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Background: The electric giant-dipole resonance (GDR) is the most established collective vibrational mode of
excitation. A charge-exchange analog, however, has been poorly studied in comparison with the spin (magnetic)
dipole resonance (SDR).
Purpose: I investigate the role of deformation on the charge-exchange dipole excitations and explore the generic
features as an isovector mode of excitation.
Methods: The nuclear energy-density functional method is employed for calculating the response functions
based on the Skyrme-Kohn-Sham-Bogoliubov method and the proton-neutron quasiparticle-random-phase ap-
proximation.
Results: The deformation splitting into K = 0 and K = ±1 components occurs in the charge-changing channels
and is proportional to the magnitude of deformation as is well known for the GDR. For the SDR, however, a
simple assertion based on geometry of a nucleus cannot be applied for explaining the vibrational frequencies of
each K component. A qualitative argument on the strength distributions for each component is given based on
the non-energy-weighted sum rules taking nuclear deformation into account. The concentration of the electric
dipole strengths in low energy and below the giant resonance is found in neutron-rich unstable nuclei.
Conclusions: The deformation splitting occurs generically for the charge-exchange dipole excitations as in the
neutral channel. The analog pygmy dipole resonance can emerge in deformed neutron-rich nuclei as well as in
spherical systems.
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I. INTRODUCTION

Charge-exchange excitations dovetail with the transitions
from a mother nucleus (Z, A) with proton number Z and total
nucleon number A to final states in a neighboring daughter
(Z ± 1, A) in the isospin lowering τ− and raising τ+ channels,
respectively. They take place in the charged-current nuclear
(semileptonic) weak processes such as the β-decay, charged
lepton capture, and neutrino-nucleus reactions as well as in
the hadronic reactions of (p, n) or (n, p) type. Therefore, the
spin-isospin responses induced by the charge-exchange exci-
tations present active and broad research topics in the fields of
fundamental physics [1–9].

Response of a nucleus unveils elementary modes of ex-
citation emerged by the interactions and correlations among
constituent nucleons. The nuclear response is characterized by
the transferred angular momentum �L, spin �S and isospin
�T [10]. The isovector (IV) giant dipole resonance (GDR)
represented as �L = 1,�S = 0,�T = 1 is one of the well
studied collective vibrational modes of excitation among var-
ious types of giant resonance [11]. The GDR is an oscillation
of protons against neutrons represented as �Tz = 0. Re-
cently with the advent of RI-beam technology, a considerable
amount of work has been devoted to a quest for exotic modes
of excitation in nuclei far from the β-stability line and the low-
energy dipole (LED) mode or the pygmy dipole resonance
(PDR) has attracted a lot of interest [12–15]. Furthermore,

the photoresonance can be seen in a wider perspective when
it is considered as a single component �Tz = 0 of the IV
dipole modes [16–18]. The additional components �Tz = ±1
represent the charge-exchange modes.

Importance of the higher multipole spin-isospin responses
beyond the allowed transitions is recognized for the weak
processes in stellar environment [4,19]. The forbidden tran-
sitions are also involved at zero temperature such as the
neutrinoless double β decay [6,19] if any and the single β

decay of heavy neutron-rich nuclei [20–26]. From a nuclear
structure point of view, the spin-dipole resonance (SDR) with
�L = 1,�S = 1,�T = 1 have been studied to understand
the mechanism for the collectivity of a giant resonance and the
spin-isospin part of the interaction in nuclear medium [1,10]
besides that the Gamow-Teller and M1 resonances have been
extensively studied as the IV magnetic �L = 0 transitions [7].
The multipole dependence of the SDR elucidates the charac-
teristic effects of the tensor force [27,28], and the strengths
of the dipole resonance are correlated with the neutron-skin
thickness [14]. Though the study on the charge-exchange elec-
tric dipole resonance is limited, a recent work investigated a
possible appearance of an analog of the PDR in neutron-rich
nuclei, and the low-lying excitation corresponding to −1h̄ω0

in very neutron-rich nuclei [29].
In this article, I am going to investigate the deformation

effects on the charge-exchange dipole resonances with both
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�S = 0 and 1, and explore the generic features of dipole
resonances as an IV mode of excitation. Furthermore, the
roles of neutron excess is studied in details for the electric
excitations and a possible appearance of the low-lying states
is discussed. The present study is considered as an extension
of the previous work on spherical nuclei [29] to deformed
cases. From light to heavy nuclei are taken as a target of inves-
tigation to extract universal features associated with nuclear
deformation. To this end, I employ the nuclear energy-density
functional (EDF) method, which is a theoretical model being
capable of handling nuclides with arbitrary mass number in a
single framework [30,31].

This paper is organized in the following way. The theoret-
ical framework for describing the ground state of a mother
nucleus, the excited states of a daughter nucleus and the
transitions between them is given in Sec. II and details of
the numerical calculation are also given; Sec. III is devoted to
the numerical results and discussion based on the model cal-
culation; the electric dipole resonance is studied in Sec. III A,
and the SDR in Sec. III B; then, summary is given in Sec. IV.

II. FRAMEWORK

A. KSB and pnQRPA for deformed nuclei

Since the details of the formalism can be found in Ref. [32],
here I show only the gist of the basic equations relevant to the
present study. In a framework of the nuclear energy-density
functional (EDF) method I employ, the ground state of a
mother (target) nucleus is described by solving the Kohn-
Sham-Bogoliubov (KSB) equation [33]:[

hq(rσ ) − λq h̃q(rσ )

h̃q(rσ ) −hq(rσ ) + λq

][
ϕ

q
1,α (rσ )

ϕ
q
2,α (rσ )

]
= Eα

[
ϕ

q
1,α (rσ )

ϕ
q
2,α (rσ )

]
,

(1)

where the KS potentials h and h̃ are given by the functional
derivative of the EDF with respect to the particle density
and the pair density, respectively. The chemical potential λ

is determined so as to give the desired nucleon number as
an average value. The superscript q denotes ν (neutron, tz =
1/2) or π (proton, tz = −1/2). The eigenfunctions ϕ1,α and
ϕ2,α represent the upper and lower component of the single-
quasiparticle (qp) wave functions. Assuming the system is
axially symmetric, the KSB equation (1) is block diagonalized
according to the quantum number �, the z component of the
angular momentum.

The excited states |i〉 of a daughter nucleus are described
as one-phonon excitations built on the ground state |0〉 of the
mother nucleus as

|i〉 = 
̂
†
i |0〉, (2)


̂
†
i =

∑
αβ

{
X i

αβ â†
α,ν â†

β,π − Y i
αβ âβ̄,π âᾱ,ν

}
, (3)

where â†
ν (â†

π ) and âν (âπ ) are the neutron (proton) qp creation
and annihilation operators that are defined in terms of the
solutions of the KSB equation (1) with the Bogoliubov trans-
formation. The phonon states, the amplitudes X i,Y i and the
vibrational frequency ωi, are obtained in the proton-neutron
quasiparticle-random-phase approximation (pnQRPA). The

residual interactions entering into the pnQRPA equation are
given by the EDF self-consistently. For the axially symmetric
nuclei, the pnQRPA equation is block diagonalized according
to the quantum number K = �α + �β .

B. Numerical procedures

To describe the developed neutron skin and the neutrons
pair correlation coupled with the continuum states that emerge
uniquely in neutron-rich nuclei, I solve the KSB equation
in the coordinate space using cylindrical coordinates r =
(ρ, z, φ) with a mesh size of �ρ = �z = 0.6 fm and a box
boundary condition at (ρmax, zmax) = (14.7, 14.4) fm. Since
I assume further the reflection symmetry, only the region of
z � 0 is considered. The qp states are truncated according
to the qp energy cutoff at 60 MeV, and the qp states up to
the magnetic quantum number � = 23/2 with positive and
negative parities are included. I introduce the truncation for
the two-quasiparticle (2qp) configurations in the QRPA cal-
culations, in terms of the 2qp energy as 60 MeV.

For the normal (particle-hole) part of the EDF, I employ
mainly the SkM* functional [34]. For the pairing energy, I
adopt the one in Ref. [35] that depends on both the isoscalar
and isovector densities, in addition to the pair density, with
the parameters given in Table III of Ref. [35]. The same
pairing EDF is employed for the spin-singlet pn pairing in the
pnQRPA calculation, while the linear term in the isovector
density is dropped. The same pairing strength is used for
the dynamic spin-triplet pairing, though the occurrence of its
condensation has been under active discussion [36]. Note that
the pnQRPA calculations including the dynamic spin-triplet
pairing with more or less the same strength as the spin-singlet
pairing describe well the characteristic low-lying Gamow-
Teller strength distributions in the light N � Z nuclei [37–39].

III. RESULTS AND DISCUSSION

A. Dipole excitations

In Fig. 1, presented are the transition-strength distributions
in 24Mg as an example of deformed nuclei for the isovector
dipole operators as functions of the excitation energy E with
respect to ground state of the mother (target) nucleus:

S±(E ) =
∑

K

S±
K (E ) (4)

=
∑

K

∑
i

γ /2

π

R±
i,K

{E−[h̄ωi ± (λν−λπ )]}2 + γ 2/4
,

(5)

R±
i,K = |〈i|F̂±

1K |0〉|2 = |〈0|[
̂i, F̂±
1K ]|0〉|2, (6)

where λν (λπ ) is the chemical potential for neutrons (protons)
and the mass difference between a neutron and a proton is
ignored (see Appendix of Ref. [40] for details of the relation
between the QRPA frequency and the excitation energy from
the mother/daughter nucleus). The charge-exchange dipole
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FIG. 1. Calculated distributions of the IV dipole transition
strengths by employing the SkM* functional as functions of the
excitation energy with respect to the ground state of 24Mg. The
smearing parameter γ = 2 MeV is used.

operators are defined as

F̂±
1K =

∑
σ,σ ′,τ,τ ′

∫
drrY1K (r̂)〈σ |1|σ ′〉〈τ |τ±1|τ ′〉

× ψ̂†(rστ )ψ̂ (rσ ′τ ′) (7)

in terms of the nucleon field operators. Below, I call the �Tz =
±1 excited state as that induced by the operator F̂±.

A distinct feature seen in the deformed system is the ap-
pearance of two-humped peak structure. In spherical nuclei,
the giant resonance has a single peak except the shoulder
structure due to the pygmy resonance in neutron-rich nuclei
as discussed in Ref. [29]. I am thus going to discuss the
mechanism for the occurrence of the two-humped peak shape
for the giant resonance. For reference, the strength distribution
for the operator F̂ 0

1K is also shown in Fig. 1, calculated in the
like-particle QRPA framework [41,42]. Here, F̂ 0

1K is defined
for τ0 in Eq. (7) with τ±1,0 being the spherical components
of the nucleonic isospin: τ±1 = ∓ 1√

2
(τx ± iτy), τ0 = τz. It is

noted that the operator F̂ 0
1K is different from the standard IV

dipole operator [16,43]. I assumed here the 24Mg nucleus is
in the normal-fluid phase due to the large deformed shell-gap
at the nucleon number 12. When the Coulomb interaction is
discarded, the transition-strength distributions for τ±1 and τ0

are identical to one another because the ground-state isospin is
zero. Therefore, the origin of the two-humped peak structure
may be due to the K splitting that can be seen in the photoab-
sorption cross sections of deformed nuclei [16]. However, the
intuitive picture of the oscillation of protons against neutrons
cannot be applied to the charge-exchange dipole modes, and
I am going to investigate further the roles of deformation
in other systems below. When the Coulomb interaction is
turned on, the chemical potential for protons becomes higher
than that for neutrons; the difference is 4.61 MeV. The spa-
tial distribution of neutrons are thus shrunk. These structure
changes can be seen in the excitation energy and transition
strengths. Let me briefly discuss this point before investigating
the heavier systems.

The unperturbed mean-excitation energy for the isovector
modes with �Tz built on the T0 = 0 state in an N = Z nucleus
can be given by

E (0)(�Tz ) � E (0)(�Tz = 0) − �Tz�ECoul, (8)

where �ECoul is the shift of the Coulomb energy per unit
Z [16]. In the present framework, the Coulomb-energy shift
�ECoul is represented approximately as the difference of the
chemical potentials of the mother nucleus λπ − λν . The en-
ergy shifts of the �Tz = 0 and ±1 modes due to the RPA
correlation are not very different from each other in a light
N = Z nucleus, and they are about 5.2 MeV in the present
calculation. Thus, the excitation energy of the �Tz = +1
mode is lower than that of the �Tz = −1 mode due to the
Coulomb-energy shift.

Let me then discuss the transition strengths. One sees from
Fig. 1 that the transition strengths for the �Tz = +1 excitation
are larger than those for �Tz = −1. Since the strengths are
concentrated into the giant resonance, one can apply the argu-
ment based on the sum rule to the qualitative understanding
of the imbalanced strengths. The model-independent sum rule
for the charge-exchange dipole modes in an axially deformed
nucleus is given as∫

dE [S−
K (E ) − S+

K (E )]

=
{

2 3
4π

[N〈z2〉N − Z〈z2〉Z ] (K = 0)

2 3
8π

[N〈ρ2〉N − Z〈ρ2〉Z ] (K = ±1)
, (9)

where 〈·〉N (Z ) denotes the expectation value for neutrons
(protons) and a factor of two comes from isospin with the
definition of Eq. (7). In the spherical limit, the sum rule value
for each K component coincides with 1

2π
[N〈r2〉N − Z〈r2〉Z ].

In the present case, N = Z , the difference in the transition
strengths for the �Tz = ±1 modes comes from the difference
in the spatial extension of protons and neutrons; the calculated
root-mean-square radius of protons and neutrons is 3.03 fm
and 2.99 fm.

Furthermore, one sees that an average of the transition
strengths of the �Tz = ±1 modes is close to that of the
�Tz = 0 mode. A simple RPA analysis for a single normal
mode employing the separable dipole interaction gives the
relation for the transition strengths as

1

2
(S− + S+) =

[
1 + O

(
N − Z

A

)]
S0, (10)

where S0 is the transition strength of the �Tz = 0 mode [16].
Though this relation is model dependent, the present self-
consistent calculation based on the nuclear EDF satisfies it
within 2% accuracy for each K . This implies that the giant
resonances calculated here are collective; the microscopically
computed giant resonance in 24Mg can be viewed as a single
mode.

Let me investigate further the roles of deformation in the
charge-exchange dipole resonance. It is observed above that
a two-humped peak structure of the charge-exchange dipole
resonance may have the same origin to that seen in the
photoresonance in a deformed nucleus. It is well established
that the photoresonance is split into two components with
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FIG. 2. Calculated charge-exchange (τ−1) dipole strength distributions (shifted) in the (a) Nd and (b) Sm isotopes with the SkM* functional,
and the (c) Sm isotopes with the SLy4 functional. The strengths for K = 0 and 1 excitations are drawn with the dashed and dotted line, and the
strengths for K = ±1 excitations are summed up. The smearing parameter γ = 2 MeV is used.

K = 0 and |K| = 1 in a deformed nucleus with axial sym-
metry, corresponding to the oscillations in the direction of the
symmetry axis and those in the perpendicular directions. The
splitting is proportional to the magnitude of deformation, and
the shape evolution has been measured in the photoabsorption
cross sections in the rare-earth nuclei [44,45]. Furthermore,
the nuclear EDF describes well the shape change of the GDR
in accordance with the development of nuclear deformation
[42,46–51]. One can thus expect the shape evolution to see
similarly in the calculated charge-exchange dipole resonance.

Figure 2 shows the transition-strength distributions for the
operator F̂− in the Nd and Sm isotopes undergoing the gradual
increase in deformation. In this figure, the strengths for the
K = 0 and |K| = 1 excitations are separately drawn. Note that
the transition strengths for K = ±1 excitations are summed
up in plotting. The calculated strength distributions for K = 0
and K = 1 are identical to each other at N = 82 and 84. The
K splitting starts to appear at N = 86 in consonance with the
appearance of deformation as shown in Fig. 1 of Ref. [47].
With an increase in the neutron number, the splitting gets
gradually larger as deformation develops. This is akin to the
photoresonance characteristic of the rare-earth nuclei with
shape evolution.

The strength distributions in the Nd and Sm isotopes calcu-
lated with the use of the SkM* functional shown in Figs. 2(a)
and 2(b) are indicative of the similar nuclear structure of each
isotone, such as the single-particle levels, unperturbed ma-
trix elements and magnitude of deformation. In the spherical
isotones with N = 82 and 84, one sees a shoulder structure.
As long as the total-strength distributions are observed, the
shoulder structure is indistinguishable from the K splitting
in the weakly-deformed nuclides with N = 86 and 88. The
appearance of the shoulder is also seen in the calculated pho-

toabsorption cross sections with SkM* and it is suppressed
in the calculation with the SLy4 [52] and SkP [33] functionals
[47]. The detailed structure of single-particle levels affects the
shape of the resonance through the Landau damping mecha-
nism [53]. Figure 2(c) shows the strength distributions in the
Sm isotopes calculated with the use of the SLy4 functional.
Indeed a single peak shows up in the spherical nuclides with
SLy4. Comparing Figs. 2(b) and 2(c), one further finds that
the peak energy calculated with SLy4 is slightly lower than
that obtained with SkM* likewise in the calculated photoab-
sorption cross sections in Ref. [47].

To see the relation between the magnitude of deformation
and the evaluated splitting energy, I show in Fig. 3 the K split-
ting in the deformed Sm isotopes. Here, the mean excitation

FIG. 3. K-splitting energy for the �Tz = −1 giant resonances in
the Sm isotopes calculated by employing several Skyrme functionals.
Included is the splitting in 24,40Mg, 146–152Nd, and 238U obtained by
using the SkM* functional. The calculated deformation parameters
of the Nd and Sm isotopes are shown in the inset.
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FIG. 4. As Fig. 2 but for the charge-exchange (τ+1) dipole oper-
ator in 144Sm and 154Sm.

energy is calculated by the moments as

Ē =
∑

ES(E )∑
S(E )

(11)

in the energy interval of E1 < E < E2. Here, E1 and E2 are set
to 15 MeV and 40 MeV. The change of the energy interval by
a few MeV varies the evaluated K splitting by about 0.1–0.2
MeV. This ambiguity, however, does not affect the discussions
below.

One clearly sees a linear correlation between the magni-
tude of deformation, i.e., deformation parameter β2, and the
K-splitting energy, �E = ĒK=1 − ĒK=0. Here, the deforma-
tion parameter β2 is defined by

β2 = 4π

3AR2
rms

∫
drr2Y20(r̂)�0(r) (12)

with the root-mean-square radius Rrms =
√

5
3A

∫
drr2�0(r)

and the isoscalar particle density �0(r). The linear correlation
is also observed in the calculations employing the SLy4 and
SGII [54] functionals. While the deformation property calcu-
lated with various functionals can be different, three lines lie
close to each other. Note that the K-splitting energy calculated
for a light nucleus 24Mg deviates from a trend of the Sm
isotopes though the reason is not yet clear. It would be thus
interesting to investigate the deformation splitting systemati-
cally in a wider region of nuclides as a future work.

Having the neutron excess, the strengths for F̂+
1K are sup-

pressed compared with those for F̂−
1K as seen from Eq. (9);

microscopically one is due to the smaller number of proton
hole states available to the dipole excitations; the other is due
to the smaller number of neutron particle states available to the
excitations, that is also regarded as the Pauli blocking. Shown
in Fig. 4 is examples of the transition strength distributions for
F̂+

1K in the Sm isotopes. The strength distributions for K = 0
and |K| = 1 are identical to each other apart from a factor
of two in the spherical nucleus 144Sm. In a deformed nucleus
154Sm, the K splitting occurs as for F̂−

1K , however, it is difficult
to see as a two-humped peak structure of the giant resonance;
it is rather recognized as broadening. One can also see the
hindrance of strengths in 154Sm than in 144Sm due to the
neutron excess.

The effects of neutron excess could give me a deeper un-
derstanding of the excitation modes, and in what follows I
am going to discuss the charge-exchange dipole resonances
in heavy nuclei and neutron-rich nuclei. The heavy nuclei

FIG. 5. As Fig. 1 but for 238U.

in mid shells exhibiting a rotational spectrum are an ideal
system to investigate the effects of deformation and neutron
excess. I thus take the 238U nucleus as such an example, and
show in Fig. 5 the transition-strength distributions. The vibra-
tional frequency for the �Tz = ±1 states is shifted relative
to the �Tz = 0 state. In the present case, the energy differ-
ence comes from the symmetry potential associated with the
neutron excess as well as the Coulomb energy. The deforma-
tion splitting of the GDR can be seen in the photoabsorption
cross section [55], and in the calculations [56,57]. In Fig. 5,
the strength distribution for the operator F̂ 0

1K is also shown
for reference. The mean excitation energy of the K = 0 and
K = 1 excitations are 11.3 MeV and 13.9 MeV, respectively.
Thus, the K splitting is evaluated as 2.6 MeV. Here, the mean
energy was evaluated in the region between E1 = 5 MeV and
E2 = 35 MeV in Eq. (11). One clearly sees a deformation
splitting for the charge-exchange dipole resonance for the op-
erator F̂−

1K similarly to the strength distributions for F̂ 0
1K . The

mean excitation energy of the K = 0 and K = 1 excitations
are 26.6 MeV and 29.3 MeV, respectively, calculated in the
energy interval of 15 MeV < E < 45 MeV. Thus, the K split-
ting is 2.7 MeV. As seen in Fig. 3, the proportionality between
the K splitting and the magnitude of deformation lies close to
the trend of the Sm isotopes. Though the peak energy of the
�Tz = −1 state is higher than that of the �Tz = 0 state, one
finds the same amount of K splitting for the giant resonance.
One cannot see, however, the K splitting in the �Tz = +1
giant resonance. Though the transition strengths are gathered
in low energy, they are quite hindered compared to those of the
�Tz = 0 and �Tz = −1 giant resonances, indicating a weak
collectivity.

One notices the appearance of the dipole states in low
energy E < 10 MeV for the response to the operator F̂−

1K . The
low-energy dipole states correspond to the −1h̄ω0 excitation
[29] uniquely appearing in nuclei with neutron excess. The
excitation of this type is associated with the Fermi levels of
protons and neutrons being apart by one major shell. The low-
est energy particle-hole or 2qp excitations are thus negative
parity. In the present case, the Nilsson orbitals stemming from
the j15/2 shell are partly occupied by neutrons while those
from the i13/2 shell are almost empty for protons. Since the
number of 2qp excitations satisfying the selection rule for the
transition is not large as seen in Ref. [29], the collectivity is
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FIG. 6. As Fig. 1 but for 40Mg.

weak and the excitation energy is sensitive to the details of
shell structure around the Fermi levels.

I have considered only the dipole excitations in the present
study. However, the IVGDR and IV low-energy octupole
resonance can couple in deformed nuclei, and the shoulder
structure in the octupole resonance is predicted to appear
due to these coupling [42]. It is thus an interesting fu-
ture study to see if the coupling effects show up generally
in the charge-exchange octupole resonances in deformed
nuclei.

At the end of investigation of the dipole resonances in nu-
clei with neutron excess, I discuss the strength distributions in
neutron-rich exotic nuclei. The 40Mg nucleus has attracted in-
terest in a possible quadrupole deformation due to the broken
spherical magic number of N = 28 near the drip line [58,59].
Theoretically, the deformation properties of the Mg isotopes
close to the drip line have been explored by the Skyrme
[60–64], Gogny [65], and relativistic [66] EDF approaches,
and the GDR as well as the LED/PDR are predicted by the
Skyrme EDF calculations [67,68]. Thus, I investigate here the
charge-exchange dipole responses in 40Mg to see the effects
of deformation and an extreme neutron excess.

Figure 6 displays the strength distributions in 40Mg. The
K splitting associated with deformation emerges for the giant
resonances. The mean energy of the K = 0 and K = 1 ex-
citations of the giant resonance is 13.2 MeV and 16.7 MeV,
respectively. Here, the energy interval is set as 0 MeV <E <

40 MeV though this may include the effect of LED. The cal-
culated K-splitting energy for the �Tz = −1 giant resonance
3.5 MeV is compatible with 3.8 MeV for the �Tz = 0 giant
resonance. One of the common features in nuclei with neu-
tron excess is that the strengths for the �Tz = −1 excitation
are enhanced while those for the �Tz = +1 excitation are
suppressed. Furthermore, one sees occurrence of the −1h̄ω0

excitation. In the present case, the Nilsson orbitals stemming
from the p3/2 and f7/2 shells are mostly occupied by neutrons
while the sd shell is almost empty for protons. This is an ideal
situation where the negative-parity excitations appear in low
energy.

One sees, however, some distinct features in neutron-rich
unstable nuclei. The ordering of the excitation energies of the
�Tz = ±1 and 0 giant resonances are different from those in
the stable nuclei observed so far. In the present case, one sees

E�Tz=0 � E�Tz=−1 < E�Tz=+1, while one found E�Tz=+1 <

E�Tz=0 < E�Tz=−1 in stable nuclei. This anomalous behav-
ior is due to the highly imbalanced Fermi levels of protons
and neutrons. As one sees in the figure, the strengths appear
around −20 MeV for the �Tz = −1 excitation, and show up
only above ∼20 MeV for the �Tz = +1 excitation. Further-
more, the concentration of transition strengths and a shoulder
structure emerge below the giant resonance. The concentra-
tion of transition strengths below the giant resonance for the
�Tz = −1 excitation is constructed by the 2qp excitations
involving the weakly bound and quasiparticle-resonant neu-
trons near the threshold such as in the f7/2 shell and the
proton continuum states in the g9/2 shell. Since the LED states
below 10 MeV for the �Tz = 0 excitation are generated by
the continuum states of neutrons in the g9/2 shell [67] instead
of protons, the shoulder structure below E ∼ 10 MeV for the
�Tz = −1 excitation can be considered as an analog of the
LED and a unique feature of the charge-exchange dipole res-
onance in neutron-rich unstable nuclei as previously discussed
in spherical nuclei [29].

B. Spin dipole excitations

Let me investigate briefly the deformation effects on the
spin-dipole (SD) strengths. I show in Fig. 7 the strength
distributions in 144Sm and 154Sm. Here, the charge-exchange
λ-pole SD operators are defined as

F̂±
λK =

∑
σ,σ ′,τ,τ ′

∫
drr[Y1 ⊗ σ]λK〈τ |τ±1|τ ′〉ψ̂†(rστ )ψ̂ (rσ ′τ ′),

(13)

where [Y1 ⊗ σ]λK = ∑
μν〈1μ1ν|λK〉Y1μ〈σ |σν |σ ′〉 with the

spherical components of the Pauli spin matrix 
σ =
(σ−1, σ0, σ+1). Since there is no K dependence in spherical
nuclei, the strengths for each K component are summed up in
drawing the strength distribution for 144Sm. The strengths of
±K are summed up as above. The strengths in the τ+ channel
[Figs. 7(a), 7(c), 7(e)] are hindered compared with those in the
τ− channel [Figs. 7(b), 7(d), 7(f)] as in the case for the electric
(non-spin-flip) dipole resonance due to the neutron excess.
The deformation effects can be observed as broadening of
the resonance. Let me discuss below the strengths in the τ−
channel.

Irrespective of deformation, the transition strengths are
scattered into three components of λ = 0, 1, and 2. The mean
energy is 30.4 (33.3) MeV, 28.8 (30.0) MeV, and 21.4 (24.7)
MeV for the λ = 0, 1, and 2 components, respectively, in
154Sm (144Sm). Here, the energy interval is set as 0 MeV
< E < 50 MeV. The energies calculated here including the
even-N 146−152Sm follow the systematic trend with λ = 0
being highest and λ = 2 lowest [69].

To investigate the strength distributions, it may be help-
ful to see the model-independent sum rules for the SD
operators [18]. The sum rules generalized to the deformed
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FIG. 7. Calculated spin-dipole strength distributions in 144Sm and 154Sm obtained by using the SkM* functional.

systems read∫
dE [S−

λK (E ) − S+
λK (E )]

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

2 1
4π

[N〈r2〉N − Z〈r2〉Z ] (λ = 0, K = 0)

2 3
8π

[N〈ρ2〉N − Z〈ρ2〉Z ] (λ = 1, K = 0)

2 3
16π

[N〈ρ2 + 2z2〉N − Z〈ρ2 + 2z2〉Z ] (λ = 1, K = ±1)

2 1
8π

[N〈ρ2 + 4z2〉N − Z〈ρ2 + 4z2〉Z ] (λ = 2, K = 0)

2 3
16π

[N〈ρ2 + 2z2〉N − Z〈ρ2 + 2z2〉Z ] (λ = 2, K = ±1)

2 3
8π

[N〈ρ2〉N − Z〈ρ2〉Z ] (λ = 2, K = ±2)

,

(14)

and coincide with 1
2π

[N〈r2〉N − Z〈r2〉Z ] in the spherical limit
for each K component as given in Ref. [18]. In deriving the
formulas, the time-reversal symmetry of the ground state was
assumed.

The strength distribution for the multipole-0 SD operator
is shown in Fig. 7(b). One has no K dependence by defini-
tion since λ = K = 0. Indeed, the line shapes for 144Sm and
154Sm are similar to each other. One sees K splitting in the
strength distributions for the λ = 1 and 2 operators as shown
in Figs. 7(d) and 7(f). The simple geometrical argument for
the K splitting in the electric dipole resonance cannot be
applied. In the case of the non-spin-flip dipole resonance,
the K dependence comes from the spherical harmonics Y1K

representing the nuclear shape in real space. When the spin
degree of freedom is involved in the case of the SD reso-
nance, the K quantum number does not directly characterize
the nuclear deformation represented by μ in the definition
of the operator Eq. (13). However, a qualitative argument
on the K dependence of the strengths can be given accord-
ing to the sum rules. To first order in deformation, one can
express 〈z2〉 = 1

3 〈r2〉(1 + 2
3δ) and 〈ρ2〉 = 2

3 〈r2〉(1 − 1
3δ) with

δ representing the deformation parameter [16]. The K = 0
strength is reduced by 1

6π
(N〈r2〉N − Z〈r2〉Z )δ while the K = 1

strength is enhanced by 1
12π

(N〈r2〉N − Z〈r2〉Z )δ for λ = 1.
For λ = 2, the K = 0 and K = 1 strengths are enhanced by

1
6π

(N〈r2〉N − Z〈r2〉Z )δ and 1
12π

(N〈r2〉N − Z〈r2〉Z )δ, respec-
tively and the K = 2 strength is reduced by 1

6π
(N〈r2〉N −

Z〈r2〉Z )δ. The summed strengths for each λ are unchanged
within this approximation.

One sees a two-peak structure of the SDR in 144Sm and
a broad resonance structure in 154Sm for the λ = 1 excitation.
As expected from the sum rules, the K = 0 strength is reduced
while the K = 1 strength is enhanced due to deformation.
Broadening of the resonance can be seen also for the λ = 2
excitation. One observes that the split states are overlapping.
It is clearly seen that the K = 2 strength decreases. The prece-
dent nuclear EDF calculations [70–73], though restricted to
spherical nuclei, predict that the fragmentation increases with
λ. Following the early findings, one sees that the strengths for
λ = 2 are fragmented in 144Sm. Therefore, the deformation-
induced broadening is unlikely to observe experimentally if
the spreading width is � 2 MeV. Furthermore, desired are
further attempts of disentangling the multipolarity λ and re-
ducing the continuum background to extract the details of
resonance structure [74–78].

IV. SUMMARY

The deformation effects on the charge-exchange electric
(non-spin-flip) and magnetic (spin-flip) dipole excitations
were investigated by means of the fully self-consistent pn-
QRPA with the Skyrme EDF. I found that the deformation
splitting into K = 0 and K = ±1 components occurs generi-
cally for the IV electric dipole resonance and is proportional to
the magnitude of deformation. The K splitting shows up also
for the charge-exchange magnetic dipole resonance. How-
ever, a simple geometrical assertion valid for the electric
cases cannot be applied for explaining the vibrational frequen-
cies of each K component due to the coupling of spin and
angular momentum in the magnetic excitations. The model-
independent non-energy-weighted sum rules were derived for
the axially deformed nuclei, and a qualitative argument on the
structure of strength distributions for each K component was
given. In nuclei with an appreciable neutron excess, I found
the concentration of the dipole strengths in low energy and a
shoulder structure below the giant resonance. These modes of
excitation are unique in neutron-rich unstable nuclei and can
emerge in deformed nuclei as well as in spherical systems.
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