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Influence of the Pauli exclusion principle on α decay
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In this study, the effects of repulsive nucleon-nucleon interactions arising from the Pauli exclusion principle
were examined regarding the half-lives of heavy even-even nuclei with 84 � Z � 92. The Pauli exclusion
principle is applied to our investigations by renormalizing the nucleon-nucleon interactions according to the
Bohr-Sommerfeld quantization condition. It is also applied to the double-folding (DF) formalism as a mod-
ification term by investigating the kinetic energy variation at the overlapping regions between the densities
of the alpha and daughter nuclei. The standard deviation for the calculated half-lives from their corresponded
experimental data is 0.340 for the renormalized DF formalism. Its value reduces to 0.309 for the DF formalism
modified with the kinetic-energy contribution estimated by the extended Thomas-Fermi approach. The calculated
α-decay half-lives are more consistent with experimental data if the kinetic-energy contribution is associated with
the DF formalism.
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I. INTRODUCTION

Over the past decades, the α-decay process has attracted
much interest for investigating the decay and fusion mech-
anisms of heavy and superheavy nuclei [1–13]. Various
approaches have been adopted to investigate the properties of
the α-decay processes [14–19]. These approaches are based
on nucleon-nucleon interactions or density functionals of the
emitted cluster and daughter nuclei [20–22].

The properties of cluster and daughter nuclei play a sig-
nificant role in calculating the interaction potential between
two interacting nuclei. The nucleon density distribution is
one of the most critical factors in assessing nuclear prop-
erties that can affect the interaction potential [23–27] and
thereby confront theoretical calculations with experimental
data. Meanwhile, investigations of cluster decay and nuclear
fusion are predominantly relevant for the interaction poten-
tials in the partial and full overlap density regions [28–30].
Although the semimicroscopic DF potentials based on the
effective M3Y nucleon-nucleon (NN) interaction can well
reproduce most of the scattering data, they fail in describing
many reactions that are strongly affected by the characteristics
of the potential below the barrier in the internal region [31].
This deficiency can be due to the nonconsideration of the
repulsive core in the DF formalism [32]. However, the Pauli
exclusion principle (PEP) satisfactory and antisymmetriza-
tion impact would be important ones for compensating such
insufficiencies [33]. Toward this end, the contribution of an
increase in the intrinsic kinetic energy of the nuclear densities
at small separation distances can be employed due to the
antisymmetrization of both the interaction matrix element and
the distortion [34].
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As a result, the repulsive force would be remarkable at
minimal distances, so the internal kinetic energy reaches a
maximum value when the densities of participating nuclei
have complete overlap. On the other hand, the PEP anti-
symmetrization and nuclear incompressibility would be an
obstacle to the occurrence of a complete overlap in the to-
tal system that guarantees saturation properties of nuclear
matter [35].

In some formalism like DF, the sudden approximation
is being used. The densities of the colliding nuclei are as-
sumed to be unchanged at all distances during the overlapping
process. The densities of two interacting nuclei overlap so
that an increasing repulsive force would be expected due to
this approximation and PEP. In some theoretical studies, this
increase in energy of the dinuclear system is being simu-
lated within a repulsive force in the NN interaction, and the
nucleus-nucleus potential is being modified in consequence.
Such modifications have been made mostly for fusion reac-
tions, which led to the better reproduction of experimental
data. For instance, it is shown that the incorporation of the
Pauli blocking properly with the DF model can be achieved
by taking into account the redefinition of the density matrices
of the free isolated nuclei [33]. Microscopically, from the
standard M3Y potential developed with the density-dependent
Pauli blocking potential of the density overlap of two colliding
nuclei and the consequent appearance of some shallow pock-
ets in α-core potentials of α + 208Pb, α + 197Au, α + 209Bi,
and α + 238U, their originated fusion cross sections were con-
sistent with the experimental data [36]. Also, the simultaneous
cross-section studies based on the experimental evidence for
the reactions 12C + 12C, 12C + 16O, and 16O + 16O proposed
adding a soft Gaussian repulsive core to the Woods-Saxon
potential [37]. Moreover, the unexpected steep falloff of fu-
sion cross sections at energies far below the Coulomb barrier
for the reactions 64Ni + 64Ni, 58Ni + 58Ni, and 64Ni + 100Mo

2469-9985/2020/102(5)/054602(9) 054602-1 ©2020 American Physical Society

https://orcid.org/0000-0002-7159-8519
https://orcid.org/0000-0002-4626-6862
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevC.102.054602&domain=pdf&date_stamp=2020-11-03
https://doi.org/10.1103/PhysRevC.102.054602


M. MOGHADDARI AMIRI AND O. N. GHODSI PHYSICAL REVIEW C 102, 054602 (2020)

were successfully explained by a combination using the DF
potential based on the M3Y interactions supplemented with a
simulated repulsive core [30,35].

On the other hand, such an additional repulsive force in-
creases the kinetic energy of the total interaction [36,38].
Therefore, the desired modifications can be investigated by
estimating the variation of the kinetic energy in the dinuclear
system. An increase in kinetic energy acts as a repulsive
force in the dinuclear system that prevents the unexpected
increase of the density overlapping at interior regions. Despite
the well-illustrated overlapping effect in density-functional
theory (DFT) [39,40], the effect of Pauli blocking is not well
embedded in the DF formalism. For achieving such preven-
tion, a repulsive force can be simulated in the DF formalism
due to the PEP, which plays a similar role as the kinetic-
energy contribution in the DFT. Therefore, incorporating the
PEP with the DF would be associated with a repulsive-core
simulation, which is one of the possible solutions to conserve
the dinuclear system around the saturation density. Toward
this end, we intend to examine the influence of the PEP on
α decay within the DF formalism.

Furthermore, the α-decay process is also a low-energy
phenomenon, and it cannot actually cause a sensible variation
in the ground-state properties of an alpha emitter [15,41]. On
the other hand, it is shown that an α cluster is mostly formed
in the presurface region of the nucleus. Some sensible density
overlapping between alpha and daughter nuclei in more dense
regions is due to the effect of Pauli blocking from the saturated
core density [42]. Therefore, the interior regions of the inter-
action potentials between alpha and daughter nuclei would be
affected by the PEP, where the tunneling process occurs. One
of the possible mechanisms that is being extensively used for
simultaneously applying the PEP and clusterization state in
the dinuclear system is the renormalization of the strength of
effective NN interactions due to the Bohr-Sommerfeld (BS)
quantization condition [2,3,39,43–46]. This procedure com-
pensates to some extent for the deficiency of the PEP in the
DF formalism.

Since the effect of Pauli blocking behaves as a repulsive
force in the dinuclear system [38], an increase in kinetic en-
ergy in the dinuclear system would be expected due to density
overlap. Due to the fact that the effect of Pauli blocking is
not embedded in the DF formalism, some promotions would
be required to properly incorporate the DF formalism and the
effect of Pauli blocking for the α-decay studies. On the other
hand, the Hartree-Fock model based on Skyrme forces is a
successful approach for examining the ground-state properties
of nuclei. With a similar approach adopted in the Hartree-Fock
model, and different from what the BS condition suggests, we
intend to estimate an increase in the kinetic energy due to the
Pauli blocking within the extended Thomas-Fermi approach.
Consequently, the α-decay half-lives of even-even heavy nu-
clei will be calculated that are being affected by embedding
kinetic energy, caused by folding the densities of alpha and
daughter nuclei into the nucleon-nucleon M3Y interactions in
the DF formalism. A comparison between these results with
their corresponding values obtaining through the renormaliz-
ing the strength of effective NN interaction of total potential
due to the BS condition will be presented.

This paper is organized as follows: The formalism of po-
tential and half-life calculations are given in Sec. II, and our
result and discussion are given in Sec. III. This paper ends
with the main results and conclusions presented in Sec. IV.

II. THEORETICAL FRAMEWORK

A. Double-folding formalism and the α-decay half-life

The total potential V (R) is written as

V (R) = VC (R) + VN (R), (1)

where VC , VN are the Coulomb and nuclear parts of the total
potential, respectively. Also, R denotes the vector joining the
center of masses of the two nuclei. In this study, we investigate
the α decay of even-even nuclei that the transferred angular
momentum for these decay processes are zero. The nuclear
part is obtained by the double-folding model within folding
the densities of the alpha and the daughter nuclei with the
effective M3Y interaction,

VN (R) = λ0VF (R)

= λ0

∫∫
ρ1(r1)Veff (s)ρ2(r2)d3r1d3r2, (2)

where s = R + r1 − r2 corresponds to the distance between
two specified interacting points of the interacting nuclei,
whose radius vectors are r1 and r2, respectively. The Veff (s)
is an effective nucleon-nucleon interaction [32,47]. The
energy-dependent M3Y Reid-NN forces with zero range ap-
proximation that used in our calculations have following
explicit forms [48]:

Veff (s) = 7999
exp (−4s)

4s
− 2134

exp (−2.5s)

2.5s
+ J00δ(s),

J00 = −276(1 − 0.005E/A), (3)

where E and A are the incident energy in the center-of-mass
frame and the mass number of the alpha particle, respectively.
In Eq. (2), ρ1 is taken for the density distribution function of
the spherical α particle in its Gaussian form used in this study
[49] that is given as

ρ(r) = 0.4229e−0.7024r2
, (4)

and ρ2 is the density of the daughter nucleus that is determined
by Hartree-Fock-Bogoliubov calculations based on the set of
Skyrme SLy4 parametrization [50] as result of its capability
for well reproducing the α-decay energies of heavy and su-
perheavy nuclei in this study [51].

The parameter λ0 in Eq. (2) changes the folded potential
strength that is known as the strength parameter. It can be
determined by using the BS quantization condition [52–54]:

∫ R2

R1

√
2μ

h̄2 |V (R) − Q|dR = (2n + 1)
π

2
= (G − � + 1)

π

2
,

(5)
where R2, R3 are classical turning points that are obtained
by V (R) = Q (the α-decay energy), and for 0+ → 0+s-wave
decay the inner turning point is at R1 = 0.
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The global quantum number G of a cluster state can be
obtained by the Wildermuth condition [43]

G = 2N + � =
4∑

i=1

gi, (6)

where N is the number of nodes of the α-core wave function;
� is the relative angular momentum of the cluster motion, and
gi is the oscillator quantum number of a cluster nucleon. For
the α decay, we can take G as

G = 2N + � =
⎧⎨
⎩

18, N � 82
20, 82 < N � 126
22, N > 126.

(7)

The half-life of the α decay is T1/2 = h̄ ln 2/�α . In this
relation, �α is the α-decay width of the cluster state within
the Gurvitz and Kälbermann method, determined as [55]

�α = FPα

h̄2

4μ
exp

(
−2

∫ R3

R2

k(R)dR

)
, (8)

where F is a normalization factor can be defined as below

F
∫ R2

R1

dR

2k(R)
= 1, (9)

where k(R) = (2μ/h̄2[V (R) − Q])1/2 is the wave number.
Also, Pα and μ are the alpha formation probability and re-
duced mass, respectively.

B. Alpha decay half-life within the
Wentzel-Kramers-Brillouin approximation

In the preformed cluster model (PCM) viewpoint, a forma-
tion probability is being attributed to the alpha cluster before
the tunneling process. Consequently, the α-decay half-lives
can be calculated by T1/2 = ln 2/λ with the PCM viewpoint,
where λ is the decay constant, which is a multiplication
of the barrier penetrability P, the assault frequency ν0, and
cluster formation probability Pα . Moreover, many researchers
adopted Pα = 1, fission-like model, to calculate the α-decay
half-lives. However, in this study, the calculation of the
α-decay half-lives will be done the same way for both condi-
tions. It should be noted that the strength parameter is assumed
to be λ0 = 1 for calculating the α-decay half-lives through the
WKB approximation.

The barrier penetrability P can be calculated by using the
semiclassical Wentzel-Kramers-Brillouin (WKB) approxima-
tion:

P = exp

(
−2

h̄

∫ R5

R4

√
2μ

h̄2 |V (R) − Qα|dR

)
, (10)

where R4, R5 are classical turning points. In this study, the
experimental Qα values are taken from Refs. [56,57]. By
assuming that the α particle vibrates in a harmonic-oscillator
potential with oscillation frequency ω, the assault frequency
ν0 can be determined as illustrated in Ref. [58].

C. Cluster formation model

In the cluster formation model (CFM), it is assumed that
the parent nucleus is a compilation of different cluster states

[15]. For each preformation, there is a different wave function
and a different Hamiltonian. Therefore, we assume that, for
each preformation or clusterization, there is a clusterization
state represented by a wave function. If the parent nucleus
has N different clusterization states with total energy E , the
Hamiltonian Hi belongs to the ith clusterization defined with
an ith wave function, therefore

Hi�i = E�i, i = 1, 2, . . . , N. (11)

Therefore, this nucleus is described by a total time-
independent wave function that is a linear combination of
these clusterization orthonormalized wave functions

� =
N∑

i=1

ai�i, (12)

where ai are the amplitudes for the clusterization states of the
complete set and within the orthogonality condition,

N∑
i

|ai|2 = 1. (13)

Each cluster has a specific formation energy E f i,

E f i = |ai|2E . (14)

The probability of the alpha clusterization state Pα is equiv-
alent to a2

α . It can be calculated as

Pα = |aα|2 = E f α

E
, (15)

where aα and E f α denote the coefficient of the α clusterization
and the formation energy of an α cluster. E is composed
of E f α and the interaction energy between the α cluster and
the daughter nuclei. The detailed illustrations are provided in
Ref. [15]. In the framework of CFM, the α cluster formation
energy E f α and total energy E of a considered system can be
expressed as

E f α = 3B(A, Z ) + B(A − 4, Z − 2)

− 2B(A − 1, Z − 1) − 2B(A − 1, Z ), (16)

E = B(A, Z ) − B(A − 4, Z − 2), (17)

where B(A, Z ) is the binding energy of the nucleus with mass
number A and proton number Z . The energies defined in
Eqs. (16) and (17) belong to even-even nuclei, and for an odd
atomic number or odd neutron number, the formation energies
can be found in Refs. [59,60].

Moreover, the formation probability of each cluster state
calculated by the CFM can reproduce well a more realistic
formation probability, which follows the calculation of Varga
et al. [61,62].

III. RESULTS AND DISCUSSIONS

Generally, the α-tunneling process is so swift occurring
around 10−21 s [14,58,63] that proceed with the α-decay stud-
ies are being done under sudden approximation. Also, this
approximation is being used in the DF formalism, in which
the densities of the interacting nuclei are being assumed to be
frozen at all distances during the interaction. One can expect
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that the densities of the nucleons in the compound system
increase as the folding density distributions of the alpha and
daughter nucleus begins at the nuclear surface and rises to
total overlap. Meanwhile, the PEP would be more apparent in
following this accumulation of nucleons. Hence, a variation
in the kinetic energy at constant volume would be expected
[33,38]. In this case, such kinetic energy is not attributed to
the kinetic energy of the emitted alpha particle. Hence, the
α-core interaction potential that is being calculated by DF
formalism can be modified by adding the mentioned kinetic-
energy term that causing by overlapping densities of the alpha
and daughter nuclei.

For estimating the kinetic-energy well illustrated in the
DFT [22,64], the self-consistent Hartree-Fock calculations are
being performed comprising SLy4 Skyrme interaction. The
variation of the kinetic energy of the density overlap of two
colliding nuclei based on the DFT is being obtained by

�K (R) = h̄2

2m

∫∫
{τ [ρ1p(r) + ρ2p(r − R), ρ1n(r)

+ ρ2n(r − R)] − τ [ρ1p(r) + ρ1n(r)]

− τ [ρ2p(r) + ρ2n(r)]}dr, (18)

where τ denotes the kinetic-energy density. The two nuclei
are overlapping at R and completely separated at infinity,
R = ∞. The contribution of the kinetic-energy density for
the dinuclear system coincides with the overlapping densi-
ties of the alpha and daughter nuclei would be clarified by
the extended Thomas-Fermi approach (ETF) and consider-
ing the semiclassical correction of the second-order h̄ [65]
proposed as

τq(r) = 3

5
(3π2)

2
3 ρ

5
3

q + 1

36

(∇ρq)2

ρq
+ 1

3
�ρq + 1

6

∇ρq · ∇ fq

fq

+ 1

6
ρq

� fq

fq
− 1

12
ρq

(∇ fq

fq

)2

+ 1

2
ρq

(
2m

h̄2

)2(W0

2

∇(ρ + ρq)

fq

)2

, (19)

where q denotes proton and neutron and fq(r) is the effective-
mass form factor that is given as

fq(r) = 1 + 2m

h̄2

1

4

[
t1

(
1 + x1

2

)
+ t2

(
1 + x2

2

)]
ρ(r)

− 2m

h̄2

1

4

[
t1

(
x1 + 1

2

)
− t2

(
x2 + 1

2

)]
ρq(r). (20)

The parameters x1, x2, t1, t2, and W0 are obtained by fitting
different properties of nuclei, and m and ρ = ρ1 + ρ2 are the
nucleon mass and nuclear densities, respectively.

The calculated kinetic energy typically for α + 208Pb is
presented by the red dotted line in Fig. 1(a). This figure
indicates that the kinetic energy is impressive in the interior
region, where two nuclei have sensible overlap. Also, its value
is confronted by a gradual depression concerning the low
overlapping densities at nuclear surfaces.

The kinetic energy estimated by the ETF approach for the
dinuclear system can be accompanied as a corrective term

FIG. 1. (a) The calculated VC (R), VN (R), and kinetic energy,
KE (R), typically for α and 208Pb. (b) The dashed line is the M3Y
total potential and the dotted line is the total potential with added
kinetic energy. The solid horizontal line indicates the Qα value for
the 212Po.

with the DF model that is explicitly presented in Fig. 1(a).
The presented results in Fig. 1(b) indicate that the influence
of the considered kinetic energy on the interior regions of
the Coulomb barrier is quite evident. This kinetic energy
due to the PEP acts as a repulsive force that hinders a large
density overlap in the dinuclear system. Consequently, the
half-life calculations would be affected by this modification.
For seeking such influences, by employing the M3Y poten-
tials and modified potentials with added kinetic-energy terms,
the half-lives of the even-even nuclei with 84 � Z � 92 are
calculated through a WKB approximation that are listed as
T (2)

1/2 and T (3)
1/2 in Table I. The standard deviation (SD) of

the 48 nuclei, σ = { 1
N

∑N=48
i=1 [log(T calc

i /T Expt.
i )]2}1/2, of the

calculated half-lives from their corresponding experimental
data is employed for having a better insight into this modi-
fication. The SD obtained by using the WKB approximation
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TABLE I. A comparison between the logarithms of the calculated α-decay half-lives and T1/2(VSS), T1/2(RF), and T1/2(UDL). The half-
lives are calculated in units of seconds.

Parent Qα [MeV] T Expt.
1/2 PCFM

α T (1)
1/2 T (2)

1/2 T (3)
1/2 T (4)

1/2 T (5)
1/2 T (6)

1/2 T VSS
1/2 T RF

1/2 T UDL
1/2

198
84 Po 6.3096 2.2678 0.206 1.2479 0.9071 1.3917 1.5932 2.0778 2.0677 1.2815 2.0095 1.8459
200
84 Po 5.9814 3.7939 0.188 2.6637 2.3218 2.8150 3.0476 3.5408 3.5264 2.6939 3.4024 3.3204
202
84 Po 5.7010 5.1442 0.174 3.9741 3.6300 4.1316 4.3895 4.8911 4.8715 3.9961 4.6834 4.6776
204
84 Po 5.4848 6.2768 0.158 5.0466 4.7021 5.2120 5.5034 6.0133 5.9863 5.0675 5.7304 5.7887
206
84 Po 5.3269 7.1446 0.146 5.8648 5.5172 6.0368 6.3528 6.8724 6.8332 5.8909 6.5254 6.6352
208
84 Po 5.2153 7.9612 0.135 6.3954 6.0737 6.6333 6.9434 7.5030 7.4340 6.4953 7.0982 7.2478
210
84 Po 5.4074 7.0776 0.104 5.3241 4.9776 5.4980 5.9606 6.4810 6.4409 5.4666 6.0109 6.1146
212
84 Po 8.9541 −6.5243 0.220 −7.6543 −7.9059 −7.4644 −7.2483 −6.8068 −6.8842 −7.0964 −6.8029 −7.3526
214
84 Po 7.8334 −3.7844 0.213 −4.6055 −4.9360 −4.4335 −4.2644 −3.7619 −3.8385 −4.0678 −3.7645 −4.1478
216
84 Po 6.9063 −0.8386 0.206 −1.6597 −1.9110 −1.3640 −1.2249 −0.6779 −0.7697 −1.0235 −0.7098 −0.9255

218
84 Po 6.1146 2.2696 0.196 1.5048 1.2416 1.8188 1.9493 2.5265 2.4273 2.1070 2.4328 2.3898
200
86 Rn 7.0433 0.0783 0.229 −0.7716 −1.0720 −0.6157 −0.4318 0.0245 0.0343 −0.6632 0.0177 −0.2277
202
86 Rn 6.7737 1.0947 0.212 0.2141 −0.0878 0.3878 0.5859 1.0615 1.0712 0.3346 0.9875 0.8025
204
86 Rn 6.5464 2.0118 0.195 1.0671 0.7828 1.2500 1.4928 1.9600 1.9612 1.2235 1.8468 1.7166
206
86 Rn 6.3838 2.7393 0.178 1.6531 1.3878 1.9021 2.1374 2.6517 2.6223 1.8882 2.4791 2.3919
208
86 Rn 6.2606 3.3723 0.162 2.2573 1.8872 2.3763 2.6777 3.1668 3.1638 2.4090 2.9655 2.9138
210
86 Rn 6.1589 3.9542 0.152 2.3159 2.3063 2.8031 3.1245 3.6213 3.6075 2.8507 3.3720 3.3515
212
86 Rn 6.3850 3.1565 0.120 1.6317 1.2782 1.7801 2.1990 2.7009 2.6409 1.8832 2.3483 2.2841
214
86 Rn 9.2084 −6.5686 0.228 −7.6792 −7.8166 −7.3759 −7.1745 −6.7338 −6.8006 −7.0148 −6.7258 −7.2564
216
86 Rn 8.1973 −4.3468 0.236 −4.9573 −5.2271 −4.7531 −4.6000 −4.1260 −4.1687 −4.3628 −4.0746 −4.4570
218
86 Rn 7.2625 −1.4559 0.234 −1.9789 −2.3232 −1.7862 −1.6924 −1.1554 −1.2314 −1.4333 −1.1412 −1.3603
220
86 Rn 6.4046 1.7451 0.220 1.1712 0.9214 1.4912 1.5790 2.1488 2.0643 1.8017 2.1025 2.0636
222
86 Rn 5.5903 5.5186 0.221 4.8612 4.7161 5.3124 5.3717 5.9680 5.8786 5.5380 5.8554 6.0240
206
88 Ra 7.4151 −0.6198 0.222 −1.3163 −1.6664 −1.2171 −1.0128 −0.5635 −0.5391 −1.1331 −0.5542 −0.7904
208
88 Ra 7.2730 0.1361 0.201 −0.8534 −1.1977 −0.7436 −0.5009 −0.0468 −0.0216 −0.6415 −0.0985 −0.3008
210
88 Ra 7.1508 0.5859 0.184 −0.4438 −0.7897 −0.3332 −0.0545 0.4020 0.4164 −0.2070 0.2994 0.1280
212
88 Ra 7.0316 1.1845 0.170 −0.0321 −0.3890 0.0858 0.3806 0.8554 0.8251 0.2276 0.6980 0.5574
214
88 Ra 7.2725 0.3912 0.139 −0.9566 −1.3345 −0.8564 −0.4775 0.0006 −0.0078 −0.6397 −0.2229 −0.4027
216
88 Ra 9.5257 −6.7399 0.239 −7.7321 −7.8831 −7.5032 −7.2615 −6.8816 −6.8251 −7.0864 −6.7992 −7.3190

218
88 Ra 8.5459 −4.5986 0.241 −5.4512 −5.4652 −4.9964 −4.8472 −4.3784 −4.4146 −4.5978 −4.3177 −4.6967
220
88 Ra 7.5924 −1.7447 0.239 −2.3569 −2.6258 −2.1293 −2.0042 −1.5077 −1.5406 −1.7271 −1.4485 −1.6656
222
88 Ra 6.6788 1.5798 0.199 0.9979 0.7055 1.2530 1.4066 1.9541 1.8845 1.5817 1.8652 1.8341
224
88 Ra 5.7888 5.4964 0.183 4.9381 4.6929 5.2814 5.4304 6.0189 5.9432 5.5317 5.8292 6.0194
226
88 Ra 4.8706 10.7029 0.181 9.5268 9.9942 10.6077 10.7365 11.3500 11.3099 10.6943 11.0226 11.5005
212
90 Th 7.9579 −1.4989 0.207 −2.4234 −2.7755 −2.3261 −2.0915 −1.6421 −1.6094 −2.1148 −1.6370 −1.8932
214
90 Th 7.8271 −1.0605 0.193 −1.9449 −2.3820 −1.9234 −1.6676 −1.2090 −1.1947 −1.6988 −1.2580 −1.4844

216
90 Th 8.0723 −1.5850 0.158 −2.7989 −3.2102 −2.7406 −2.4089 −1.9393 −1.9431 −2.4704 −2.0809 −2.3421
218
90 Th 9.8490 −6.9318 0.252 −7.9102 −7.9604 −7.5285 −7.3618 −6.9299 −6.9776 −7.1704 −6.8803 −7.3902

220
90 Th 8.9530 −5.0132 0.247 −5.6070 −5.8344 −5.3725 −5.2271 −4.7652 −4.8237 −4.9752 −4.6993 −5.0830
222
90 Th 8.1269 −2.6498 0.231 −3.3062 −3.5433 −3.0574 −2.9069 −2.4210 −2.4496 −2.6374 −2.3737 −2.6231

224
90 Th 7.2985 0.1461 0.198 −0.5775 −0.8251 −0.3186 −0.1218 0.3847 0.3589 0.0948 0.3515 0.2584
226
90 Th 6.4508 3.2634 0.182 2.5613 2.5199 3.0792 3.2598 3.8191 3.7646 3.4192 3.6765 3.7724
228
90 Th 5.5200 7.7798 0.183 7.1956 7.1081 7.6960 7.8456 8.4335 8.3742 7.9188 8.1915 8.5414
218
92 U 8.7747 −3.2924 0.186 −4.2692 −4.4752 −4.0493 −3.7447 −3.3188 −3.3451 −3.7813 −3.4037 −3.7199
222
92 U 9.4302 −5.3279 0.248 −6.1426 −6.3565 −5.9026 −5.7510 −5.2971 −5.3416 −5.5056 −5.2300 −5.6274
224
92 U 8.6198 −3.0757 0.229 −4.0262 −4.2472 −3.7702 −3.6070 −3.1300 −3.1537 −3.3453 −3.0871 −3.3588
226
92 U 7.7009 −0.5719 0.206 −1.1909 −1.4206 −0.9212 −0.7345 −0.2351 −0.2506 −0.4943 −0.2456 −0.3531
228
92 U 6.8035 2.7595 0.188 2.1752 1.9202 2.4387 2.6460 3.1645 3.1530 2.8303 3.0751 3.1583
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for the standard M3Y potentials is 1.245, which varies to
0.787 for the half-lives obtained by modified potentials within
kinetic-energy considerations. This SD promotion indicates
how the kinetic-energy application to the DF model would be
productive on the calculation of the α-decay half-lives.

On the other hand, for considering the PEP in the total
system, we renormalized the NN interactions according to the
BS quantization condition. Consequently, the α-decay half-
lives are being calculated within the Gurvitz method, and
their logarithms are expressed as T (1)

1/2 in Table I. The SD
value 0.994 is obtained for this case. The obtained results
express that the α-decay half-lives that are being calculated by
kinetic-energy application to the DF model are more consis-
tent with the experimental data than the corresponding values
obtained by the renormalizing and Gurvitz methods.

It is noticeable that all the α-decay half-lives are calcu-
lated with the Pα = 1 assumption. Extensively, it has shown
that the alpha formation probability has a remarkable role
in the α-decay studies [66–68]. However, if the calculations
of the α-decay half-lives within the WKB approximation, in
the PCM viewpoint, associate with the cluster preformation
factors, estimating by the CFM [59,69,70] can result in a
good agreement with the experimental data. The preformation
factors calculated by CFM are presented as PCFM

α in Table I.
The SD values for half-lives obtained by M3Y potentials
change to 0.561 and reduce to 0.309 for those obtained by
modified potentials as a consequence of the application of the
preformation factors estimated by the CFM. Also, the loga-
rithms of half-lives calculated with Pα applications for M3Y
and modified potentials with kinetic energies are presented
as T (4)

1/2 and T (5)
1/2 in Table I. Furthermore, if the alpha cluster

preformation factors estimating by the CFM are being applied
to half-lives calculated within the Gurvitz method, the SD
value changes from 0.994 to 0.340.

Moreover, we employed some various phenomenological
formulas based on the Geiger Nuttall law [71] that have been
proposed to estimate the α-decay half-lives for comparing
with the estimated half-lives. The Viola-Seaborg-Sobiczewski
(VSS) semi-empirical relationship was determined as

log10(T1/2) = (aZ + b)√
Qα

+ cZ + d + e, (21)

where Z is the atomic number of the parent nucleus and the
constants a, b, c, and d are 1.66175, −8.5166, −0.20228,
and −33.9069, respectively [72]. For the even-even nuclei, the
parameter e is assumed to be zero [73].

Also, the Royer analytic formula (RF) for the α-decay half-
lives was proposed as [74]

log10(T1/2) = a + bA
1
6

√
Z + cZ

Qα

, (22)

where A and Z denote the mass and atomic numbers of the
parent nuclei. For the even-even nuclei, the constants a, b, and
c are −25.31, −1.1629, and 1.5864, respectively.

Furthermore, the universal decay law (UDL) in charged-
particle emission and exotic cluster radioactivity was pre-

FIG. 2. The solid line is the kinetic energy estimated by the ETF
approach and the dashed line is the simulated double-folded integral
with a δ function, typically for the overlapping of α and 208Pb.

sented by Qi et al. [75]:

log10(T1/2) = aZαZd

√
A

Qα

+ b

√
AZαZd

(
A

1
3
α + A

1
3
d

) + c,

(23)
where A = (AαAd )/(Aα + Ad ) and constants a = 0.4314, b =
−0.4087, and c = −25.7725 were obtained by fitting to ex-
perimental data of both alpha and cluster decays [75]. The
logarithms of the calculated half-lives obtained by VSS,
RF, and UDL formulas are presented as T VSS

1/2 , T RF
1/2 , and

T UDL
1/2 in Table I, respectively. The SD values of the calcu-

lated half-lives obtained by VSS, RF, and UDL formulas are
0.704, 0.385, and 0.484, respectively. Also, by comparison
with SD values of the calculated half-lives obtained by the
mentioned phenomenological formulas and those obtained
by M3Y and modified DF potentials, we clarify that the
calculated half-lives within simultaneous kinetic-energy mod-
ification and alpha preformation factor applications obtained
by CFM along with the RF formula are more consistent with
the experimental data. Therefore, the role of this modification
in the α-decay studies would be more impressive.

To simplify the estimation of kinetic energy through the
sophisticated Hartree-Fock and ETF approaches, a double-
folded integral with a δ function V0δ(s) is simulated as

VRep(R) = V0

∫∫
ρ1(r1)δ(s)ρ2(r2)dr1dr2, (24)

where V0 is the strength of this simulated repulsive force
obtained where the alpha and daughter have a total overlap
(R = 0). Its value is being adjusted to reproduce the estimated
kinetic energy by the ETF approach, especially where the PEP
becomes more apparent in the total system. For instance, the
simulated repulsive force for the dinuclear system (α + 208Pb)
is displayed in Fig. 2. As shown in Fig. 2, the overlap-
ping of the α and daughter nuclei would be associated with
some energy variations at nuclear surfaces. Furthermore, the
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FIG. 3. The kinetic-energy values for the overleaping α and
daughter nuclei examined at R = 0 with respect to the daughter
neutron number.

presented results in this figure indicate that the treatment of
our simulation is close to the treatment of kinetic energy with
fair approximation. Also, the treatments and the magnitudes
of such simulation and estimated kinetic energy are exciting
the same from the first turning point and thereafter. Hence,
this similarity at R = 0 and from the first turning point is sup-
porting the choice of such a simulated double-folded integral
with a δ function.

Concerning the calculated kinetic energy for selected iso-
topic groups, their values at the origin are determined and
presented in Fig. 3. As shown in Fig. 3, the quantized shifts for
examined kinetic energies according to an increase in atomic
numbers. Also, for the specific isotope group, the kinetic
energy has a peak for the parent nucleus that its daughter
has a magic neutron closed shell, which can be a result of
the shell-closure effect at magic neutron number N = 126.
One can expect that the PEP causes a nucleon interacting
space at full strength. It further increases the kinetic energy
during the density overlap of alpha particle and the nuclei with
the full occupied layers, especially with magic nuclei. This
treatment can be justified as the fully occupied valence layer
in the magic nuclei, causing a higher nucleon accumulation
at constant volume in comparison with the nuclei that have a
nonfull valence layer.

It is noticeable that each nucleus has its characteristic
fq(r) that relates to the density distributions of the nucleons
calculated by the SLy4, in this paper. For examining the
fq(r) contributions to the shell-closure treatment displayed in
Fig. 3, their values and the amount of the nucleon densities for
the 206–210Pb are being estimated at R = 0, where two nuclei
have complete overlap. The estimated effective-mass form
factors fp(r) for 206Pb, 208Pb, and 210Pb are 1.4344, 1.4366,
and 1.4328, respectively. Also, The estimated effective-mass
form factors fn(r) for 206Pb, 208Pb, and 210Pb are 1.4595,
1.4628, and 1.4620, respectively. On the other hand, by con-
sidering the dependency of fq(r) to the variation of the total

FIG. 4. The strength of the simulated double-folded integral with
a δ function for the overleaping α and daughter nuclei adjusted at
R = 0 due to the kinetic energy.

energy E with respect to the kinetic-energy density, fq(r) =
(2Mq/h̄2)(δE/δτ ), one can expect that the higher effective-
mass form factor would result in a higher kinetic energy.
According to the estimated fp(r) and fn(r), a double closed-
shell nucleus like 208Pb has more kinetic energy than the
isotopes in its vicinity, as indicated in Fig. 3. Hence one can
expect that the shell-closure treatment in Fig. 3 can be due
to the effective-mass form factors that are being obtained by
density distributions calculated by SLy4 force.

All adjusted V0 values at R = 0 with respect to the daughter
neutron numbers for the investigated heavy nuclei are pre-
sented in Fig. 4. As shown in Fig. 4, an obvious shell-closure
effect for a characterized isotope group. As shown in Fig. 4,
quadratic dependencies with respect to the daughter neutron
number are obtained for the nuclei with valence holes and
linear dependencies for the isotopes with the valence particles.

Instead of a discrete calculation for the strength of such a
simulation, the mentioned two different dependencies made
us fit these obtained V0 values with respect to the atomic
and mass numbers of daughter nuclei. These fit relations are
illustrated as below:

V0 =
{

a + bZd + (cZd + d )A1/3
d

√
N0 − Nd , Nd < N0

a + b(Ad − N0), Nd � N0,
(25)

where the coefficients a = 145, b = 0.3125, c = 0.0255, and
d = 1.8575 are obtained and N0 is equivalent to the neu-
tron magic number N = 126. Ad , Zd , and Nd are the mass,
atomic, and neutron numbers of daughter nuclei, respectively.
Also, our simulation can compensate for the nonconsidera-
tion of the kinetic energy in the DF potential such as the
estimated kinetic energy through the extended Thomas-Fermi
approach. The α-decay half-lives are being calculated upon
implementing the simulated double-folded integral with a δ

function and Pα application obtained by CFM. Their loga-
rithms are presented as T (6)

1/2 in Table I. The obtained SD for the
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TABLE II. The detailed information of each state that is being investigated.

Potential Half-life calculation method λ Pα SD Top name in Table I

M3Y Gurvitz & Wildermuth condition λ �= 1 Pα = 1 0.994 T (1)
1/2

M3Y Gurvitz & Wildermuth condition & Pα λ �= 1 Pα = CFM 0.340
M3Y WKB λ = 1 Pα = 1 1.245 T (2)

1/2

M3Y + kinetic energy WKB λ = 1 Pα = 1 0.787 T (3)
1/2

M3Y WKB & Pα λ = 1 Pα = CFM 0.561 T (4)
1/2

M3Y + kinetic energy WKB & Pα λ = 1 Pα = CFM 0.309 T (5)
1/2

M3Y + simulated term WKB & Pα λ = 1 Pα = CFM 0.298 T (6)
1/2

calculated half-lives through the modified DF potentials with
this simulation is 0.298, which indicates a good consistency
with SD values obtained by RF formula and those obtained
by the DF potential with the kinetic-energy modification and
Pα application. Although both kinetic-energy considerations
and the NN renormalization due to the BS quantization con-
dition in the DF model can reproduce the effect of the PEP
in the total system, the calculated α-decay half-lives within
the kinetic-energy consideration are more consistent with the
experimental data. The detailed properties of all considered
states are presented in Table II.

IV. SUMMARY AND CONCLUSION

In this study, the effects of the repulsive forces arising
from the PEP are investigated for the calculations of the α-
decay half-life for even-even nuclei with 84 � Z � 92. Such
repulsive force between NN interactions is investigated by
considering an increase in the kinetic energy in the dinuclear
systems. The densities of the alpha and daughter nuclei have
an overlap. Also, we investigate how the PEP affects the α

decay by the renormalizing the NN interactions by the BS

quantization condition. To this intention, the ETF approach is
used to estimate such kinetic energies that have arisen at the
overlapping regions. Subsequently, the results expose some
energy variation at nuclear surfaces causes by the applied
interior modifications to the DF formalism, which can affect
the α-decay half-life calculations.

The SD value for the half-lives obtained by the standard
M3Y potentials is 1.245, which reduces to 0.787 for mod-
ified M3Y potentials by the PEP inclusion by increasing
kinetic energy consideration at overlapping regions. These
values varied to 0.561 and 0.309 by the Pα application on
the half-lives obtained by M3Y and modified M3Y poten-
tials, respectively. On the other hand, the SD value 0.340
is being obtained for the normalized potentials within the
BS condition for embedding the PEP. The results reveal
that the α-decay half-lives would be more affected by the
repulsive force considerations on the DF formalism, which
proceed to the more consistent half-lives with the exper-
imental data. Moreover, we proposed a pocket formula
instead of the kinetic-energy estimations through the sophisti-
cated Hartree-Fock and ETF approaches, associated with DF
formalism.
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