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Background: Eclipse effect of the neutron and the proton in a deuteron target is essential to correctly describe
high-energy deuteron scattering. The nucleus-deuteron scattering needs information on not only the nucleus-
proton interaction but also the nucleus-neutron interaction, for which no direct measurement of the nucleus-
neutron cross sections is available for unstable nuclei.
Purpose: We systematically evaluated the total reaction cross sections on a deuteron target to explore the
feasibility of extracting the nucleus-neutron interaction from measurable cross sections.
Methods: High-energy nucleus-deuteron collision is described by the Glauber model, in which the proton and
neutron configuration of the deuteron is explicitly taken into account.
Results: Our calculation reproduces available experimental total reaction cross section data on the nucleus-
deuteron scattering. The possibility of extracting the nucleus-neutron total reaction cross section from nucleus-
deuteron and nucleus-proton total reaction cross sections is explored. The total reaction cross sections on proton,
neutron, and deuteron targets can be expressed, to good accuracy, in terms of the nuclear matter radius and the
neutron skin thickness. Incident-energy dependence of the total reaction cross sections is examined.
Conclusions: The total reaction cross section on a deuteron target includes information on both the nucleus-
neutron and the nucleus-proton profile functions. Measuring the cross sections by deuteron and proton targets is
a promising tool to extract the nuclear size properties.
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I. INTRODUCTION

Over half a century ago, Glauber and Franco examined
high-energy antiproton-deuteron ( p̄d) scattering and pointed
out that the p̄d absorption cross section was always smaller
than the sum of p̄p and p̄n cross sections [1,2]. This cross-
section defect was significantly large and its origin was
explained by the so-called “eclipse” effect that the neutron
and the proton in the deuteron cast individual shadows. When
either particle lies in the shadow cast by the other, it absorbs
less effectively than when outside it. As stressed there, the
high-energy deuteron scattering is in fact not simply explained
only by the geometrical eclipse but also multiple scattering
effects have to be taken into account. The total reaction cross
section is a quantity mostly used to measure absorption in
nuclear collisions.

The purpose of this paper is to study the total reaction cross
section of a projectile nucleus P scattered by a deuteron target
with a beam energy of several tens of MeV to a few GeV per
nucleon, especially focusing on the eclipse effect, that is, the
difference of the Pd total reaction cross section from the sum
of total reaction cross sections of Pn and Pp. As the effect
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is influenced by the size of P and the property of underlying
nucleon-nucleon interaction, e.g., the difference of the pp and
pn total cross sections, this study is expected to be closely
related to the issue of radii of neutrons and protons of P.

Measurements of interaction and total reaction cross sec-
tions with the help of inverse kinematics have unveiled various
exotic structures of unstable nuclei, e.g., halo [3–5], neutron-
skin structure [6], and recently the anomalous growth of the
nuclear radius of Ca isotopes has been found [7]. Although
such measurements have mostly been done on a carbon target,
a deuteron target combined with a proton target appears to
be superior in extracting the radii of protons and neutrons.
Furthermore, experiments on charge-changing cross sections
have recently been carried out to extract information on the
radius [8,9], but the experiments often pose some problems in
both their data analysis and a theoretical formulation from the
point of view of a reliable determination of the radius [10–13].

Thanks to the recent development of a proton target
[14–16], the nucleus-proton interaction for unstable nuclei can
now be studied and gives valuable input to explore the prop-
erty of neutron skin thickness, the difference in radii between
neutrons and protons [17,18]. No such study is, however,
available for the nucleus-neutron interaction. By understand-
ing quantitatively the eclipse effect of the deuteron cross
section, we expect to get information on the nucleus-neutron
interaction for unstable nuclei.
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The deuteron has unique advantages in that it has only
one bound state, the ground state, and its wave function is
readily calculated. The deuteron is fragile and can easily
dissociate without inducing the mass-number change of P in
the collision. Such an inelastic scattering process is difficult
to identify in a measurement, and thus the interaction cross
section is actually measured. A theory usually calculates the
total reaction cross section. We discuss the difference between
both the cross sections.

The paper is organized as follows. In the next section, we
present a formulation to describe the high-energy nuclear col-
lision. Expressions for the Pd total reaction cross section and
the interaction cross section are derived within the Glauber
model, including the spatial correlations of the proton and
the neutron in the deuteron. Section III shows our results.
First in Sec. III A we test the validity of the present model
by comparing the theoretical total reaction cross sections on a
deuteron target with the available experimental data for known
nuclei. We quantify the deuteron eclipse effect and investigate
its magnitude systematically. In Sec. III B, we discuss the
possibility of extracting the nucleus-neutron interaction from
simultaneous measurement of the total reaction cross sections
on deuteron and proton targets by performing a numerical
“experiment”. Two practical examples are given. For future
measurement, we show the universal behavior of the total
reaction cross sections on deuteron, proton, and neutron tar-
gets for a wide range of incident energy and mass number
using realistic density distributions. Section III C relates the
total reaction cross sections to the nuclear size properties,
matter radius and neutron skin thickness. Sensitivity of the
cross sections to the radii of protons and neutrons is quantified
through an investigation of their incident-energy dependence.
Section III D compares the magnitude of the total reaction and
interaction cross sections. The conclusion is given in Sec. IV.

II. GLAUBER MODEL FOR DEUTERON CROSS SECTIONS

A. Total reaction cross section

Here we employ the Glauber model to describe the high-
energy Pd scattering. The validity of this approach was well
tested in 58Ni -d scattering [19–21]. Let �P

α and �T
β denote the

wave functions of a projectile nucleus, P, and a target nucleus,
T . The cross section from an initial state (α = 0, β = 0) to a
final state, α and β, is evaluated by integrating the reaction
probability over an impact parameter vector, b [1]:

σαβ =
∫

db

∣∣∣∣∣〈�P
α �T

β

∣∣∏
j∈P

∏
k∈T

[1 − � jk]
∣∣�P

0 �T
0

〉∣∣∣∣∣
2

. (1)

Here, � jk = 1 − eiχNN (b+s j−sk ) is specified by a phase-shift
function χNN of the nucleon-nucleon (NN) scattering. s j (sk)
is a two-dimensional vector, perpendicular to the beam (z)
direction, of the nucleon coordinate relative to the center of
mass of the projectile (target) nucleus. χNN depends on the
pn pair or the pp pair. χnn is assumed to be the same as χpp.
The spin dependence of χNN is ignored. The parameters of
� jk (�NN ) are taken from Ref. [22].

The total reaction cross section is defined by σT :R =∑
αβ σαβ − σ00. The sum over αβ is taken by using a closure

relation, e.g.,
∑

α |�P
α 〉〈�P

α | = 1, and the unitarity of the NN
phase-shift function, |eiχNN |2 = 1, leading to

σT :R =
∫

db[1 − PPT (b)], (2)

where PPT (b) is the probability for the elastic scattering

PPT (b) =
∣∣∣∣∣〈�P

0 �T
0

∣∣∏
j∈P

∏
k∈T

[1 − � jk]
∣∣�P

0 �T
0

〉∣∣∣∣∣
2

. (3)

Although the evaluation of PPT (b) is in general hard, a
nucleus-N case can be done to good accuracy. Given the
proton and neutron densities of the projectile nucleus P, we
get the PN phase-shift function χP

N by [1,21]

iχP
N (b) = ln

〈
�P

0

∣∣∏
j∈P

[1 − � jN ]
∣∣�P

0

〉

≈ −
∫

dr
[
ρP

p (r)�pN (b + s) + ρP
n (r)�nN (b + s)

]
,

(4)

where r = (s, z). This approximation works well when the
fluctuation of χP

N is small enough [19–21,23]. In fact, the
ansatz (4) that relates χP

N to the proton and neutron densities
of P has proven to work well for many cases of PN scattering
[24–27]. The PN total reaction cross section σN (N = n, p)
reads

σN =
∫

db [1 − PN (b)], (5)

with

PN (b) = ∣∣eiχP
N (b)

∣∣2
. (6)

A unique advantage of the deuteron target is that we can
calculate Eq. (3) accurately using its ground-state wave func-
tion φd (r). The Pd total reaction cross section turns out to be

σd =
∫

db[1 − Pd (b)], (7)

where

Pd (b) =
∣∣∣∣∣
∫

dr |φd (r)|2eiχP
p (b+ 1

2 s)+iχP
n (b− 1

2 s)

∣∣∣∣∣
2

. (8)

We use the AV8′ potential [28] to generate φd (r). |φd (r)|2
is actually defined by taking an average with respect to
relevant magnetic quantum numbers and by integrating out
spin-isospin coordinates. In this way we get a quantitative
evaluation of the cross-section defect:

δσ = σp + σn − σd . (9)

B. Interaction cross section

Experimentally observed in most cases is the interaction
cross section but not the total reaction cross section. Because
it is hard to calculate the interaction cross section at the same
accuracy as the total reaction cross section, it is of practical
importance to set a theoretical limit on the interaction cross
section. The interaction cross section is a semi-inclusive cross
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section defined by summing over all α’s but particle-bound
states (b.s.):

σT :I =
∑
αβ

σαβ −
∑

α∈b.s. β

σαβ = σT :R − �σ, (10)

where

�σ =
∑

α∈b.s. β

σαβ − σ00. (11)

A calculation of �σ demands all b.s. wave functions of the
projectile nucleus, which is in general hopeless. Provided the
projectile nucleus has only one b.s., its ground state σT :I is
equal to σT :R − �0σ , where

�0σ =
∑

β

σ0β − σ00. (12)

In other cases �0σ is the lower bound of �σ : �0σ � �σ .
Even the calculation of �0σ is difficult in a general case.
For the deuteron target, however, with the same ingredients
as needed to calculate σd , we can get it. To show this, we
again use the closure relation for all target states and the
approximation of Eq. (4) to the phase-shift function:∑

β

σ0β =
∫

db
〈
�T

0

∣∣∣∣〈�P
0

∣∣∏
j∈P

∏
k∈T

[1 − � jk]
∣∣�P

0

〉∣∣2∣∣�T
0

〉
(13)

�
∫

db P0(b), (14)

where

P0(b) =
∫

dr |φd (r)|2∣∣eiχP
p (b+ 1

2 s)+iχP
n (b− 1

2 s)∣∣2
. (15)

Substitution of this result into Eq. (12) leads to

�0σ =
∫

db[P0(b) − Pd (b)]. (16)

III. RESULTS AND DISCUSSION

A. Test of σd calculation

First, we compare in Table I the σd values with
experiment for some well-known nuclei: 12C, 16O, and
40Ca. The values in parentheses denote the results with
the Coulomb breakup cross sections. The center-of-mass-
corrected harmonic-oscillator type densities are employed for
those nuclei [25], and the oscillator parameters needed to

TABLE I. Total reaction cross sections of 12C, 16O, and 40Ca on a
deuteron target at 50 MeV/nucleon. The experimental cross sections
at 48.7 ± 0.15 MeV/nucleon are taken from Ref. [29]. The cross
section in parentheses includes the Coulomb breakup contribution
of the deuteron that is estimated following Ref. [18].

Glauber OLA Expt. [29]

12C 638 (642) 687 600 ± 17
16O 735 (741) 795 726 ± 21
40Ca 1220 (1260) 1310 1260 ± 30

specify the densities are set to reproduce empirical charge
radii [30]. Although the data are at low incident energies, the
Glauber-model calculation reproduces them very well. The
inclusion of the Coulomb breakup contribution leads to results
closer to experiment especially for 40Ca. Our σd value for
40Ca is in excellent agreement with 1270 mb, which is the
cross section obtained by a continuum-discretized-coupled-
channels calculation [31] that includes the Coulomb breakup.

Table I also lists the cross sections calculated with an
optical-limit approximation (OLA) [1,21], which uses

POLA
d (b) = ∣∣ei

∫
dr [ρd

p (r)χP
p (b+s)+ρd

n (r)χP
n (b+s)]∣∣2

, (17)

instead of Eq. (8), where ρd
N is the nucleon density of the

deuteron. Because the OLA takes only the first term in the
cumulant expansion, this approximation is not expected to
work well in the Pd scattering, where the deuteron wave
function is spatially extended [19,20,23]. Apparently the OLA
tends to overestimate σd significantly.

In what follows we neglect the Coulomb breakup contribu-
tion, although its inclusion is possible in the Glauber model as
discussed in Refs. [18,32–35]. It should be noted that the most
important Coulomb effect for heavy projectiles is the deuteron
breakup: It increases σd by a few percent for the projectile
nucleus with its proton number ZP ≈ 20 and by about 5% for
ZP ≈ 40 [18].

Figure 1 displays σd , σp, σn, and δσ for (a) 16O, (b) 40Ca,
and (c) 30Ne as a function of incident energy. Note that σn is
equal to σp for 16O and 40Ca because the neutron and proton
densities are identical. The density distribution of 30Ne, taken
from Refs. [17,36], is obtained by the Hartree-Fock (HF) cal-
culation with the SkM∗ effective interaction [37]. Note that the
density of 30Ne reproduces reasonably well the observed cross
section on a carbon target at 240 MeV/nucleon [38]. The σp

value of 30Ne is close to that of 40Ca, which is due to the fact
that σp is most sensitive to the neutron density of the projectile
nucleus and both 30Ne and 40Ca have almost the same matter
radius. In contrast to σp, σn for 30Ne is smaller than that for
40Ca as understood from different proton numbers of those
projectile nuclei.

For the above three projectile nuclei, σd is always signifi-
cantly smaller than σp + σn: The δσ value is about 10–30% of
σp + σn. The larger the mass number of the projectile nucleus
is, the larger the δσ value that is obtained, which is naturally
understood from the eclipse effect: The chance that the proton
and the neutron in the deuteron cast individual shadows in-
creases with increasing mass number of the projectile nucleus.
The energy dependence of δσ follows that of the NN total
cross section σ tot

NN that specifies �NN (see, e.g., Ref. [39]). δσ

reaches a minimum at ≈200–500 MeV/nucleon, where σ tot
NN

also becomes a minimum.
A simple estimate of δσ for the p̄d case was given by δσ =

2σpσn〈 1
4πr2 〉d

[1,2], where 〈 1
r2 〉d

stands for the expectation
value of the inverse square of the neutron-proton distance r
by the deuteron ground state. With our present value, 〈 1

r2 〉d
=

0.294 fm−2 = 0.0294 mb−1, we find that the formula signif-
icantly overestimates the cross-section defect, about 5 times
larger than the present one. The formula was actually derived
under the assumption that the size of the deuteron is larger
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FIG. 1. Total reaction cross sections, σd , σp, and σn of the projec-
tile nuclei of (a) 16O, (b) 40Ca, and (c) 30Ne as a function of incident
energy. σn is equal to σp for 16O and 40Ca. The cross-section defect
δσ is also plotted.

than the range of the p̄N interaction. The assumption is not
valid in our case because the range of the PN interaction is at
most comparable or larger than the size of the deuteron.

B. Numerical experiment: Extracting σn

Suppose that both σp and σd are measured experimentally.
An interesting question is whether or not we can extract σn

from those observed cross sections. To discuss its possibility,
we perform a numerical experiment by taking examples of
the NP = 2ZP projectile nucleus, 30Ne and 60Ca, where the
difference between σp and σn is expected to be large espe-
cially at low incident energy because of the large neutron skin
thickness expected.
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FIG. 2. Comparison between “theory” (2pF1 and 2pF2) and “ex-
periment” (HF) for the total reaction cross section σn of (a) 30Ne
and (b) 60Ca and the cross-section defect δσ . 2pF1 (2pF2) stands
for the cross sections determined so as to reproduce σp and σd

values at selected incident energies, assuming different (conditional)
Fermi-type density distributions for neutrons and protons. See text
for detail.

We assume σp and σd calculated with the Hartree-Fock
(HF) density distribution to be experimental data, denoted as
σ HF

p and σ HF
d , respectively. We attempt to determine σn under

the assumption that no knowledge on the density distribu-
tion or even the radius of P is given. In any case we need
the density of P, and as a reasonable choice we assume a
two-parameter Fermi (2pF) function for neutrons and protons
(N = n, p):

ρN (r) = ρ0N

1 + exp [(r − RN )/dN ]
, (18)

where RN and dN are radius and diffuseness parameters, and
the central density ρ0N is determined by the condition, e.g., for
proton 4π

∫ ∞
0 drr2ρp(r) = ZP. We consider two cases below.

Case I: Data available at two incident energies

We may assume different parameters for the Fermi func-
tions of neutrons and protons, and we determine them so as to
reproduce the “observed” σ HF

d and σ HF
p values at two incident

energies, chosen at 100 and 200 MeV/nucleon. Whether this
procedure is successful or not is judged by comparing the
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resulting “theoretical” values of σn and δσ with σ HF
n and δσ HF.

Plots labeled 2pF1 in Fig. 2 denote the theoretical values for
the incident energy of 40 to 1000 MeV/nucleon, whereas
plots labeled HF denote observed ones. Both cases of (a) 30Ne
and (b) 60Ca projectile nuclei show excellent agreement: The
2pF density distributions reproduce the HF cross sections of
30Ne and 60Ca for all the incident energies despite the fact that
the four parameters of the Fermi functions are determined to
reproduce the experimental data only at two incident energies.
This numerical experiment strongly corroborates that the eval-
uation of σd is reliable enough to predict σn correctly even at
different incident energies.

The extracted parameters (Rn, dn) and (Rp, dp) are, in fm,
(3.20, 0.66) and (3.08, 0.50) for 30Ne and (4.33, 0.65) and
(4.03, 0.52) for 60Ca, respectively. We see different surface
diffuseness for neutrons and protons and large neutron skin
thickness for both nuclei. Let us define the matter radius rm

and the neutron skin thickness δr of P in terms of the root-
mean-square radii of neutrons and protons, rn(NP, ZP ) and
rp(NP, ZP ), by

rm =
√

ZP

AP
r2

p(NP, ZP ) + NP

AP
r2

n (NP, ZP ),

δr = rn(NP, ZP ) − rp(NP, ZP ), (19)

where AP = NP + ZP. The resulting values are (rm, δr) =
(3.34, 0.47) for 30Ne and (3.98, 0.46) for 60Ca, in excellent
agreement with the HF values (3.34, 0.47) and (4.00, 0.46),
respectively.

For the present analysis to be sensitive enough to the choice
of the parameters of the Fermi function, one of the incident
energies should be chosen �300 MeV/nucleon, because σ tot

pn

is then much larger than σ tot
pp and reduces possible uncertainty

in determining the parameters [17,18].

Case II: Data available at only one incident energy

If we have experimental data, σp and σd , at only one
incident energy, say 100 MeV/nucleon, we put on a con-
straint, e.g., dn = dp = 0.6 fm, and attempt to reproduce the
experimental data using two free parameters, Rn and Rp. The
extracted radius parameters (Rn, Rp) are, in fm, (3.42, 2.90)
for 30Ne and (4.49, 3.88) for 60Ca, respectively. Though the
matter radii rm of these isotopes are 3.37 and 4.01 in fair
agreement with the HF values, the resulting δr values turn
out to be 0.30 for 30Ne and 0.39 for 60Ca, which are con-
siderably smaller than the HF values. As shown in Fig. 2, the
calculated σn value denoted 2pF2 still reproduces the HF value
reasonably well at higher incident energies but deviates from
σ HF

n with decreasing incident energies, e.g., by about 2% at
40 MeV/nucleon. The quality of the theoretical prediction of
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FIG. 3. Total reaction cross sections of σd , σp, and σn for Ca and Ni isotopes at the incident energies of (a) 100, (b) 200, (c) 550, and (d) 800
MeV/nucleon as a function of neutron excess NP − ZP. Note that it is hard to see the difference between σp and σn at 550 MeV/nucleon.
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course depends on the incident energy chosen for the data, and
it should be as low as �300 MeV/nucleon.

As confirmed in the Case I study, we have succeeded in
calculating consistently σd , σp, and σn cross sections at all
incident energies. In Fig. 3 we exhibit those cross sections for
34−70Ca and 48−86Ni as a function of neutron excess NP − ZP.
The densities of Ca and Ni isotopes are based on the HF cal-
culation [17,36]. In so far as the HF calculation gives rm and
δr close to realistic values, the cross sections in the figure are
expected to show general features of real cross sections. For
example, the cross-section ratio σp/σn shows an interesting
variation against the incident energy E : The ratio is larger
than 1 for NP − ZP > 0 and smaller than 1 for NP − ZP < 0
at both E = 100 and 200 MeV/nucleon, whereas it is almost
1 at E = 550 MeV/nucleon and gets smaller than 1 at 800
MeV/nucleon. This variation of the ratio exactly follows that
of σ tot

pn /σ tot
pp .

We note, however, that the uncertainties of the present σd

data are approximately 2–3% [29], which are the same order
or even larger than the deviation obtained in the Case II study.
Improvement of the experimental accuracy is highly desired
for precise determination of σn as it was already achieved
�1% for the interaction cross-section measurements involv-
ing unstable nuclei by proton [16] and carbon [7] targets.

C. Relating σT :R to rm and δr

The numerical analysis of Case I has confirmed that σn or
even (rm, δr) values of a projectile nucleus P can be repro-
duced quite well once σd and σp of P are given. This strongly
suggests that the total reaction cross section σT :R of P can
be determined by rm and δr to good accuracy: Introducing a
reaction radius aT by σT :R = πa2

T , we may conjecture that aT

is expressed as

aT = αT (E )rm + βT (E )δr + γT (E ). (20)

Here, αT (E ), βT (E ), and γT (E ) depend on the incident energy
E but do not depend on the projectile nucleus. The conjecture
has actually been confirmed successfully in Refs. [17,18] for
proton and 12C targets. We extend that analysis to determine
the coefficients for the deuteron and neutron targets by cov-
ering the projectile nuclei 14−24O, 18−34Ne, 20−40Mg, 22−46Si,
26−50S, 34−70Ca, and 48−86Ni. See Refs. [17,18] for details.

Figure 4 compares those coefficients for deuteron, proton,
and neutron targets. αT depends on E weakly, which is un-
derstood by noting that σT :R is roughly equal to πr2

m. The
coefficient βT among others is most important to probe δr.
The larger βT is in its magnitude, the more accurately δr is
determined. The E dependence of βT follows that of σ tot

NN :
The ratio σ tot

pn /σ tot
pp is about 2.5 at 100 MeV/nucleon, 2 at

200 MeV/nucleon, about 1 at ≈550 MeV/nucleon, and less
than 1 beyond 800 MeV/nucleon. The apparent symmetry of
βn and βp is understood by noting that σn can also be obtained
from χP

p (b) of Eq. (4) with ρP
p (r) and ρP

n (r) being exchanged.
What is noteworthy in Fig. 4 is that βd has fairly large

values especially at lower energies, which is different from
the 12C target [17]. The larger sensitivity of the deuteron
target is probably because the deuteron is spatially extended
and may probe sensitively the surface region of the projectile
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(b) βT , and (c) γT of the reaction radius aT of Eq. (20), where T
denotes a target nucleus. d(OLA) stands for the coefficients obtained
when σd is calculated by the OLA.

nucleus. If σd is, however, calculated by OLA, Eq. (17), the
resulting coefficients differ from those discussed above. The
coefficients given in the OLA calculation are also displayed
in the figure. We find that βd with OLA is found to be small
and almost constant, ≈ −0.1, beyond 100 MeV/nucleon. It is
better to avoid OLA calculations for an analysis with σd data.

D. Difference between σd and σd:I

As already mentioned, the deuteron target has the advan-
tage that the upper bound of the interaction cross section
can be evaluated reliably using the deuteron wave function,
that is, σd:I � σd − �0σ , where �0σ is calculated by using
Eq. (16). Figure 5 displays σd , σd − �0σ (the upper bound of
σd:I ), and �0σ for (a) 16O, (b) 40Ca, and (c) 30Ne projectile
nuclei as a function of incident energy. �0σ has a maximum
at 80 MeV/nucleon and its magnitude is 60–70 mb, which
is about 10% of σd for 16O, 7% for 40Ca, and 6% for 30Ne,
respectively. �0σ decreases with increasing incident energy
and has a minimum at 425 MeV/nucleon. It looks like the
ratio �0σ/σd has a minimum at 550 MeV/nucleon. Beyond
300 MeV/nucleon, the ratio is at most a few percent for both
40Ca and 30Ne.
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FIG. 5. Total reaction cross section σd and interaction cross sec-
tion σd:I for (a) 16O, (b) 40Ca, and (c) 30Ne projectile nuclei as a
function of incident energy. σd:I shown here is actually σd − �0σ ,
which is equal to the upper bound of σd:I . �0σ multiplied by 5 is
also plotted.

IV. CONCLUSION

We have systematically investigated the total reaction cross
sections scattered by a deuteron target using the Glauber
model. The eclipse effect cast by the neutron and the proton in
the deuteron is explicitly taken into account. The interaction
cross section is also evaluated in the same framework.

The calculated total reaction cross sections reasonably well
reproduce the available experimental data. By extending the
analysis to cover many nuclei, O to Ni, we find that the
nucleus-deuteron cross section is considerably smaller than
the sum of cross sections of nucleus-neutron and nucleus-
proton. The cross-section defect is understood by the eclipse
effect.

The cross-section defect carries information on the
nucleus-proton and nucleus-neutron profile functions. Be-
cause of this, the nucleus-neutron cross section can be
extracted by simultaneous measurements of the total reaction
cross sections by both deuteron and proton targets. We have
convincingly shown that measuring both cross sections at two
incident energies is the best choice to determine the neutron
cross section or the nuclear size properties. Energy depen-
dence of the total reaction cross section is given in terms of the
matter radius and the neutron skin thickness of the projectile
nucleus.

Measuring the total reaction cross sections by both
deuteron and proton targets is the most unambiguous way to
determine the neutron and proton radii of unstable nuclei. We
note that for the unstable nuclei near the drip line that have
only one bound state, the theoretical interaction cross section
can be obtained at good accuracy. In the present analysis,
we ignore the Coulomb breakup contribution of the deuteron
target, which will be significant for heavy projectiles. The
inclusion of this effect in the Glauber model is straightforward
and will be reported elsewhere.
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