [31].

IV. INSTANTON-LIKE SOLUTIONS WITH THE
WOODS-SAXON POTENTIAL

From this point on, we shall consider instanton-like iTDSE
solutions related to the realistic s.p. Woods-Saxon potential
within the microscopic-macroscopic framework briefly de-
scribed below.

Deformation enters the s.p. potential via a definition of the
nuclear surface by [32]

R(θ, ϕ) = c({β})R0

{
1 +

∑
λ>1

βλ0Yλ0(θ, ϕ)

+
∑

λ>1,μ>0, even

βλμcY
c
λμ(θ, ϕ)

}
, (47)

where c({β}) is the volume-fixing factor. The real-valued
spherical harmonics Y c

λμ, with even μ > 0, are defined in

terms of the usual ones as Y c
λμ = (Yλμ + Yλ−μ)/

√
2. Here we

restrict shapes to reflection-symmetric ones and allow only for
the quadrupole nonaxiality β22. The np = 450 lowest proton
levels and nn = 550 lowest neutron levels from the Nmax =
19 lowest major shells of the deformed harmonic oscillator
were taken into account in the diagonalization procedure.
Eigenenergies are used to calculate the shell and pairing cor-
rections. The macroscopic part of the energy is calculated by
using the Yukawa plus exponential model [33]. All parameters
used here, of the s.p. potential, the pairing strength, and the
macroscopic energy, are equal to those used previously in the
calculations of masses [34,35] and fission barriers [36–39]
of the heaviest nuclei, whose results are in reasonable agree-
ment with data. In particular, we took the “universal set” of
potential parameters and the pairing strengths Gn = (17.67 −
13.11I )/A for neutrons, Gp = (13.40 + 44.89I )/A for protons
[I = (N − Z )/A], as adjusted in Ref. [34]. As always within
this model, N neutron and Z proton s.p. levels have been
included when solving the BCS equations.

First we discuss the iTDSE solutions for axially symmetric
nuclear shapes composed of multipoles with even λ. In this
case, the τ evolution of groups of states with different 
π are
independent of each other. As an example, we take eight neu-
tron 
π = 1/2+ states in the W-S potential for 272Mt along
the axially symmetric fission path shown on the energy map in
Fig. 5. The map was obtained from the four-dimensional (4D)
calculation by minimizing the energy of the lowest odd-proton
and -neutron configuration over β60, β80 at each β20, β40,
i.e., without keeping the Kπ configuration of the g.s. Then,
to assure a continuity of the path, β60 and β80 were cho-
sen continuous and close to those of the minimization, with
energy changed by no more than 200–300 keV. Collective
velocity was calculated from Eq. (8) by taking the effective
(i.e., tangent to the path) cranking mass parameter of the e-e

FIG. 5. Energy surface of 272Mt; a chosen trajectory colored in
red.
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FIG. 6. Neutron levels 
π = 1/2+ around the Fermi level of
272Mt along the trajectory shown in Fig. 5.

(Z − 1, N − 1) nucleus 270Hs. The adiabatic neutron levels in
the basis for solving the iTDSE were chosen so that, in the
g.s., the lower four are occupied (the fourth one singly) and
the upper four are empty. In Fig. 6, they are shown along
β20 which, here and in the following, will play the role of the
effective collective coordinate q along fission paths.

The method which we used for solving the iTDSE in this
and all other cases reported here is described in Appendix B.
We find solutions for a finite period T in a finite adiabatic
basis and for each of them we calculate the action. A natural
question then is what would be the limiting values of Si for
occupied states when T → ∞ and the dimension of the basis
N → ∞. We tried to answer this by finding actions for in-
creased periods, and by increasing dimension of the adiabatic
basis and inspecting the quasi-occupation coefficients. Results
of such tests showed that, with moderately long periods and
rather small bases, one can obtain reasonably stable action
values for occupied states—see Appendix C.

For the discussed eight levels in 272Mt, the iTDSE solutions
were obtained with the period T = 30 × 10−21 s. The am-
plitudes Cμi(τ ) of solutions have exponential τ dependence,
reach very large values in the interval [−T/2, 0], and are
very small in the interval [0, T/2]. It is more informative to
characterize solutions by quasi-occupations pμi of adiabatic
states for selected solutions. This also makes sense from
the point of view of action (19), which is built of these
quantities. In Fig. 7, quasi-occupations pμi are shown for
two solutions: φ3 and φ5. It can be seen that, at τ = ±T/2,
pμi

∼= δμi, with minuscule admixtures which should vanish
completely for T = ∞. During imaginary-time evolution, pμi

are concentrated on the corresponding adiabatic states ψμ=i,
except around the pseudocrossings where a partial excitation
to the nearest-neighbor state occurs. Until a pseudocrossing is
isolated (there is no other pseudocrossing nearby) excitations
to other states are negligible. If successive pseudocrossings
follow one after another, the quasi-occupations of other adi-
abatic levels are possible, as seen for the solution φ5 which
locally becomes a combination of ψ6 and ψ7, and then of ψ4

and ψ6—see Fig. 7.
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FIG. 7. Pseudo-occupations of the adiabatic states for instanton-
like iTDSE solutions for φ3 (top), and for φ5 (bottom). Colors and
line styles correspond to the levels of Fig. 6.

Next we discuss some properties of iTDSE solutions which
seem relevant for their physical interpretation and applica-
tions.
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FIG. 8. Collective velocity q̇ in units od 1021 s−1 calculated from
(8) for 272Mt along the path shown in Fig. 5.
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TABLE I. Action Stot for neutron states of posi-
tive parity in 272Mt as a function of scaled collective
velocity. The profile q̇ corresponds to the formula (8)
for the path in Fig. 5.

Collective velocity Stot = ∑

+ S
+ [h̄]

q̇ 21.3465
1.3q̇ 24.6362
1.6q̇ 28.6790

A. Rise of action with collective velocity q̇

With cranking mass parameters fixed along a path, the col-
lective velocity of tunneling is proportional to

√
E (q) − E0,

where E (q) − E0 is a plot of the fission barrier (reduced by
Ez.p.). In a self-consistent instanton calculation, the increase
in barrier height also relates to an increase in the magnitude
of q̇ necessary to increase the difference between |�(τ )〉 and
|�(−τ )〉 in order to keep their energy overlap H(τ ) constant.
On the other hand, in our non-self-consistent treatment, β̇20,
i.e., our q̇(τ ), is simply an assumed functional parameter of
the solution to Eq. (12). However, having in mind its implied
physical relation to the barrier height, we tested the action
dependence on |β̇20|. The collective velocity for 272Mt deter-
mined from Eq. (8) with the cranking mass parameter from the
neighboring e-e nucleus (Z = 108, N = 168) along the path
depicted in Fig. 5 is shown in Fig. 8. This profile was then
scaled by the factors 1.3 and 1.6. The action calculated for
all occupied neutron states of positive parity for three collec-
tive velocities is given in Table I. One can see that action
indeed increases with |q̇|, as the expected relation with the
barrier height would suggest. Detailed outcome is dependent
on the s.p. level scheme, in particular, pseudocrossings close
to the Fermi level. In Eq. (12), the coupling terms causing
nonadiabatic transitions are q̇〈ψi|∂qψ j〉, so the main influence
on S have regions in q where a large |q̇| occurs at a sharp
pseudocrossing.

B. Integrand of action vs mass parameters

One can ask whether it would be possible to define a mass
parameter B(q) from the τ - even action integrand in Eq. (19)
by

∑
i, occ

N∑
μ=1

[ζi − εμ(q(τ ))]pμi(τ ) = Bqq(q)q̇2. (48)

In Fig. 9 are shown contributions to the integrand of action
from s.p. bounce-like states and their sum for even and odd
numbers of particles (19). Calculations were done for the
same 
π = 1/2+ neutron states in 272Mt for the path shown
in Fig. 5. It can be seen that, while integrands of single iTDSE
solutions sometimes show a rather complicated pattern, their
sum is much more regular. This comes from a cancellation
of excitations among solutions corresponding to occupied
levels and only excitations to levels above the Fermi level
count. There is no drastic difference between the even- and
odd-particle-number case—it is just a contribution from one
singly occupied instanton-like solution, which may be both
positive or negative in general. This is in contrast to the
cranking approach, where for the odd-A case, mass parameter
(2) and the action integrand (1) would show large peaks at
pseudocrossings of the unpaired level.

As seen in Fig. 9, the integrand (48) becomes negative
around the endpoints τ → ±T/2, so it cannot define any mass
parameter. This follows from differences between the Floquet
exponents ζi and s.p. energies εi at the g.s. minimum, which,
as stated in Sec. II B, is an artifact of using T < ∞ in practical
calculations. The same difficulty will probably remain in the
self-consistent calculations.

However, even for a positive integrand of action there
would be a more general impediment to deriving the mass
parameter. The beyond-cranking treatment means that the in-
tegrand of action depends on all even powers of q̇. Thus, for a
given path, Bqq of Eq. (48) would be dependent on |q̇|. On the
other hand, since a solution along the prescribed path depends
on it, two different paths tangent at a common point q (which
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FIG. 9. (left) The total action integrand in units of 1021 s−1—the sum of individual contributions—for six (in black, the lower one at τ = 0)
and seven (in red) neutrons, taken from Ref. [31]. (right) Contributions to the integrand of action from individual s.p. solutions.
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FIG. 10. (left) Energy landscape for 272Mt in β20 − β22, minimized over β40, β60, β80 with a chosen fission path (marked in red). (right)
Display of 14 positive-parity neutron levels around the Fermi energy along the fission path; the seventh level from below is the last occupied.

would imply equal effective cranking mass parameters at q)
would have generally different integrands of action at q.

C. Calculations along nonaxial path for neutron states in 272Mt

A solution of the iTDSE equations for nonaxial shapes
turns out to be more difficult than the case of axial deforma-
tions considered hitherto. The W-S spectrum along a nonaxial
fission path shows many sharp pseudocrossings between lev-
els of the same parity, some with interactions as small as
V ≈ 10−5–10−6 MeV (see Fig. 10). Although for V → 0 such
levels would cross, the results for the two-level model have
shown (Sec. III) that this limit is subtle and depends also on
the collective velocity and the slopes of crossing levels. It
happens that diabatic continuation, i.e., assuming V ≈ 0, may
lead to large errors in calculated action. On the other hand,
many pseudocrossings with a very weak interaction, leading
to extremely high peaks in the matrix elements which couple
involved adiabatic states, are the obstacle in solving iTDSE.
The encountered problem and its (rather cumbersome) solu-
tion are described below.

Calculations were performed along the chosen nonaxial
path for 272Mt, see Fig. 10, for N = 32 neutron states of
positive parity. In the first version, we used the data from the
W-S code along the path with a variable step, not shorter than
�β20 = 10−6. In the second version, the minimal step was
smaller, �β20 = 10−7. Finally, in the third version, we used
the procedure described in Appendix D, with the minimal
step �β20 = 10−7, and the analytic model (D2) adjusted to
those peaks for which the minimal step size still did not cover
their range with sufficient precision. Actions calculated for
occupied instanton levels and their sum are given in Table II.
It can be seen that actions for some individual levels in the
first and second versions of the calculation differ widely—this
means that the step �β20 = 10−6 is not sufficient. This is con-
sistent with an insufficient density of points for a description

of particular pseudocrossings, as revealed by the inspection
of related coupling matrix elements. In spite of this, the total
action is similar in two versions of the calculation. This is yet
another sign that action depends on pseudocrossings close to
the Fermi level—the details of crossings far above or below
the Fermi energy (between both occupied or both unoccupied
levels) do not affect the total action.

TABLE II. Actions for separate s.p. solutions occupied at the g.s.
and their sum—the total action for a nonaxial path. The second col-
umn is for calculations with the minimal step �β20 = 10−6, the third
column is for calculations with the minimal step �β20 = 10−7, the
fourth column is for calculations with the minimal step �β20 = 10−7

augmented with the modeling of the highest peaks in the nonadia-
batic couplings by the formula (D2).

No. �β20 = 10−6 �β20 = 10−7 �β20 = 10−7 plus fit

1 3.2143 3.2057 3.1936
2 0.9453 8.0320 8.0555
3 3.2931 6.9294 6.9118
4 3.2790 −8.7864 −8.7867
5 −0.0346 2.1493 2.1684
6 −1.7771 −2.3285 −2.3531
7 0.9953 1.1126 1.1129
8 8.8511 9.1817 9.1458
9 4.1217 −1.3617 −1.4455
10 5.5588 9.6487 9.8299
11 −2.9214 −2.3793 −2.3817
12 −4.5752 −4.5158 −4.5660
13 −0.4160 −0.3668 −0.3788
14 6.7950 6.4864 6.4848
15 6.6443 6.4057 6.4033
16 2.8743 2.8123 2.8128

Stot/h̄ 36.8479 36.2254 36.2069
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W. BRODZIŃSKI AND J. SKALSKI PHYSICAL REVIEW C 102, 054603 (2020)

TABLE III. Action (in h̄) for neutrons of positive
parity along the nonaxial path for various numbers N
of included adiabatic states.

N Stot = ∑N /2
i=1 Si [h̄]

16 27.0313
20 35.8289
24 35.9705
28 36.1187
32 36.2069

In the third version of the calculation, the highest peaks in
the coupling matrix elements were replaced by the peaks mod-
eled analytically (D2). Actions obtained within this method
(in the third column of Table II), both for individual solutions
and the total, are close to those of the second version. This is
probably related to the fact that difficult couplings that were
modeled occur at such q, where q̇ ≈ 0, so that they were
suppressed in the instanton equations (12). In general, how-
ever, the procedure of peak modeling seems indispensable for
obtaining sufficiently exact actions if the instanton equations
are to be solved in the adiabatic basis (in particular when a
very large nonadiabatic coupling occurs close to the Fermi
energy).

We also checked the dependence of action on the dimen-
sion N of the adiabatic basis. We changed N from 14 to 32,
always keeping the Fermi level at N /2 (as in Appendix C 2
for the axially symmetric path). The results given in Table III
indicate that the dominant contribution to action comes from
levels around the Fermi level.

Action obtained for the trajectory along nonaxial shapes
is compared with the action along the axially symmetric path
(shown in Fig. 5) in Table IV. In both cases the same neutron
levels with positive parity were included. It can be seen that
action along the shorter, axially symmetric path is smaller in
spite of the fact that the barrier is lower by ≈2 MeV along the
nonaxial path, which in our treatment translates into a smaller
collective velocity q̇.

It has to be emphasized that the last result cannot be treated
as general—it merely shows that the instanton method ap-
plied to reasonably chosen paths can lead to situations similar
to calculations with the cranking mass parameters. Deciding
whether an axial or nonaxial path prevails would require a
minimization procedure not defined here.

V. FISSION HINDRANCE IN ODD NUCLEI: A STUDY

Usually, the spontaneous fission hindrance factors HF for
odd nuclei are defined as T o

sf/T ee
sf , where T o

sf is the spontaneous

TABLE IV. Fission barrier heights Bf and actions
Stot (in h̄) for neutrons of positive parity in 272Mt along
the axial (Fig. 5) and nonaxial (Fig. 10) fission paths.

Path Bf [MeV] Stot/h̄

Axial 8.4 21.35
Nonaxial 6.5 36.21

fission half-life of an odd nucleus and T ee
sf is a geometric mean

of the fission half-lives of its e-e neighbors [9]. Experimental
facts are that (1) most HF values lie between 103 to 105, (2)
they do not display any strong dependence on the K (= 
)
quantum number of the g.s. configuration [9].

Here, we use HF calculated as

HF = T o
sf

T e
sf

, (49)

where T o
sf and T e

sf are fission half-lives of an odd-A nucleus and
its A − 1 e-e neighbor.

Experimental fission half-lives and odd-even HFs can be
converted into relations between actions for odd-A and e-e
neighbors by using the Wenzel-Kramers-Brillouin-motivated
formula for spontaneous fission half-lives:

log10 (Tsf[s]) = −20.54 + 0.8686
S

h̄
− log10

( Ez.p.

0.5 MeV

)
.

(50)

Here, S is the minimal action chosen among all possible
fission paths, and Ez.p. is the zero-point energy (in MeV) of
vibration along the fission direction around the m.s. Assuming
a universal value of Ez.p., which is surely an approximation,
one obtains

log10 (HF ) ≈ 0.8686
Sodd − Seven

h̄
. (51)

Calculations were performed for selected superheavy nu-
clei with known half-lives and, in some cases, known g.s.
spin and parities, indicating possible configurations. Similar
calculations for actinide nuclei would be much more involved
in view of their much longer and more complex barriers.

A. Instanton-like action without pairing for 257Rf, 257Rf

By solving iTDSE for a given path and collective velocity
profile q̇(τ ), one can calculate action for both even and odd
nuclei, neglecting pairing. Such results would correspond to
a scenario originally put forward by Hill and Wheeler [40].
Without pairing, they cannot be realistic, but allow us to
notice a few things, among them how much fission would be
hindered without pair correlations.

We choose the odd nucleus 257Rf as an example. Its Iπ =
1/2+ g.s., which corresponds well to the Kπ = 
π = 1/2+
configuration in the W-S model, has a known spontaneous
fission half-life of T odd

sf = 423 s [9]. Also known is the exper-
imental lower limit of T odd

sf > 490 s [9] for the half-life of the
excited Iπ = 11/2− state, corresponding to the Kπ = 11/2−
configuration in our micro-macro model. The experimental
spontaneous fission half-life for the e-e neighbor 256Rf is
T even

sf = 6.4 ms [9], which gives HF = 6.6 × 104 (for the
Kπ = 1/2+ configuration) and HF > 7.6 × 104 (for Kπ =
11/2−).

The tunneling path was chosen as follows: First, micro-
macro energy landscapes of two nuclei were calculated by
using mass-symmetric axial deformations: for each β20 − β40

energy was minimized over β60, β80, with the steps �β20 =
0.05 and �β40 = 0.025. The odd-nucleus configurations Kπ

were kept constrained at Kπ = 1/2+ and Kπ = 11/2− for the
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FIG. 11. (top) Energy landscapes for 257Rf minimized over β60, β80 with fixed Kπ = 1/2+ (left) and Kπ = 11/2− (right) configuration.
(bottom) Energy landscape for the neighboring 256Rf. Chosen fission paths are marked in red. For e-e 256Rf, a second path (marked in blue,
with larger β40) was also considered (see text). Note the different ranges of β20 in maps.

g.s. and the excited state, respectively. This means a continu-
ation, possibly nonadiabatic, of the state 
π occupied by the
odd neutron at the energy minimum. A similar calculation,
but without blocking, was performed for 256Rf. It can be seen
from the maps in Fig. 11 that keeping the configuration in
the odd nucleus leads to a substantial increase and elonga-
tion of the barrier, especially for the excited configuration
Kπ = 11/2−. Taking into account the experience from action
minimization calculations, the fission path was chosen piece-
wise straight and as close as possible to the minimal energy,
in order to keep the path short and the barrier low (the path
is also piecewise straight in β60, β80). It is depicted in red in
Fig. 11.

Instanton-like action Sinst was calculated by solving iTDSE
with the collective velocity: q̇P = √

2[E (q) − Em.s.]/BP(q),
where E (q) − Em.s. is the deformation energy with respect
to the m.s. for each nucleus and its configuration (i.e., with
Ez.p. set to zero), and BP(q) is the cranking mass parameter of
256Rf, both including pairing and calculated along the chosen
paths. So, strictly speaking, q̇P derives from the paired system,
but the iTDSE is solved for the system without pairing. For
comparison, along the same paths we calculated actions

Scr(q̇P ) =
∫ T/2

−T/2
dτBNP(q)q̇2

P, (52)
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TABLE V. Actions (in h̄) for 256Rf and both configurations in 257Rf obtained with collective velocities q̇P (see text) along the paths shown
in Fig. 11: instanton-like Sinst and with the cranking mass parameter without pairing, Scr(q̇P ). Contributions from neutrons and protons of each
parity (indicated in parentheses) are given separately.

Nucleus (Kπ ) 257Rf (1/2+) 257Rf (11/2−) 256Rf

Action [h̄] Sinst Scr(q̇P ) Sinst Scr(q̇P ) Sinst Scr(q̇P )

Neutrons (+) 27.29 86.40 31.23 68.41 19.52 32.11
Neutrons (−) 73.71 1378.97 82.06 1539.65 65.53 1172.65
Protons (+) 46.19 9530.25 50.46 9754.98 46.09 9393.87
Protons (−) 15.34 21.76 19.11 46.94 12.87 16.39
Sum 162.53 11 017.38 182.86 11 409.98 144.01 10 615.02

with the same q̇P(τ ) and the cranking mass parameter
BNP(q) without pairing for each nucleus (i.e., also for
the odd one). The mass parameter BNP includes large
peaks due to close avoided level crossings which should
considerably increase action relative to Sinst. We can cal-
culate action Scr(q̇P ) accurately thanks to the large num-
ber of points—a few thousands per path. Both actions
are given in Table V. We also calculated cranking ac-
tion without pairing Scrank, i.e., twice the expression of
Eq. (1) with the integrand

√
2BNP(q)[E (q) − Em.s.], i.e., with

the mass parameter BNP(q) and collective velocity q̇NP =√
2[E (q) − Em.s.]/BNP(q).
As might be expected, Scr(q̇P ) hugely overestimates Sinst

by nearly two orders of magnitude (Table V), mainly because
of pseudocrossings of s.p. levels close to the Fermi energy.
Locally, around them, BNP � BP, and this results in large
local contributions to action Scr(q̇P ). The local bumps in BNP,
capriciously dependent on details of avoided level crossings,
explain vastly different contributions to Scr(q̇P ) from different
groups of levels: ≈90% of Scr(q̇P ) comes from protons of pos-
itive parity, while the contributions from protons of negative
parity in 256Rf and the 1/2+ state in 257Rf are similar to those
of Sinst (Table V). Using q̇NP, which differs from q̇P mainly
in that it is much smaller at pseudocrossings, largely reduces
action: one obtains Scrank = 199.28h̄ for 256Rf and 222.48h̄
for 257Rf (Kπ = 1/2+); results larger than, but much closer
to, instanton-like action Sinst.

From Eq. (50), after assuming Ez.p. = 0.5 MeV, we obtain
“experimental” actions of 2S = 42.24h̄ for 256Rf and 2S =
53.34h̄ for the g.s. of 257Rf—these doubled actions should be
compared with values from Table V. Thus, calculated Sinst are
≈3.5 times bigger than the values following from measured
half-lives.

We checked that the instanton action calculated according
to the given prescription very much depends on the path. For
the trajectory colored in blue in Fig. 11, we obtained for
256Rf Sinst(q̇P ) = 167h̄, larger by 23h̄ than for the not very
different red one. Apparently, in the absence of pairing, the
details of pseudocrossings have large influence on action. This
shows that action minimization without pairing might be very
difficult and would be directing into paths with more gentle
crossings.

The difference between instanton-like actions Sodd and
Seven comes from: (1) a collective contribution—from the dif-
ferences in deformation energy of the e-e and odd-A nuclei,
which in turn comes from (a) different collective velocities

and (b) different lengths of the path; (2) a contribution to
action from the odd nucleon [41].

Note that, in the instanton method without pairing, the
odd-even effect in fission half-lives comes exclusively from
different heights and lengths of the fission barriers. If not for
these, action for odd-A would lie between those of neigh-
boring A − 1 and A + 1 e-e species, because it is a sum of
individual s.p. instanton-like actions, Eq. (19).

For two configurations in 257Rf we have from Table V
�Sodd-even = 18.52h̄ for Kπ = 1/2+, and �Sodd-even = 38.85h̄
for Kπ = 11/2−. This large difference of 20.33h̄ can be traced
to a larger q̇P for the second configuration and could be
predicted from their very different barriers in Fig. 11. This
illustrates well the trend toward higher barriers in calculations
with a fixed-K configurations, and those with higher K values
in particular. Such K dependence is absent in experimental
half-lives (see Fig. 17 in Ref. [9]).

We note that, for the relative quantities, �Sodd-even/Sodd,
for the g.s. of 257Rf and 256Rf we obtain from Eq. (50),
again assuming the same Ez.p., the ratio 0.114 vs the exper-
imental value 0.21. However, the minimization of action, not
attempted here, could change this ratio.

B. Calculations assuming collective mass parameter and an
odd-particle contribution

Without having solved Eq. (31) with pairing, we use un-
paired iTDSE solutions to study odd-even fission hindrance
by adopting a hybrid model which incorporates both pairing
and the odd-particle contribution to action.

We assume the following scheme: Action for an e-e nu-
cleus is taken from Eq. (1) with both energy and the cranking
mass parameter including pairing. For an odd-A nucleus we
assume

Sodd = Scrank + 1
2 Sinst

s.p. , (53)

where Scrank is the cranking action (1) of the e-e core, cal-
culated with the micro-macro barrier for the odd-A nucleus,
Eodd(q) − E0, where E0 = Em.s. + Ez.p., and the cranking
mass parameter with pairing Beven

P (q) of the neighboring e-e
A − 1 system, while Sinst

s.p. is the contribution to action from
the unpaired nucleon. It can be calculated as action of the
instanton-like solution corresponding to the unpaired 
π state
(i.e., the one blocked in the m.s.) with the collective velocity
q̇P = {2[Eodd(q) − Em.s.]/Beven

P (q)}1/2, or as the difference in
actions for occupied 
π states between the odd-A and e-e
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FIG. 12. (top) Energy landscapes for 261Db, minimized over β60, β80 with the kept g.s. configuration Kπ = 9/2+ (left) and adiabatic (right).
(bottom) Energy landscape for 260Rf. Chosen fission path marked in red. Note different range of β20 in maps.

A − 1 nucleus. Both ways of calculating Sinst
s.p. give very similar

values; we will give those by the second method. The factor
1/2 in Eq. (53) accounts for the fact that Sinst corresponds to
twice the action of Eq. (1).

The rationale behind the choice of the mass parameter and,
consequently, of the collective velocity q̇P, is the assumed
collectivity of quantum tunneling in spontaneous fission. We
reject the cranking mass parameter for odd-A, Eq. (2), because
it leads to huge differences between collective velocities q̇ at
the neighboring q points in an odd-A nucleus, and between A
and A − 1 nuclei at the same q point. Outside regions where
pseudocrossings of the odd level take place, the cranking mass
parameters for A and A − 1 nuclei are similar; see Eq. (2).
Thus, eliminating huge variations from the mass parameter for
odd-A is consistent with assuming that its magnitude is similar

to that in the even-(A − 1) system, uniformly in q. Certainly,
similar does not mean equal. However, a lack of arguments for
any definite ratio singles out our choice as the simplest one. It
means that the difference in actions for A and A − 1 systems
comes mainly from different deformation energies. A choice
of the same, or of the same phenomenological formula, for
mass parameters for odd-A and e-e A − 1 nuclei was made in
the past [42,43]. The results of the previous section also point
out that such a choice is reasonable. The quantity Sinst

s.p. is the
remaining difference between actions for odd-A and e-e A − 1
nuclei, coming from the unpaired odd particle.

As examples of the previous section indicate, the important
point is whether deformation energy of an odd-A nucleus is
calculated conserving the configuration 
π of the g.s. or re-
leasing this requirement and taking the minimal energy among
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various configurations at each deformation. We performed
calculations within our model in both ways in order to com-
pare results.

Included deformation parameters and the choice of fission
paths were as discussed in the previous section. We selected
nuclei Z = 103–112 for which their and their even-A − 1
neighbors’ fission half-lives are known, and so is the hin-
drance factor (49). For most of them, their g.s. spins and
parities are either known or attributed on the basis of phe-
nomenological models [9].

In Fig. 12, the calculated energy surfaces are shown for
261Db and its e-e neighbor 260Rf. The g.s. configuration of
261Db is Kπ = 9/2+. Both surfaces for 261Db, adiabatic (min-
imized over configurations) and constrained on the Kπ value,
are given together with chosen fission paths. It can be seen that
the fission barriers are double-humped, with a smaller second
hump. A similar picture holds for other considered nuclei. A
clear difference between adiabatic and Kπ -conserved surfaces
can be observed for K = 9/2 in 261Db—one can notice a
higher and longer second barrier. For smaller K , such as, e.g.,
the Kπ = 1/2+ configuration in 259Sg (not shown here), this
difference is smaller. A large difference in barriers for the
high-K configuration was also seen for 257Rf in Fig. 11.

At this point one has to note that our calculations do not
include nonaxial deformations, β22, etc., which lower the
first barrier, neither do they account for mass-asymmetric
deformations lowering the second barrier. Calculations which
include nonaxiality indicate that a path through the nonaxial
saddle, lower by 1 to 2 MeV, has a substantially greater length
which moderates or even compensates the effect of the lower
saddle. On the other hand, the mass asymmetry lowers the
second barrier and the path incorporating it is not much longer
[in terms of ds = [

∑
λμ(dβλμ/dβ20)2]1/2dβ20] than the one

considered here because the mass-asymmetric exit from the
barrier occurs for smaller β20—thus the effect of βλ0 with odd
λ is likely to decrease the action.

It turns out that, with realistic values of Ez.p. around 0.5–1
MeV we obtain too large actions and half-lives for e-e nuclei
as compared with the experimental values. The reason lies
in a too-limited choice of nuclear shapes and in a relatively
small strength of the pairing interaction, dictated by the local
mass fit [34]. Indeed, we have checked for 256Rf that, with the
pairing strengths and Ez.p. = 0.7 MeV used in Ref. [44] and
ignoring the second barrier hump (which is largely reduced by
the mass asymmetry), we reproduce the result reported there
which is in good agreement with the experimental value.

Since we focus here on fission hindrance for odd-A nuclei,
we decided to artificially change the zero-vibration energy
Ez.p. so that the mean-square deviation of fission half-lives in
e-e nuclei from experimental values is minimal. This happens
for Ez.p. = 2.03 MeV. The fission half-lives of e-e nuclei ob-
tained with the adjusted Ez.p., which will serve as the reference
for the calculation of fission hindrance factors in odd-A nuclei,
are given in Table VI. They are mostly of the same order
of magnitude as the experimental ones, except in 260Sg and
282Cn. The effect of higher Ez.p. cancels the contribution to ac-
tion from the second barrier for Z = 102–106. This is roughly
consistent with the results of Ref. [44], where the barrier was
practically reduced to the first hump.

TABLE VI. Calculated actions (in h̄) and calculated vs experi-
mental fission half-lives (in seconds) for e-e nuclei after adjusting
zero-point energy Ez.p. to minimize the root-mean-square error.

Nucleus Scrank/h̄ T expt
sf [s] T calc

sf [s]

258No 21.60 1.2 × 10−3 4.1 × 10−3

254Rf 18.46 2.3 × 10−5 7.8 × 10−6

256Rf 21.91 6.4 × 10−3 7.6 × 10−3

260Rf 22.97 2.2 × 10−2 6.4 × 10−2

258Sg 21.92 2.6 × 10−3 7.7 × 10−3

260Sg 23.62 7.0 × 10−3 2.4 × 10−1

282Cn 18.82 9.1 × 10−4 1.6 × 10−5

In Table VII we compare actions Scrank of Eq. (53) ob-
tained in two ways for odd nuclei: Sconf

crank (by keeping the
fixed configuration) and Sad

crank (by using adiabatic occupa-
tion of the odd nucleon). Differences between these actions,
Sconf

crank − Sad
crank, are greater than 9h̄, except for 261Sg and 283Cn.

As we have checked, they remain large for a wide choice
of adopted Ez.p. values between 0.5 and 2 MeV. As for e-e
nuclei, paths on the adiabatic surfaces effectively do not show
the second barrier. With the preserved Kπ configuration, the
contribution of the second barrier to action is substantial and
strongly dependent on the magnitude of K . Fission half-lives
calculated with keeping the Kπ configuration, also given in
Table VII, vastly overestimate the experimental values (see
column 3 of Table VIII for comparison), except in 283Cn,
with the largest discrepancy for large K . Therefore, we do not
include odd-particle actions Sinst

s.p. for them.
Results pertaining to half-lives of odd-A nuclei and

fission hindrance factors obtained with the adiabatic block-
ing are given in Table VIII and shown in Fig. 13. Here
we include results obtained with Sad

crank alone and with
the added odd-particle contribution Sinst

s.p. . Obtained half-
lives are much closer to the experimental ones than those
for fixed configurations, but with no clear hindrance, i.e.,
HFs are mostly underestimated (with two exceptions: 255Rf
and 261Db). The modification of the half-life introduced

TABLE VII. For odd-nuclei and their Kπ configurations shown
in columns 1 and 2 are given cranking actions (1) calculated with
the mass parameters of the e-e neighbor. Column 3 is for a fixed Kπ

configuration Sconf
crank, column 5 is for an adiabatic configuration Sad

crank,
column 6 gives their difference �Scrank, all in h̄. Column 4 gives half-
lives T crank

sf (in s) resulting from Sconf
crank. The zero-point energy Ez.p. was

adjusted to the experimental fission half-lives of e-e nuclei.

Nucleus Kπ Sconf
crank/h̄ T crank

sf [s] Sad
crank/h̄ �Scrank/h̄

259Lr 7/2− 33.32 6.2 × 107 23.44 9.88
255Rf 9/2− 56.06 3.5 × 1027 25.31 30.75
257Rf 1/2+ 34.32 4.6 × 108 22.58 11.74
257Rf (m) 11/2− 48.89 2.1 × 1021 22.58 26.31
261Db 9/2+ 40.79 1.9 × 1014 26.65 14.14
259Sg 1/2+ 32.44 1.1 × 107 23.23 9.21
261Sg 3/2+ 30.75 3.6 × 105 25.30 5.45
283Cn 5/2+ 24.52 1.4 21.56 2.96
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TABLE VIII. For seven odd-A nuclei listed in the first column, the following is given: configurations Iπ (experimental or from systematics),
experimental spontaneous fission half-lives T expt

sf (after Ref. [9]) and fission hindrance factors HFexpt according to Eq. (49), and calculated
quantities (for the g.s. or m.s. configurations Kπ = Iπ ) the odd nucleon instanton contribution to action Sinst

s.p. , fission half-lives, and HFs
following from the adiabatic actions Sad

crank for the e-e core (given in Table VII) and the same augmented with Sinst
s.p. , Sad

crank + 1
2 Sinst

s.p. . Half-lives are
given in seconds, actions in units of h̄. The symbol (m) denotes the excited configuration.

Nucleus data Adiabatic blocking

AX Iπ T expt
sf [s] HFexpt Sinst

s.p. /h̄ T cr
sf [s] T cr+inst

sf [s] HF cr
calc HF cr+inst

calc

259Lr 7/2− 27.4 2.3 × 104 1.02 0.16 0.45 3.9 × 101 1.1 × 102

255Rf 9/2− 3.15 1.4 × 105 −1.37 6.83 1.73 8.8 × 105 2.2 × 105

257Rf 1/2+ 423 6.6 × 104 2.43 0.03 0.33 3.9 4.34 × 101

257Rf (m) 11/2− >490 >76562.5 0.03 0.03 0.03 3.9 3.9
261Db 9/2+ 5.6 2.5 × 102 0.04 99.6 103.6 1.56 × 103 1.62 × 103

259Sg 1/2+ 8 3.1 × 103 1.85 0.11 0.68 1.43 × 101 8.83 × 101

261Sg 3/2+ 31 4.4 × 103 0.61 6.7 12.32 2.79 × 101 5.13 × 101

283Cn 5/2+ 24a 2.6 × 104 2.76 0.0038 0.06 2.38 × 102 3.75 × 103

aThe given T expt
sf is the smaller of two conflicting experimental values, and spin-parity is derived from our W-S spectrum.

by adding instanton-like action for the odd nucleon Sinst
s.p.

(53), shown in Table VIII, moves the calculated HFs
closer to the experimental values, but the effect is still too
small.

Odd-even fission hindrance factors calculated assuming the
same collective mass parameter in e-e and odd-A neighbors
suggest the following conclusions:

(1) Keeping the configuration Kπ of the fissioning states
leads to the odd-even HFs by orders of magnitude
larger than in experiment.

(2) Keeping the lowest configuration leads mostly to (with
two exceptions) too small hindrance factors.

0
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Nucleus

log   (HF)10

Lr
259

Rf
255

Rf
257

Rf(m)
257

Db
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Cn
283

FIG. 13. Logarithms of fission hindrance factors, log10 HF , de-
fined by Eq. (49): experimental (blue circles) vs calculated with
(red squares) and without (green triangles) the odd-particle instanton
contribution for nuclei specified at the bottom of the panel. The
arrow for 257Rf(m) signifies that only the lower bound for HF is
experimentally known. See text for further details.

(3) Instanton-like correction for the odd nucleon added to
the adiabatic cranking result Sad

crank [Eq. (53)] acts in the
right direction but is too small. As a result, the obtained
HFs are on average smaller than the experimental
values of 103−105; they are also more scattered than
the latter.

One can note that these conclusions concerning differences
in Tsf of odd-A and e-e closest neighbors do not seem to be
much influenced by the lack of action minimization: adiabatic
energy landscapes of odd-A nuclei and their e-e neighbors are
very similar, Sad

crank are relatively smooth and the chosen paths
are typical of realistic calculations.

VI. SUMMARY AND CONCLUSIONS

Given that the cranking or ATDHF(B) approximation com-
monly used in calculating spontaneous fission half-lives is
incorrect for odd-A nuclei and K isomers, in the present paper
we tried to include nonadiabatic, beyond-cranking effects in
the description of quantum tunneling. A treatment that avoids
the adiabatic assumption is provided by the method of in-
stantons. For atomic nuclei, it takes the form of iTDHFB
equations nonlocal in time, with specific boundary condi-
tions, which seem unsolvable at present. This motivated us
to simplify these equations to iTDSE and study actions for
resulting instanton-like solutions which relate to fission half-
lives. The rationale for taking an intermediate step before the
full instanton theory is also related to the question of energy
overlaps (4): they are crucial in the self-consistent theory, but
their proper treatment is unknown for the majority of energy
functionals presently used.

The instanton equations of the self-consistent theory were
simplified to the iTDSE version with the phenomenological
potential in the case without pairing, and to the iTDHFB
equations with a fixed potential and self-consistent pairing
gap for the seniority pairing interaction. The iTDSEs were
solved for the phenomenological Woods-Saxon potential in
a number of cases. Since we do not want to relay on the
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cranking mass parameters for odd-A nuclei, we had to assume
the collective velocity. We used for this purpose the cranking
mass parameter of the neighboring e-e nucleus—a plausible
but not unique assumption.

The method of obtaining iTDSE solutions and actions
was demonstrated for an axially symmetric potential. It was
found that actions may be reliably calculated by using rea-
sonably long periods and relatively small bases of adiabatic
levels, lying close to the Fermi energy. Compared with the
cranking approximation for odd-A nuclei, close avoided level
crossings have a milder influence on instanton-like actions.
For collective velocities typical of e-e actinide or superheavy
nuclei, the quasi-occupations which characterize nonadiabatic
excitations in iTDSE solutions change mostly in the vicinity
of pseudocrossings. Instanton-like action rises with the (uni-
formly) rising collective velocity, and the length of the fission
path can balance the lower barrier in the competition between
trajectories.

The case of a triaxial potential turned out to be more
demanding as a result of many very weakly interacting pseu-
docrossings. The solution of the iTDSE in the adiabatic basis
becomes difficult and an effective way of solving it remains
to be found. One has to mention that the difficulty caused
by many nearly crossing levels may be less acute when one
includes the anti-Hermitian part of the mean field. This would
make the eigenvalues of the mean-field ĥ complex and instan-
ton solutions less susceptible to such crossings.

In the study of odd-even fission hindrance factors, we made
use of iTDSE solutions without pairing by combining them
with the cranking actions for the e-e cores. The premise of this
study was that effective-mass parameters pertinent to sponta-
neous fission are the same (or very similar) in neighboring e-e
and odd-A nuclei. The clear result obtained under this pro-
viso is that actions calculated for the fixed Kπ configurations
along axially symmetric paths hugely overestimate values
from experiment. The actions calculated with adiabatic energy
landscapes are mostly too close to those of e-e neighbors.
Since adiabatic energy landscapes of odd-A nuclei include the
effect of the pairing gap decrease due to blocking, one may
say that this effect alone is insufficient, while the additional
effect of preserving the K quantum number is unrealistically
large. The instanton-like contributions from the odd nucleon,
when added to the e-e core actions obtained with adiabatic
landscapes, are (in most cases) too small to provide for the
observed hindrance factors. One could say that actions for
odd-A nuclei seem to be closer to the scenario with uncon-
strained configurations, which would suggest changes in K
in tunneling, possibly related to nonaxial or to more exotic
deformations along the fission paths.

In the near future we plan to study the simplified iTDHFB
actions, including pairing, of Sec. II C to see how the above
conclusions about fission hindrance factors change. In partic-
ular, it seems interesting whether one could reproduce their
relatively small experimental scatter of merely two orders
of magnitude. We would also like to see if one can effec-
tively use the solution method for the iTDSE studied here in
the solution of the self-consistent problem. It would also be
interesting to improve the presented micro-macro instanton-
like procedure. This, however, would probably require some

non-self-consistent version of the anti-Hermitian part of the
imaginary-time mean field.
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APPENDIX A: CRANKING EXPRESSIONS FOR ACTION
AND FLOQUET EXPONENTS

The cranking approximation in solving the real-time
Schrödinger equation: ih̄∂tψ (t ) = ĥ(q)ψ (t ), where q = q(t )
is a collective coordinate, follows from expanding ψ (t ) onto
adiabatic states ψμ(q) (11), substituting

Cμ(t ) = cμ(t ) exp

(
− i

h̄

∫ t

0
εμ(t ′)dt ′

)
, (A1)

and solving equations for cμ(t ):

∂t cμ = −q̇
∑

ν

〈ψμ | ∂qψν〉cν exp

(
i

h̄

∫ t

(εμ − εν )dt ′
)

,

(A2)
to the leading order in q̇, assuming that the amplitude of the
adiabatic ground-state dominates others: |c0| ≈ 1, |cμ| � 1
for μ > 0. For μ > 0, one can integrate (A2) under the as-
sumption that the exponential gives the leading t dependence:

cμ ≈ ih̄q̇
〈ψμ | ∂qψ0〉

εμ − ε0
c0 exp

(
i

h̄

∫ t

(εμ − ε0)dt ′
)

, (A3)

so the wave function in the cranking approximation is

ψ (t ) = c0 exp

(
− i

h̄

∫ t

ε0dt ′
)

×
(

ψ0 + ih̄q̇
∑
μ>0

〈ψμ | ∂qψ0〉
εμ − ε0

ψμ

)
. (A4)

This form of integration, different from the usual one for an
initial-value problem, allows us to obtain the mass parameter
(see below) as a function solely of the coordinate q. Other
possible integrals of Eq. (A2) imply dissipation of collective
motion, see, e.g., Ref. [45] or the recent Ref. [46]. From
Eq. (A4), the initial assumption |cμ| � 1 means h̄q̇

εμ−ε0
〈ψμ |

∂qψ0〉 � 1, that does not hold in a vicinity of a sharp (avoided)
level crossing, except for minuscule q̇.

Substituting cμ of Eq. (A3) into Eq. (A2) for c0 one ob-
tains:

∂t c0 ≈ i

h̄

(
ih̄〈ψ0 | ∂tψ0〉 + (h̄q̇)2

∑
μ>0

| 〈ψμ | ∂qψ0〉 |2
εμ − ε0

)
c0,

(A5)
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where the expression in the parentheses is real, so c0 evolves as a pure phase:

c0 ≈ exp

{
i

h̄

∫ t
(

ih̄〈ψ0 | ∂tψ0〉 + (h̄q̇)2
∑
μ>0

| 〈ψμ | ∂qψ0〉 |2
εμ − ε0

)
dt ′

}
, (A6)

with the first term in the exponent being the topological
(Berry) phase [47]. Usually, the coefficient c0 is modified to
assure the normalization of ψ (t ),

∑
μ |cμ|2 = 1, which intro-

duces corrections quadratic in q̇ to |c0| but does not change its
phase. As a result, the expectation value of ĥ, 〈ψ (t ) | ĥ(q) |
ψ (t )〉 ≈ ε0(q) + 1

2 q̇2Bqq(q), where

Bqq(q) = 2h̄2
∑
μ>0

|〈ψμ | ∂qψ0〉|2
εμ − ε0

(A7)

is the cranking mass parameter.
For a periodic Hamiltonian with a period T , ĥ(t + T ) =

ĥ(t ), the cranking wave function ψ (t ) is quasiperiodic, with
a phase augmented by −iζT/h̄ after each period, where by
Eqs. (A4) and (A6), if topological phase gives no contribution,

ζ = 1

T

∫ T

0

[
ε0(q) − 1

2
q̇2Bqq(q)

]
dt . (A8)

Thus, one can present ψ (t ) as ψ̃ (t ) exp(−iζ t/h̄), where ψ̃ (t )
is periodic with the period T , and ζ is called the Flo-
quet exponent. The function ψ̃ (t ) satisfies (in the cranking
approximation) the equation [ih̄∂t − ĥ(q)]ψ̃ = −ζ ψ̃ . Calcu-
lating action,

∫ T
0 dt〈ψ̃ | ih̄∂t ψ̃〉, one thus obtains

∫ T
0 dt[ε0 +

1
2 q̇2Bqq(q) − ζ ], which from Eq. (A8) equals

∫ T
0 dtBqq(q)q̇2.

This action may be used to quantize the energy of collective
modes, see, e.g., Ref. [48].

The analogous solution to the equation in imaginary
time τ = it , h̄∂τφ + ĥ(q)φ = 0, with −T/2 < t < T/2 and
q̇(−τ ) = −q̇(τ ), is

φ(τ ) = c0 exp
(
−1

h̄

∫ τ

ε0dτ ′
)

×
(

ψ0 − h̄q̇
∑
μ>0

〈ψμ | ∂qψ0〉
εμ − ε0

ψμ

)
, (A9)

where

c0 ≈ exp
{
−1

h̄

∫ τ (
h̄〈ψ0 | ∂τψ0〉 + 1

2
q̇2Bqq(q)

)
dτ ′

}
,

(A10)
although, due to the exponential character of solutions, the
range of validity of the cranking approximation is probably
much smaller than in the real-time. The corrections to c0

quadratic in q̇ which ensure the condition 〈φ(−τ ) | φ(τ )〉 = 1
modify the τ -even part of c0, but not its time-odd expo-
nent. In this approximation, 〈φ(−τ ) | ĥ(q) | φ(τ )〉 ≈ ε0(q) −
1
2 q̇2Bqq(q). For a periodic Hamiltonian, as the one with q(τ )
describing a bounce solution, this wave function can be pre-
sented as φ(τ ) = φ̃(τ ) exp(−ζ τ/h̄), where φ̃(τ ) is periodic;
the Floquet exponent here is

ζ = 1

T

∫ T/2

−T/2

[
ε0(q) + 1

2
q̇2Bqq(q)

]
dτ. (A11)

The periodic function φ̃ satisfies the equation h̄∂τ φ̃ =
[ζ − ĥ(q)]φ̃. Action defined for it by S = ∫ T/2

−T/2 dτ 〈φ̃(−τ ) |
h̄∂τ φ̃(τ )〉 can be written by using the previous relations as

S =
∫ T/2

−T/2
dτ

(
ζ − ε0 + 1

2
q̇2Bqq(q)

)
=
∫ T/2

−T/2
dτBqq(q)q̇2,

(A12)
consistent with the cranking formula (1).

APPENDIX B: METHODS APPLIED TO OBTAIN
NON-SELF-CONSISTENT BOUNCE SOLUTIONS

The exponential behavior of solutions to Eq. (12) and the
presence of many different exponents pose problems which
require special care in the numerical treatment. In this section
we address these difficulties and discuss methods applied to
obtain instanton-like solutions in this work.

Let us first notice that the set of equations (12) without the
ζ term,

h̄
∂Cμi

∂τ
= −εμ(q(τ ))Cμi − q̇

N∑
ν

〈
ψμ(q(τ ))

∣∣∣∣∂ψν

∂q
(q(τ ))

〉
Cνi

(B1)
is of the form Ċi = A(τ )Ci, where the matrix A(τ ) is pe-
riodic: A(−T/2) = A(T/2), and Ci is the column-vector of
coefficients Cμi(τ ) of the ith solution. Therefore, according to
the Floquet theorem, the linearly independent solutions can be
written as

Ci(τ ) = Pi(τ )e−ζiτ/h̄, (B2)

where Pi(τ ) is a periodic function with period T while ζi

are determined by the eigenvalues e−ζiT/h̄ of the monodromy
matrix, M = G(T/2,−T/2), with G(τ2, τ1) designating the
resolvent of Eq. (B1), propagating solutions from τ1 to some
other time τ2. Putting Eq. (B2) into Eq. (B1), we obtain
equations for the unknown periodic functions:

Ṗi = [Iζi − A(τ )]Pi(τ ), (B3)

with the boundary condition Pki(−T/2) = Pki(T/2) = vki,
where vki is the kth component of the ith eigenvector of M.
The equation above is identical to Eq. (12), therefore Pi(τ )
are the bounce solutions sought with Floquet exponents ζi and
boundary values given by the eigenvalues and eigenvectors
of the monodromy matrix. These considerations lead to the
following scheme of solving the iTDSE with instanton-like
boundary conditions, which was used in the present work:

(1) Calculate the monodromy matrix M of Eq. (B1) by a
step-by-step forward integration along short intervals
of τ in the range τ ∈ 〈−T/2, T/2〉, with the identity
matrix as the initial condition.

(2) Perform the eigendecomposition of M.
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(3) Taking the consecutive eigenvectors as initial values
and their corresponding eigenvalues as Floquet expo-
nents, integrate numerically Eq. (B3) (at the final point
τ = T/2, according to the periodic boundary condi-
tion, one should recover the initial values). In this way
one obtains N linearly independent bounce solutions.

In this work, Eqs. (12) and (B1) were treated as if the ma-
trix A(τ ) were piecewise constant on each integration interval.
One step of integration of Eq. (B1) consists in calculating the
exponential of a constant matrix and its action on the vector
of coefficients of the previous step:

C(τi+1) = exp [A · (τi+1 − τi )]C(τi ) = G(τi+1, τi )C(τi ).
(B4)

The resolvent matrix is obtained by a successive multiplica-
tion of the one-step exponentials.

The chief difficulty in applying the above procedure comes
from the exponential behavior of solutions. We can write them
in the form with the explicit exponential factor (which is an
analog of the phase factor in real-time quantum mechanics) as

Cμi(τ ) = cμi(τ )e− 1
h̄

∫ τ

−T/2 εμ(q(τ ′ ))dτ ′
. (B5)

This dependence, combined with the presence of markedly
different adiabatic energies εμ(q), leads to the exponentially
divergent numerical scales. During the evolution, the coeffi-
cient associated with the lowest state will be amplified relative
to all others. Therefore, a simple numerical multiplication of
successive one-step exponentials involves a mixing of ele-
ments of different orders of magnitude, which results in the
loss of accuracy (due to a finite numerical precision). One
needs a way of separating different scales at each matrix
multiplication. In our work we adopt the singular value de-
composition (SVD) approach, described in Ref. [49]. The
procedure consists of the following steps:

(1) SVD of the propagation matrix in the first step of in-
tegration: G(τ1,−T/2) = U1�1V1, where U1 and V1

are orthogonal matrices, and �1 is a diagonal matrix
with singular values, which contains information on
magnitude scales present in the problem.

(2) For the successive integration steps one performs the
following operations:
(a) Calculate the propagation matrix over a short

interval (τi−1, τi ): G(τi, τi−1) = exp[A · (τi −
τi−1)].

(b) Multiply the matrices in the order
given by the brackets in the expression:
[G(τi, τi−1)Ui−1]�i−1 = Si.

(c) Perform the SVD of the matrix Si: Si = Ui�iṼi.

(d) Multiply the V matrices: SiVi−1 =
Ui�i(ṼiVi−1) = Ui�iVi—this leads to the SVD
form of the propagation matrix G(τi,−T/2) with
separated numerical scales stored in the diagonal
elements (singular values) of the matrix �i.

(3) Performing steps (i = 2, . . . , N) described above
along the range of integration (−T/2, 0), one ob-
tains the SVD form of the propagation matrix:
G(0,−T/2) = UN�N VN .

The monodromy matrix has the form M =
G(T/2,−T/2) = G(T/2, 0)G(0,−T/2). Due to the
property A(τ ) = A†(−τ ), fulfilled by the matrix
of Eq. (B1), G(T/2, 0) = G†(0,−T/2) and M =
G†(0,−T/2)G(0,−T/2). Thus, the monodromy matrix
is Hermitian and positive-definite: M = V†

N�†
N�N VN , and

the products σ ∗
i σi, with σi the ith singular value of �N , are

equal to the eigenvalues e−ζiT/h̄ of the monodromy matrix. It
is thus sufficient to integrate Eq. (B1) over half of a period,
i.e., in the range (−T/2, 0), to obtain the monodromy matrix;
we make use of this property in our calculations.

Another issue that requires some attention is the instability
of instanton-like solutions with ζ j > ζ1 (where ζ1—the lowest
ζ ). From Eq. (3) and its counterpart for φ∗

i (−τ ) one obtains:

〈φi(−τ )|φ j (τ )〉 = 〈φi(−τ0)|φ j (τ0)〉e 1
h̄ (ζ j−ζi )(τ−τ0 ). (B6)

This means that, if at some τ0 the overlap 〈φi(−τ0)|φ j (τ0)〉 �=
0 (which is inevitable due to a limited numerical precision),
the evolution causes its exponential rise and spoils the φ j

solution by increasing admixtures of φi with lower ζi to it.
To eliminate this effect, the orthogonalization of φ j with re-
spect to all solutions with ζi < ζ j was performed after each
integration step.

The accuracy of the applied method of solution was tested
by comparing the results with those of the algorithm with a
finer imaginary time-step (and thus more densely calculated
adiabatic Woods-Saxon energies and wave functions) and by
running the code in quadruple precision. The other tests, of
more physical significance, are described in Appendix C.

APPENDIX C: STABILITY OF SOLUTIONS WITH
RESPECT TO PERIOD AND THE SIZE OF THE

ADIABATIC BASIS

The stability of iTDSE solutions, in particular their actions,
with respect to the assumed period T and basis dimension
N was checked on a few examples. Here we give the results
obtained for the 
π = 1/2+ neutron levels in 272Mt, discussed
in Sec. IV A.

TABLE IX. Action values (in h̄) calculated for the four lowest iTDSE solutions for various assumed periods T (in 10−21 s).

No. T = 20 T = 25 T = 30 T = 35 T = 40 T = 45

1 0.2893 0.2953 0.2970 0.2976 0.2978 0.2983
2 0.6306 0.6368 0.6399 0.6399 0.6401 0.6402
3 1.5633 1.5813 1.5854 1.5870 1.5874 1.5875
4 −0.0210 −0.0093 −0.0051 −0.0038 −0.0034 −0.0033
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TABLE X. Floquet exponents ζi [MeV] for the four lowest instanton-like iTDSE solutions, for increasing values of the period T [10−21 s],
and the limiting value ζi(T → ∞) [MeV], estimated from the formula in the text, vs s.p. energies εi [MeV] at the g.s. deformation.

No. T = 20 T = 25 T = 30 T = 35 T = 40 T = 45 ζT →∞ εg.s.

1 −9.906 −9.750 −9.631 −9.544 −9.477 −9.424 −9.044 −8.990
2 −8.514 −8.424 −8.363 −8.319 −8.287 −8.262 −8.059 −8.061
3 −6.288 −6.148 −6.054 −5.988 −5.938 −5.900 −5.588 −5.600
4 −4.930 −4.776 −4.660 −4.576 −4.511 −4.460 −4.089 −4.037

1. Stability of action with respect to the period

The values of actions Si and Floquet exponents ζi of solu-
tions φi change with increasing period T . As the instanton-like
solution would correspond to T = ∞, it is of relevance that Si

and ζi should stabilize above some T . It is indeed the case: ac-
tions Si, shown in Table IX, change not more than ≈3% except
the very small ones, whose contribution is negligible anyway.
The convergence of the Floquet exponents to the eigenener-
gies at the initial (and final) state can be well approximated
by the formula: ζi(T ) = Ai + Bi/T with constant Ai and Bi,
and in calculations the relation ζi(∞) = Ai ≈ εi, although not
exact, is approximated reasonably well—see Table X.

2. Stability of action with respect to the dimension N of the
adiabatic basis

We also tested the change of the total action Stot [Eq. (19)]
with increasing number of adiabatic basis states N included
symmetrically below and above the Fermi level. Intuition
would suggest that the main contribution to action should
come from states lying close to the Fermi level. For the tra-
jectory depicted in Fig. 5, action values for increasing N are
presented in Table XI. One can see that, for larger N changes
in action become negligible.

For the case of N = 14 basis states, in the upper panel of
Fig. 14, we show quasi-occupations of adiabatic states above
the Fermi energy, ε > εF , in the lowest iTDSE solution φ1. It
can be seen that excitations to adiabatic states above the Fermi
level are marginal and nearly do not contribute to action. In
the lower panel of Fig. 14, are shown quasi-occupations of the
same adiabatic states in the highest occupied instanton-like
state φ7. It can be seen that transitions occur mainly to the
adiabatic states closest in energy. These results indicate that
adiabatic states in a wide enough energetic window around
the Fermi level suffice to calculate instanton-like action.

TABLE XI. Total action Stot for the lower half
of the iTDSE solutions (i.e., occupied instanton-like
states) as a function of the number N of adiabatic
basis states included in calculations.

N Stot = ∑N /2
i=1 Si [h̄]

8 2.5172
10 2.5388
12 2.5657
14 2.5779

APPENDIX D: TREATING SHARP PSEUDOCROSSINGS
ALONG NONAXIAL FISSION PATHS

Sharp pseudocrossings in the s.p. spectrum for nonaxial
shapes generate very narrow (in q) and large peaks in the
matrix elements of the adiabatic coupling; an example is
shown in Fig. 15. These present an obvious impediment to
an effective solution of the iTDSE.

A rapid change of adiabatic states with q at sharp pseu-
docrossings suggests the unsuitability of the adiabatic basis.
In chemistry, there were many trials in such situations to
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p14 1(τ)
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 0.1

-10 -5 0 5  10

τ [10-21 s]

State 7

p87(τ)
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p14 7(τ)

FIG. 14. Quasi-occupations of seven upper adiabatic states for
the lowest (top) and the seventh (i.e., last occupied; bottom) instanton
solution for N = 14. Note the ≈4 orders of magnitude difference in
vertical scales in both panels.
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FIG. 15. (top) S.p. energies in the Woods-Saxon potential along
the chosen nonaxial path (parametrized by β20, Fig. 10). A sharp
pseudocrossing is marked by a circle. (bottom) Adiabatic coupling
between the two levels in the vicinity of crossing and its fit by the
model curve (43).

find a suitable quasidiabatic basis with smaller and regular
coupling between crossing states [50–52]. The diabatic basis,
like {|χi〉} in the two-level model (Sec. III), might seem a
good candidate. It is related to the adiabatic basis via the
angle θ , being a function of α = V/E and q − q0, where q0

is the crossing point. One can locally fit these parameters
to each crossing and define a new basis by means of the
angle θ , while leaving unchanged all levels that do not cross.
This is an approximation, so the resulting basis is not strictly
diabatic (with 〈χi|∂qχ j〉 = 0), but quasidiabatic (〈χi|∂qχ j〉 �
〈φi|∂qφ j〉). One can show that, in the general case of many
levels and many deformations qi, a strictly diabatic basis does
not exist [53].

The calculations have shown that the quasidiabatic basis
found by this procedure does not bring any advantage in com-
parison with the adiabatic one: the density of points necessary
to probe the neighborhood of a crossing in order to ensure an
approximately correct action value is the same for both bases
(very dense mesh is needed in both cases).

An alternative solution would be to solve instanton
equations by using a large basis, smoothly changing with
deformation (like that of the harmonic oscillator), without
resorting to the adiabatic basis. Then the problem of sharp
crossings would be avoided, however, not without a cost:
a large basis would be needed that probably would lead to
the necessity of using quadruple precision and more time-
consuming calculations.

We kept the adiabatic basis. To integrate Eq. (12) we used
a changing step in β20 for calculating input data, i.e., energies
and adiabatic couplings along the path. The step �β20 was
diminished when a change in any of the couplings was above
10% of its preceding value. It was necessary to impose the
minimal step value, �β20 = 10−7 (with β20 as the parameter
of the path). Such a probing was dense enough for a nearly
exact integration for most of the peaks. However, there were a
few narrow and high peaks which were still not well rendered.
In those cases, the shape of such peaks was modeled by the
formula (43) (with parameters α and q0) by using the least
squares fit to the calculated points. Next, for each such mod-
eled crossing, a 2 × 2 transition matrix G(τfin, τini ) for the two
crossing levels was integrated [defined by Eq. (B4)], where
τini, τfin means the beginning and end of the peak. The inte-
gration of a model peak is simple due to its analytic formula
which makes many Woods-Saxon calculations unnecessary.
Then the propagation matrix G̃(τfin, τini ) for all N levels is
calculated as follows: propagation of the N − 2 not-crossing
levels is done in a standard way, while for two crossing levels
one substitutes the matrix G calculated for the fitted model.
Denoting by i the index of the lower crossing level, one can
schematically write the matrix G̃:

1 2 . . . i i + 1 . . . N
1

2
...

i

i + 1
...

N

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

G̃11 G̃12 . . . 0 0 . . . G̃1N
G̃21 G̃22 . . . 0 0 . . . G̃2N
...

...
. . .

...
...

. . .
...

0 0 . . . Gi i Gi i+1 . . . 0

0 0 . . . Gi+1 i Gi+1 i+1 . . . 0
...

...
. . .

...
...

. . .
...

G̃N 1 G̃N 2 . . . 0 0 . . . G̃NN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (D1)
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Thus, we neglect the cross terms, setting G̃αl = G̃lα = 0,
where α �= i, i + 1 and l = i, i + 1. It means that we treat the
crossing of two levels as isolated: the evolution of ci, ci+1 is
dominated by the coupling between them, 〈φi|∂qφi+1〉, while
the effect of other states cα �=i,i+1 on crossing levels and the
effect of the pair on those other states can be neglected in the
vicinity of crossing.

This procedure was tested in a few cases in which the
vicinity of the crossing could be probed dense enough for
the solution without any fit to be exact. Then the solutions
for smaller density of calculated points but with the modeled

adiabatic coupling in the vicinity of the crossing was com-
pared with the exact one. It turned out that, for the desired
accuracy, the model for the coupling should include indepen-
dent parameters for the height and half-width:〈

φ1

∣∣∣∣dφ2

dq

〉
= 1

2

α

(q − q0)2 + σ 2
. (D2)

With this model, the calculated actions differed less than
1% from the reference results, except for very small ac-
tions, for which the difference was of no consequence
anyway.
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