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A systematic investigation of the ground-state and fission properties of even-even actinides and superheavy
nuclei with Z = 90–120 from the two-proton up to two-neutron drip lines with proper assessment of systematic
theoretical uncertainties has been performed for the first time in the framework of covariant density functional
theory (CDFT). These results provide a necessary theoretical input for the r-process modeling in heavy nuclei
and, in particular, for the study of fission cycling. Four state-of-the-art globally tested covariant energy density
functionals (CEDFs), namely, DD-PC1, DD-ME2, NL3*, and PC-PK1, representing the major classes of the
CDFT models are employed in the present paper. Ground-state deformations, binding energies, two-neutron
separation energies, α-decay Qα values and half-lives, and the heights of fission barriers have been calculated
for all these nuclei. Theoretical uncertainties in these physical observables and their evolution as a function of
proton and neutron numbers have been quantified and their major sources have been identified. Spherical shell
closures at Z = 120, N = 184, and N = 258 and the structure of the single-particle (especially, high- j) states
in their vicinities as well as nuclear matter properties of employed CEDFs are two major factors contributing
to theoretical uncertainties. However, different physical observables are affected in a different way by these two
factors. For example, theoretical uncertainties in calculated ground-state deformations are affected mostly by the
former factor, while theoretical uncertainties in fission barriers depend on both of these factors.
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I. INTRODUCTION

The majority of the nuclei found in nature are formed in
the astrophysical rapid neutron-capture process (r process).
Indeed, the r process is responsible for the synthesis of ap-
proximately half of the nuclei in nature beyond Fe [1] and it is
the only process which leads to the creation of nuclei heavier
than Bi [2]. It takes place at extremely high neutron densities
(Nn � 1020 cm−3) which are high enough to make neutron
capture faster than β decay even for the nuclei with neutron
excess between 15 to 30 units from the stability line. The
production of neutron-rich nuclei located in the vicinity of the
neutron drip line is enabled under these conditions via neutron
capture and (γ , n) photodisintegration during the r process.
Once the neutron source ceases, the progenitor nuclei decay
either via β− decay or α emission or by fission processes (such
as neutron-induced, β-delayed, and spontaneous fissions) to-
wards stability and form the stable isotopes of elements up to
the heaviest species Th, U, and Pu. The typical timescale of
the r process is in the seconds range [2–4].

Over the years different possible astrophysical sites have
been and still are considered as possible candidates for the
r process. These include core-collapse supernovas, magne-
torotational core-collapse supernovas, accretion disk outflows
from collapsars, neutron star (NS) mergers and neutron star–
black hole mergers, etc. [2–5]. So far only the NS merger is
experimentally confirmed as a site of the r process via the

observation of gravitational waves from the GW170817 neu-
tron star merger [6] with simultaneous observation of the AT
2017gfo macronova/kilonova afterglow [7]. In NS mergers,
the r-process material originates in the NS crust, and the com-
position of the crust and how it responds to stress caused by
the merger dictate the amount of the r-process material which
is ejected. The NS merger produces approximately 10−2 M�
of ejected r-process matter in the dynamic ejecta and a similar
amount in the accretion disk outflows [4,8,9]. Although some
uncertainties still exist, at present the NS merger is considered
as the major astrophysical site of the r process providing the
dominant source of heavy nuclei [2,4,5].

The modeling of the r process in such neutron-rich en-
vironments depends sensitively on nuclear masses, α- and
β-decay half-lives, neutron capture, and fission properties of
the nuclei, the majority of which will never be measured in
laboratory conditions [2,4,5,10]. Nuclear masses determine
the flow path of the r process, β-decay rates are responsible
for the speed with which the r process moves matter to heavier
nuclei, α decays become important in heavy nuclei as com-
peting decay channels, and neutron captures drive the nuclei
towards the neutron-rich side of the nuclear landscape. Of
special interest in the context of the present paper are fission
properties. Fission needs to be considered in the r-process
simulations if the neutron-to-seed ratio is large enough to pro-
duce fissioning nuclei [11–14]. If the initial neutron-to-seed
ratio is large (�100) the r process can reach the region near
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FIG. 1. The part of the nuclear chart under study. Black, green, blue, and orange lines are used for the results obtained with the DD-PC1,
DD-ME2, NL3*, and PC-PK1 CEDFs, respectively. Two-proton and two-neutron drip lines predicted by four CEDFs are shown by dashed
lines. Two samples of the distribution of the abundances of heavy and superheavy elements in the r-process simulations are shown by open
squares (based on the bottom panel of Fig. 8 of Ref. [15]) and red circles (based on Fig. 3 of Ref. [16]). The former results correspond to hot
r-process conditions and are based on the ETFS/ETFSI combination of fission barriers and mass predictions (see Ref. [15]). The latter results
have been obtained in Ref. [16] based on fission properties obtained with the BCPM energy density functional. Note that these r-process
calculations are restricted to the Z � 110 nuclei. The r-process path is shown here approximately by solid lines corresponding to two-neutron
separation energy S2n = 4.0 MeV. The r-process proceeds along the lines of constant neutron separation energies towards heavy nuclei that for
typical conditions during the r-process correspond to S0

n approximately located between 2 and 3 MeV [1,17]. However, due to neutron pairing
being stronger at even neutron numbers N the most abundant isotopes always have even N values. For this reason, we follow Refs. [1,17] and
characterize the r-process path [the path in the (Z, N ) plane corresponding to an isotope with highest abundance in each isotopic chain] as
the path which satisfies the condition that two-neutron separation energy S2n has the value S2n = 2S0

n . Dot-dashed lines show the beta-stability
lines for four functionals.

and beyond neutron shell closure at N = 184, where fission
plays a dominant role (the examples of the distribution of
abundances of actinides and superheavy elements as obtained
in a pair of the r-process simulations are shown in Fig. 1).
This is exactly the case for the NS mergers [12]. In this case,
all fission channels (neutron induced, beta delayed, neutrino
induced, and spontaneous fissions) need to be considered.
Fission leads to the termination of the hot r process by means
of fission cycling which returns matter to lighter nuclei [10].
It also determines the strength of fission cycling, the ratio of
the actinides to light and medium mass r-process nuclei, and
thus the shape of the final element abundance pattern. In addi-
tion, it defines the possibility of the formation of neutron-rich
superheavy nuclei in the r process [15].

Thus, in the situation when experimental data are not
known the outcome of the r-process modeling sensitively
depends on the quality of employed theoretical frameworks
and associated theoretical uncertainties and their propagation
on going to neutron-rich nuclei. By tradition, the output of
different theoretical frameworks is used for different phys-
ical observables (such as masses, the rates and half-lives
of different decay channels and reactions, etc.) in the the
r-process modeling. Existing r-process calculations, which
include information on fission properties, are based on the
fission barrier heights obtained in nonrelativistic models
[10,14,18]. So far fission barrier heights obtained in the fi-
nite range droplet model (FRDM), Thomas-Fermi (TF) model
and extended Thomas-Fermi model with Strutinsky integral
approach (ETFSI-Q), Hartree-Fock-Bogoliubov (HFB) model
with Skyrme HFB-14 energy density functional (EDF), and
BCPM EDF have been used in these calculations. Moreover
the sets of fission barriers relevant for the r-process simula-
tions have been generated in the FRDM in Ref. [18], in the

ETFSI-Q approach with the SkSC4 functional in Ref. [19],
in the HFB models with Skyrme HFB-14, SV-min, SLy6,
SkI3, SV-bas EDFs [20–22], Gogny D1M* [23], and BCPM
[18] functionals. Note that all these calculations assume axial
symmetry of the nuclei.

Covariant density functional theory (CDFT) [24] is an
alternative approach to the above-mentioned nonrelativistic
methods and so far it has not been applied for a system-
atic study of fission properties of the nuclei relevant for the
r-process modeling. However, this theory has a number of
advantages over nonrelativistic methods which are discussed
below. Covariant energy density functionals (CEDFs) exploit
basic properties of QCD at low energies, in particular sym-
metries and the separation of scales [25]. They provide a
consistent treatment of the spin degrees of freedom and spin-
orbit splittings ([26,27]); the latter has an essential influence
on the underlying shell structure. In addition, these functionals
include nuclear magnetism [28], i.e., a consistent description
of currents and time-odd mean fields important for odd-mass
nuclei [29], the excitations with unsaturated spins, magnetic
moments [30], and nuclear rotations [31,32]. Because of
Lorentz invariance no new adjustable parameters are required
for the time-odd parts of the mean fields [29]. This is contrary
to the case of nonrelativistic Skyrme DFTs in which several
prescriptions for fixing time-odd mean fields exist [33,34].1

This fact could be extremely important in the applications
to fission processes including dynamical correlations since

1Unfortunately, the role of time-odd mean fields in Gogny DFTs
has not been studied so far and it is unknown whether they are
uniquely defined.
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time-odd mean fields have a significant impact on collective
masses [35,36].

The goal of this paper is to close this gap in our knowledge
and to perform the first systematic investigation within the
CDFT framework of the ground-state and fission properties of
the nuclei with proton numbers Z = 90–120 located between
two-proton and two-neutron drip lines (see Fig. 1). This paper
will not only provide an input for the r-process modeling but
also evaluate the extension of the nuclear landscape up to the
two-neutron drip line as well as estimate relevant theoretical
uncertainties and their sources in the description of physical
observables of interest. In addition, it will allow one for the
first time to compare the predictions for fission barriers in the
nuclei relevant for r-process modeling obtained in relativistic
and nonrelativistic frameworks.

Considering the region of the nuclear chart in which the
r process is expected to take place and the fact that there are
no experimental data to benchmark theoretical results, it is
important to estimate theoretical uncertainties in the predic-
tions of physical observables of interest [37–39]. Theoretical
uncertainties emerge from the underlying theoretical approxi-
mations. In the DFT framework, there are two major sources
of these approximations, namely, the range of interaction and
the form of the density dependence of the effective interaction
[40,41]. In the nonrelativistic case one has zero range Skyrme
and finite range Gogny forces and different density depen-
dencies [40]. A similar situation exists also in the relativistic
case: point coupling and meson exchange models have an
interaction of zero and of finite range, respectively [24,42–
44]. The density dependence is introduced either through an
explicit dependence of the coupling constants [42,44,45] or
via nonlinear meson couplings [41,43]. This ambiguity in
the definition of the range of the interaction and its density
dependence leads to several major classes of the covariant
energy density functionals which were discussed in Ref. [39].

Since statistical uncertainties in the physical observables
are smaller than systematic ones (see Ref. [46]), we focus here
on the latter ones. They are related to the choice of EDF. We
follow our previous publications on this topic [39,47–49] and
define systematic theoretical uncertainty for a given physical
observable (which we call in the following “spreads”) via the
spread of theoretical predictions as [39]

�O(Z, N ) = |Omax(Z, N ) − Omin(Z, N )|, (1)

where Omax(Z, N ) and Omin(Z, N ) are the largest and smallest
values of the physical observable O(Z, N ) obtained within
the set of CEDFs under investigation for the (Z, N ) nucleus.
Note that these spreads are only a crude approximation to the
systematic theoretical errors discussed in Ref. [38] since they
are obtained with a very small number of functionals which
do not form an independent statistical ensemble. Note also
that these systematic errors are not well defined in unknown
regions of the nuclear chart or deformation since systematic
biases of theoretical models could not be established in these
regions in the absence of experimental data and/or an exact
theory.

In order to consider several possible scenarios in the evo-
lution of physical observables as a function of proton and
neutron numbers and to evaluate systematic theoretical un-

certainties, the CEDFs NL3* [43], DD-ME2 [42], DD-PC1
[44], and PC-PK1 [50] are used here2 for all Z = 90–120
even-even nuclei located between two-proton and two-neutron
drip lines.3 These are state-of-the-art functionals representing
the major classes of CDFTs (for more details see the discus-
sion in Sec. II of Ref. [39] and the introduction to Ref. [59]).
Their performance and related theoretical uncertainties have
recently been analyzed globally in Refs. [39,48,49,68] and
in particular in superheavy nuclei in Refs. [47,59]. They are
characterized by an improved accuracy of the description of
experimental data as compared with the previous generation
of CEDFs. The fact that the NL3*, DD-PC1, and PC-PK1
functionals reproduce empirical data on fission barrier heights
in actinides [62–64,69] is especially important in the context
of the present paper.

The paper is organized as follows. The theoretical frame-
work and the details related to the calculations of the ground
states and fission barriers are discussed in Sec. II. Section III
is devoted to the analysis of the results of the calculations
for ground-state properties. Theoretical results for α-decay
properties and related theoretical uncertainties are presented
in Sec. IV. The heights of primary fission barriers (PFBs),
their distribution in the (Z, N ) plane, related theoretical un-
certainties, and the comparison with nonrelativistic results are
considered in Sec. V. Finally, Sec. VI summarizes the results
of our paper.

2The compilation of Ref. [51] published in 2014 indicates the exis-
tence of 263 CEDFs ranging from simplest ansatz nonlinear meson
exchange functionals such as NL1 [52] and NL3* [43] to more mi-
croscopically motivated CEDFs such as G1, G2 [53], and DD-MEδ

[54]. In addition, a number of new functionals were fitted in the time
period between 2014 and 2020 (see, for example, Refs. [46,55–58])
so at present the total number of available CEDFs is likely to be in the
vicinity of 300. Because of the extremely time-consuming nature of
numerical calculations in this project, we use only the indicated last
generation functionals. They outperform previous generation func-
tionals in terms of the accuracy of global description of ground-state
observables such as binding energies and charge radii [39,49,59,60],
properly describe the regions of octupole deformation [48,61], and
are able to reproduce experimentally known fission barriers in ac-
tinides [62–64].

3The present paper partially builds on previous results obtained
by us. These are ground-state properties of the Z = 90–104 nuclei
located between two-proton and two-neutron drip lines obtained in
reflection symmetric RHB calculations with the NL3*, DD-ME2,
and DD-PC1 CEDFs in Ref. [39]; ground-state properties of octupole
deformed nuclei with N < 210 obtained in reflection asymmetric
RHB calculations with NL3*, DD-ME2, DD-PC1, and PC-PK1
functionals in Refs. [48,61]; and ground-state properties and the
heights of inner fission barriers of superheavy nuclei with Z =
100–120, N � 196 obtained in reflection symmetric RHB calcula-
tions with NL3*, DD-ME2, DD-PC1, and PC-PK1 functionals in
Refs. [47,59]. Additional information on the extension of the nuclear
landscape to Z > 120 obtained with DD-PC1 CEDF can be found in
Refs. [65–67].
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II. THEORETICAL FRAMEWORK

In the present paper, the RHB framework with finite range
pairing and its separable limit are used for a systematic
study of ground-state properties of all even-even actinides
(Z = 90–102) and superheavy (Z = 104–120) nuclei from the
proton to neutron drip line. It has the proper coupling to the
continuum at the neutron drip line and, therefore, it allows
a correct description of weakly bound nuclei close to the
neutron drip line.

The RHB equations for the fermions are given by [70](
ĥD − λ �̂

−�̂∗ −ĥ ∗
D + λ

)(
U (r)
V (r)

)
k

= Ek

(
U (r)
V (r)

)
k

. (2)

Here, ĥD is the Dirac Hamiltonian for the nucleons with mass
m; λ is the chemical potential defined by the constraints on the
average particle number for protons and neutrons; Uk (r) and
Vk (r) are quasiparticle Dirac spinors [70–72]; and Ek denotes
the quasiparticle energies. The Dirac Hamiltonian

ĥD = α(p − V ) + V0 + β(m + S) (3)

contains an attractive scalar potential

S(r) = gσ σ (r), (4)

a repulsive vector potential

V0(r) = gωω0(r) + gρτ3ρ0(r) + eA0(r), (5)

and a magnetic potential

V (r) = gωω(r) + gρτ3ρ(r) + eA(r). (6)

The last term breaks time-reversal symmetry and induces cur-
rents. For example, time-reversal symmetry is broken when
the time-reversed orbitals are not occupied pairwise; this takes
place in odd-mass nuclei [29]. However, nuclear magnetism
[28], i.e., currents and time-odd mean fields, plays no role in
the studies of ground states and fission barriers in even-even
nuclei. Thus, magnetic potential is neglected in the present
RHB calculations.

In order to avoid the uncertainties connected with the def-
inition of the size of the pairing window [73], we use the
separable form of the finite range Gogny pairing interaction
introduced by Tian et al. [74]. Its matrix elements in r space
have the form

V (r1, r2, r′
1, r′

2)

= −Gδ(R− R′ )P(r)P(r′) 1
2 (1 − Pσ ) (7)

with R = (r1 + r2)/2 and r = r1 − r2 being the center of mass
and relative coordinates. The form factor P(r) is of Gaussian
shape:

P(r) = 1

(4πa2)3/2
e−r2/4a2

. (8)

The two parameters G = 728 MeV fm3 and a = 0.644 fm of
this interaction are the same for protons and neutrons and
have been derived in Ref. [74] by a mapping of the 1S0

pairing gap of infinite nuclear matter to that of the Gogny
force D1S [75]. This pairing provides a reasonable description
of pairing properties in the actinides (see Refs. [39,76,77])

and has been used in our previous studies of different phe-
nomena in actinides and in super- and hyperheavy nuclei in
Refs. [39,48,59,61,65,66].

The truncation of the basis is performed in such a way
that all states belonging to the major shells up to NF = 20
fermionic shells for the Dirac spinors and up to NB = 20
bosonic shells for the meson fields are taken into account.
Note that the latter applies only to the NL3* and DD-ME2
functionals which contain meson exchange. As follows from
the investigation of Refs. [39,78] this truncation of basis pro-
vides sufficient numerical accuracy.

The calculations are performed in the following way.

(1) Reflection-symmetric constrained axial RHB calcula-
tions (RS-RHB) are performed for each nucleus and
the potential-energy curve is defined in a large defor-
mation range from β2 = −1.0 to 1.6 in steps of �β2 =
0.05 by means of the constraint on the quadrupole
moment q20. The calculations are performed by suc-
cessive diagonalizations using the method of quadratic
constraints [79]. The parallel version of the computer
code allows simultaneous calculations for a significant
number of nuclei and deformation points in each nu-
cleus. For each nucleus, we minimize

Equad = ERHB + C20(〈Q̂20〉 − q20)2 (9)

where ERHB is the total energy and 〈Q̂20〉 denotes the
expectation value of the mass quadrupole operator,

Q̂20 = 2z2 − x2 − y2; (10)

q20 is the constrained value of the multipole moment;
and C20 the corresponding stiffness constant [79]. In
order to provide the convergence to the exact value
of the desired multipole moment we use the method
suggested in Ref. [80]. Here the quantity q20 is re-
placed by the parameter qeff

20 , which is automatically
modified during the iteration in such a way that we
obtain 〈Q̂20〉 = q20 for the converged solution. This
method works well in our constrained calculations.

(2) In addition, reflection-asymmetric (octupole de-
formed) constrained axial RHB calculations (RA-
RHB) are performed in discussed below cases using
a parallel version of the code developed in Ref. [48].
In these calculations, the constraint

Equad + C30(〈Q̂30〉 − q30)2 (11)

is employed in addition to the constraint on quadrupole
moment [see Eq. (9)]. Here 〈Q̂30〉 denotes the expecta-
tion value of the mass octupole operator:

Q̂30 = z(2z2 − 3x2 − 3y2). (12)

Note that we also fix the (average) center of mass of
the nucleus at the origin with the constraint

〈Q̂10〉 = 0 (13)

on the center-of-mass operator Q̂10 in order to avoid a
spurious motion of the center of mass. In the present
paper, reflection asymmetric RHB calculations have
been performed for the ground states of the nuclei
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not covered in previous systematic studies of octupole
deformation in CDFT (see Refs. [48,61]). We have not
found any additional (as compared with those given
in Refs. [48,61]) nuclei which possess octupole defor-
mation in the ground state. So full information on the
octupole deformation of the ground states can be found
in these references. The information (which follows
from Refs. [48,61]) about the gain in binding energy
due to octupole deformation at the ground state and
its impact on ground-state quadrupole deformation and
fission barrier heights is fully taken into account in
the present paper. In addition, RA-RHB calculations
have been performed in some nuclei in order to define
the heights of outer fission barriers (see the discussion
below for more details).

The charge quadrupole and octupole moments are defined
as

Q20 =
∫

d3rρ(r) (2z2 − r2
⊥), (14)

Q30 =
∫

d3rρ(r) z(2z2 − 3r2
⊥) (15)

with r2
⊥ = x2 + y2. In principle these values can be di-

rectly compared with experimental data. However, it is more
convenient to transform these quantities into dimensionless
deformation parameters β2 and β3 using the relations

Q20 =
√

16π

5

3

4π
ZR2

0β2, (16)

Q30 =
√

16π

7

3

4π
ZR3

0β3 (17)

where R0 = 1.2A1/3. These deformation parameters are more
frequently used in experimental works than quadrupole and
octupole moments. In addition, the potential-energy surfaces
(PESs) are plotted in this paper in the (β2, β3) deformation
plane.

Because of different patterns of deformation energy curves
(see Figs. 2 and 3), a special care is used when assigning a
specific minimum to the ground state. A basic rule in this
process is the assumption that the local minimum surrounded
by the barrier, the height of which is less than 2 MeV, is con-
sidered as extremely unstable.4 The procedure of the selection
of the ground state is discussed below. The situation shown in
Fig. 4(a) is the simplest one: a single-humped (inner) fission
barrier acts against the fission into two fragments and when
Bin > 2 MeV the assignment of the normal-deformed prolate
minimum to the ground state is straightforward. It changes
if the height of this fission barrier decreases and becomes

4This low fission barrier of 2 MeV or less would translate into a
high penetration probability for spontaneous fission so that such min-
ima are expected to be extremely unstable. In addition, the inclusion
of octupole deformation (or triaxial deformation in some nuclei [78])
in the case of superdeformed minima surrounded by such low fission
barriers could either completely eliminate or substantially reduce
them (see Refs. [66,78,81]).

smaller than 2 MeV [see Fig. 4(b)]. Then highly deformed
oblate minimum B becomes a ground state; it has a larger and
broader fission barrier as compared with minimum A. Thus, it
is expected that this ground state will live significantly longer
than the state associated with minimum A.

A more complex situation involving two humped fission
barriers is shown in Fig. 4(c). If Bout-iso < 2 MeV, then the
minimum B corresponding to the fission isomer is considered
extremely unstable and the minimum A is associated with the
ground state. Note that in some cases the minimum B can be
lower in energy than minimum A. If that is the case and if
Bout-iso > 2 MeV then the minimum B is considered as the
ground state. Note that the heights of outer fission barriers are
frequently lowered when octupole deformation is included in
the calculations [63,69,78,81–83]. Thus, if Bout-iso > 2 MeV
in RS-RHB calculations, we perform RA-RHB calculations in
the region of the (β2, β3) plane covering the minimum B and
the saddle of the outer fission barrier on the grid with the steps
of �β2 = �β3 = 0.05. This allows us to establish whether
minimum B could be considered as relatively stable or un-
stable. Similar calculations are also performed in the cases
when Bin < Bout in the RS-RHB calculations. This is because
we consider only the height of the primary (highest) fission
barrier in Sec. V in the case of a doubly humped structure of
the barrier to minimize the computational cost. Note that the
calculations leading to the definition of the fission path and the
saddle point in the RA-RHB code are by roughly two orders
of magnitude more time consuming than those in the RS-RHB
code.

The procedure outlined above takes into account potential
stability of the nuclei in respective energy minima with respect
to fission and it is especially important in superheavy nuclei
some local minima of which are characterized by small fission
barriers (see Fig. 2). Note that after defining the minimum
corresponding to the ground state the RS-RHB and RA-RHB
calculations without constraint are performed in it and precise
binding energy and equilibrium of the ground state are deter-
mined. In addition, the height(s) of the fission barrier(s) is(are)
defined.

In the calculations with the PC-PK1 and NL3* functionals
there are two small islands of the nuclei located in the Z ≈
114–118, N ≈ 238–240 and Z ≈ 106–110, N ≈ 190–194 re-
gions in which calculated deformation energy curves reveal
several local minima [somewhat similar to the deformation
energy curves shown at the bottom of Fig. 2(b)]. However,
all these minima are surrounded by very low fission barriers
with the heights smaller than 2.0 MeV. Moreover, many of
these minima have even lower heights of respective fission
barriers (on the level of 1.0 MeV or smaller). These nuclei are
expected to be unstable against fission and in principle it does
not matter which of the calculated fission barriers is used. For
these nuclei, we select the ground state guided by the flow
of the β decays in the r process: the selected local minimum
(and thus the corresponding ground-state deformation and fis-
sion barrier height) in the (Z, N ) nucleus has the deformation
closest to the one of the well-established ground state in the
(Z − 2, N + 2) nucleus.

So far all existing global calculations of the fission
barriers for the r-process simulations have been performed in
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FIG. 2. Deformation energy curves obtained in axial RHB calculations with the DDPC1 functional for the Ds isotopes. The isotopes are
indicated by respective neutron numbers. Thick and thin solid lines are used for the RS-RHB and RA-RHB results, respectively. The results
of the RA-RHB calculations are shown only in the deformation range in which they are lower in energy than the RS-RHB ones. Solid circles
indicate the ground states and the asterisks denote the saddles of outer fission barriers which are not affected by octupole deformation. Blue,
orange, black, red, and green lines are used to indicate neutron numbers the last digits of which are 0, 2, 4, 6, and 8, respectively. Note that the
energy on the vertical axis spans different ranges in different panels.

nonrelativistic models. These include the calculations within
the FRDM [18,84], the TF and ETFSI-Q approaches [15,19],
the HFB approaches with different Skyrme functionals
[21,22,85], Gogny D1M* [23], and BCPM [18] EDFs.
Because of their global character, all these calculations are
restricted to axial symmetry. We also assume axial symmetry
in our calculations because triaxial RMF+BCS and RHB cal-
culations (see Refs. [47,62,66,78,86]) are too time consuming
to be performed on a global scale. Note also that dynamical
correlations are not taken into account in our calculations
of fission barriers because of the reasons discussed in
Appendix A.

III. GROUND-STATE PROPERTIES

The distributions of calculated proton deformations β2 in
the (Z, N ) plane obtained with four employed CEDFs are
shown in Fig. 5. The width of the gray region (the gray color
corresponds to spherical and near-spherical shapes) along a
specific magic number corresponding to a shell closure in-
dicates the impact of this shell closure on the structure of
neighboring nuclei. Note that proton and neutron shell gaps
act simultaneously in the vicinity of doubly magic spherical
nuclei. Thus, the effect of a single gap is more quantifiable
away from these nuclei. One can see that neutron N = 184
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FIG. 3. The same as Fig. 2 but for the Th isotopes. Note that the deformation range has been extended on the horizontal axis as compared
with Fig. 2. In order to save computational time the RA-RHB calculations have been carried out only up to β2 = 2.0.

and 258 spherical shell gaps5 have a pronounced impact on
calculated deformations while the impact of the proton Z =
120 spherical shell closure is limited to the N ∼ 170–184 nu-
clei (see Refs. [59,90] for examples of their size dependence
on the functional). In addition, as illustrated in Ref. [86] on the
example of the PC-PK1 functional, the inclusion of the corre-
lations beyond mean field washes out the impact of the Z =
120 shell closure and leads to oblate deformed ground states
in the majority of the Z = 120 nuclei with N = 172–186.

5Note that appreciable N = 258 spherical shell gap appears also
in the calculations of some superheavy nuclei with other CEDFs
such as G1, G2 [87], NL3 [87–89], NL-Z2 [88], NL1, NLSH, TM1,
TW99, DD-ME1, PK1, and PK1R [89]. However, these calculations
are restricted to spherical shapes and thus it is not clear how large
is the impact of this gap on ground-state deformations in the region
near the N = 258 line.

The predictions of the DD-PC1 functional differ substantially
from other CEDFs: the impact of above-mentioned shell clo-
sures are substantially reduced in it and as a consequence
the regions with Z ∼ 120, N ∼ 184 and Z ∼ 120, N ∼ 258
are dominated by oblate ground states contrary to spherical
states in other functionals. Note that this functional provides
the best global description of experimental binding energies
(see Ref. [39]). This, however, does not guarantee that it will
outperform other functionals in the description of physical
observables of interest in the region of superheavy nuclei (see
Table I in Ref. [59]).

The calculations reveal a number of nuclei scattered across
the part of the nuclear chart under study which have extremely
superdeformed (ESD) minima with β2 ∼ 1.0 located at lower
energy than normal-deformed minima [see Fig. 6(a) and Ta-
ble I]. In these nuclei the ESD minimum is surrounded by
an outer fission barrier the height of which exceeds 2.0 MeV
(being typically in the range of 2.0–3.0 MeV) in the RA-RHB
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FIG. 4. Schematic illustration of different types of deformation energy curves and the selection of respective ground states (see text for
details). Local minima are labeled by the letters A and B and the saddle points of respective fission barriers are labeled by SA and SB. Solid
circles indicate the minima selected as the ground states. The heights of inner and outer fission barriers with respect of corresponding minima
(shown by dashed lines) are indicated by Bin and Bout. Bout−iso is the height of the outer fission barrier with respect to the fission isomer.
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FIG. 6. (a) Deformation energy curves obtained in axial RS-RHB calculations with the CEDF DD-PC1 for the 240Cf nucleus. (b) Potential-
energy surface in the (β2, β3) plane obtained in the RA-RHB calculations. The extremely superdeformed minimum is indicated by the open
white circle.

calculations [see Fig. 6(b) and Table I]. Although the fission
barrier is low, some of these ESD minima could be potentially
stabilized against fission for physically sufficient time because

TABLE I. The nuclei in which the extremely superdeformed
minimum is the lowest in energy in the calculations with CEDF
DD-PC1. The columns 1 and 2 show the proton and neutron numbers
of the nuclei. The third column displays the energy EN−S (in MeV)
by which the ESD minimum is lower than the normal-deformed
minimum. The deformations of the ESD minimum βmin

2 and the
saddle of second fission barriers βsaddle

2 and βsaddle
3 are presented in the

columns 4 and 5, respectively. The energies (in MeV) of the second
fission barrier with respect to the ESD minimum, obtained in the
RS-RHB and RA-RHB calculations, are shown in the columns 6 and
7. Note that the values presented in the columns 5–7 are obtained
in the calculations with NF = 26; this is done in order to have a
comparable numerical accuracy with the one obtained at normal
deformed minimum.

EN−S E II
B (MeV) E II

B (MeV)
Z N (MeV) βmin

2 βsaddle
2 , βsaddle

3 (RS-RHB) (RA-RHB)
1 2 3 4 5 6 7

98 142 0.603 0.88 1.21, 0.33 7.207 2.625
98 144 0.306 0.90 1.34, 0.46 7.373 3.503
98 228 2.341 1.01 1.29, 0.34 6.622 2.906
98 230 2.083 1.01 1.30, 0.35 5.072 3.203
100 146 0.876 0.97 1.32, 0.37 5.890 2.985
100 230 2.431 1.01 1.30, 0.35 5.750 3.270
100 232 2.336 1.01 1.30, 0.37 4.060 2.739
102 146 2.038 0.99 1.32, 0.34 4.813 2.749
102 148 0.629 0.98 1.28, 0.31 4.093 2.250
102 232 2.591 1.02 1.29, 0.36 3.476 2.840
102 234 3.567 1.03 1.31, 0.31 2.674 2.304
104 146 3.435 0.99 1.33, 0.28 6.042 2.410
104 148 1.921 1.00 1.31, 0.27 5.579 2.204
104 150 0.924 1.00 1.29, 0.27 5.370 2.505
106 148 3.638 1.08 1.32, 0.26 4.112 2.340
106 150 2.374 1.10 1.30, 0.23 3.753 2.345

of the broad fission barrier in the (β2, β3) plane. If this were
the case, they would represent the ground states. However,
they are not included in Fig. 5 because of the following
reasons. First, there are significant theoretical uncertainties in
the predictions of fission barriers (see the present paper and
Refs. [47,78]) as well as in relative energies of the minima
with different deformations [73]. Second, only a few nuclei in
the Z ≈ 100, N ≈ 230 region could be potentially extremely
superdeformed in the ground states (see Table I). However,
the flow of matter in the r process between two nuclei with
drastically different deformations of the ground states will be
most likely significantly suppressed because of considerable
differences in the wave functions of these ground states. Thus,
it will proceed mostly along the dominant deformation of the
ground states in the region, namely, normal deformation, even
if such states are excited in energy in a few nuclei. Third, the
majority of the nuclei in Table I are neutron poor Z ≈ 102
nuclei which do not play a role in the r process. There are
experimental data on the 240,242Cf, 246Fm, and 254Rf nuclei
but only for their ground states [91]. At present, these data do
not allow us to define the deformations of the ground states.
However, since they have been obtained in the reactions (such
as α decay, β decay, electron capture, and the reactions on
spherical Pb isotopes) which do not favor significant shape
changes, these ground states are most likely normal-deformed.
More detailed and focused experimental studies are needed in
order to see whether ESD states exist in such nuclei.

The spreads of theoretical predictions in quadrupole de-
formations β2 obtained with four employed functionals are
summarized in Fig. 7(a). The largest spread of �β2 ≈ 0.7 is
visible along the line of N/Z ≈ 1.81 which starts at Z = 104.
This corresponds to the boundary of the transition from oblate
to prolate shapes the exact position of which in the (Z, N )
plane is functional dependent (see Fig. 5). It is defined by
the underlying single-particle structure at prolate and oblate
shapes as well as to a degree by the heights of outer fission
barriers (see the rules for the definition of the ground states de-
scribed in Sec. II). The second region of the largest spreads in
�β2 is located along the N ≈ 184 line starting from Z ≈ 100
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FIG. 7. Proton quadrupole deformation spreads �β2(Z, N ) as a function of proton and neutron number. �β2(Z, N ) = |βmax
2 (Z, N ) −

βmin
2 (Z, N )|, where βmax

2 (Z, N ) and βmin
2 (Z, N ) are the largest and smallest proton quadrupole deformations obtained with four employed

CEDFs for the (Z, N ) nucleus.

and extending up to Z = 120. The third region is located along
the Z = 120 line from the proton drip line up to N ≈ 188.
These two regions of large spreads in calculated quadrupole
deformation emerge from the differences in the predictions
of ground-state deformations (see Fig. 5) which in turn can be
traced back to the sizes of the Z = 120 and N = 184 spherical
shell closures and the densities of the single-particle states in
their vicinities (see Ref. [59]). The last region of large theoret-
ical uncertainties is located between N ≈ 236 and N = 258.
In the region around N ≈ 236 these theoretical uncertainties
are mostly due to the uncertainties in the predictions of the
boundary of the transition from prolate to oblate shapes. For
higher N values, large �β2 values emerge from the transition
from prolate or oblate shapes to spherical ones and to a large
degree are defined by the uncertainties in the prediction of
the size of the N = 258 spherical shell closure [see Fig. 6(d)
in Ref. [90]] and single-particle densities in its vicinity. With
few exceptions theoretical uncertainties in the predictions of
ground-state deformations in the part of the nuclear chart

outside of the above-discussed regions are very small [see
Fig. 7(a)].

It is important to understand to what extent the predic-
tions of the ground-state deformations and related theoretical
uncertainties in these predictions are dependent on nuclear
matter properties of employed CEDFs. All employed CEDFs
have the density ρ0 and the energy per particle E/A at the
saturation of symmetric nuclear matter (SNM) which are very
close to each other and to empirical estimates (see Table III
in Ref. [49]). Thus, the impacts of only selected SNM prop-
erties listed in Table II on the ground-state deformations are
discussed below. Let us start from the consideration of the pre-
dictions by the pair of the functionals DD-PC1 and DD-ME2.
Their SNM properties such as incompressibility K0, symmetry
energy J , and slope L0 are close to each other and are lo-
cated within the SET2b constraints on experimental/empirical
ranges for physical observables of interest (see Table II). De-
spite that this pair of functionals gives the largest contribution
into the spreads �β2 [compare panels (b) and (a) of Fig. 7].
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TABLE II. Selected properties of symmetric nuclear matter at
saturation: the incompressibility K0, the symmetry energy J , and its
slope L0. The top four lines show the values for indicated CEDFs,
while the bottom two lines show two sets (SET2a and SET2b) of the
constraints on the experimental/empirical ranges for the quantities
of interest defined in Ref. [51]. The CEDF values which are located
outside the limits of the SET2b constraint set are shown in bold.

CEDF K0 (MeV) J (MeV) L0 (MeV)
1 2 3 4

NL3* [43] 258 38.68 122.6
DD-ME2 [42] 251 32.40 49.4
DD-PC1 [44] 230 33.00 68.4
PC-PK1 [50] 238 35.6 113
SET2a 190–270 25–35 25–115
SET2b 190–270 30–35 30–80

In contrast, the pairs of functionals PC-PK1 and NL3* [which
have J and L0 values located outside the SET2b constraint
range (see Table II)] as well as NL3* and DD-ME2 [which
have drastically different values of the J and L0 parameters
(see Table II)] have (with very few exceptions) very similar
predictions for the ground-state deformations across the part
of the nuclear chart under study. These exceptions are related
to some differences in the predictions of the boundaries be-
tween oblate and prolate shapes as well as between prolate
and spherical shapes.

These results for ground-state deformations together with
the analysis of the results for binding energies and charge radii
of the Z � 104 nuclei presented in Ref. [49] strongly indicate
the following.

(1) The major source of the uncertainties in the predic-
tions of ground-state deformations is related to local
differences in underlying single-particle structure and,
in particular, to the size of spherical Z = 120 and
N = 184 and 258 shell closures and the densities of
the single-particle states in their vicinities.

(2) Strict enforcement of the limits on the nuclear matter
properties defined in Ref. [51] will not necessary lead
to the functionals with good description of ground- and
excited-state properties and will not reduce theoretical
uncertainties in the description of physical observables
of interest in high-Z and/or neutron-rich nuclei.

Table III compares the positions of the two-proton and
two-neutron drip lines obtained in the RHB calculations with
the NL3* and PC-PK1 functionals; the results for the DD-
PC1 and DD-ME2 functionals could be found in Table IV
of Ref. [39]. One can see that the two-proton drip lines are
very similar in these two functionals; they differ by no more
than four neutrons. This is in line with earlier observations
that theoretical uncertainties in the predictions of the position
of the two-proton drip line are relatively small (see Ref. [93]
and Sec. VII in Ref. [39]). Note that two-proton drip lines in
the isotopic chains of interest obtained with PC-PK1 are very
close to those obtained with DD-PC1 (compare Table III in
the present paper with Table IV of Ref. [39]).

TABLE III. Two-proton and two-neutron drip lines predicted
by the NL3* and PC-PK1a functionals (see Fig. 1 for a graphical
representation of drip lines). Neutron numbers (columns 2–5) corre-
sponding to these drip lines are given for each even proton number Z
(column 1). An asterisk at a neutron number at the two-neutron drip
line indicates isotope chains with additional two-neutron binding at
higher N values (peninsulas).

Two-proton drip line Two-neutron drip line

Proton
number Z NL3* PCPK1 NL3* PCPK1
1 2 3 4 5

90 112 114 218 256
92 118 122 224 258
94 122 126 232 258
96 126 128 252 258
98 130 130 256 258
100 132 132 258 258
102 134 136 258 258
104 138 140 258 258
106 142 144 258 258*
108 146 148 258 288
110 150 154 258 292
112 154 158 258 298
114 158 162 262* 302
116 162 166 286 312
118 166 170 294 318
120 170 174 298 324

aThe analysis of Ref. [92] performed within the relativistic con-
tinuum Hartree-Bogoliubov theory and PC-PK1 functional leads to
somewhat different predictions for the position of the two-neutron
drip line for some isotopic chains as compared with our results. This
is a consequence of the neglect of deformation effects in Ref. [92].

Among the considered CEDFs the PC-PK1 functional pro-
vides the most neutron-rich two-neutron drip line and the
NL3* provides the second most neutron-rich two-neutron drip
lines (compare Table III in the present paper with Table IV
of Ref. [39] and see Sec. VIII in Ref. [39]). All employed
functionals reveal the presence of the shell closure at N = 258
[see Fig. 6(d) in Ref. [90]]. The size of this gap is almost the
same in the NL3* and PC-PK1 functionals, but (i) it is shifted
down in energy by ≈400 keV for PC-PK1 as compared with
NL3* and (ii) high- j intruder orbitals 1k15/2 and 2i13/2, which
have a significant impact on the position of the neutron drip
line (see discussion in Ref. [90]), are located at lower energies
in the PC-PK1 functional as compared with the NL3* one.
These features lead to the shift of the two-neutron drip line
to substantially higher neutron numbers in the PC-PK1 CEDF
as compared with NL3*. The sizes of the N = 258 shell gaps
are smaller by ≈10 and 20% in the DD-ME2 and DD-PC1
functionals as compared with the ones in the PC-PK1 and
NL3*. In addition, above-mentioned high- j intruder orbitals
in the calculations with the DD-ME2 and DD-PC1 functionals
are located at higher energies as compared with the ones in
NL3*. As a consequence, their two-neutron drip lines are
located at lower neutron numbers as compared with the NL3*.
These features are clearly seen in Fig. 5.
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FIG. 8. The binding-energy spreads �E (Z, N ) as a function of proton and neutron number. �E (Z, N ) = |Emax(Z, N ) − Emin(Z, N )|, where
Emax(Z, N ) and Emin(Z, N ) are the largest and smallest binding energies obtained with the employed set of CEDFs for the (Z, N ) nucleus. The
upper panel shows the binding-energy spreads for four employed functionals, while the bottom one shows the spreads for a set of functionals
in which PC-PK1 is excluded.

Figure 8 shows the map of theoretical uncertainties
�E (Z, N ) in binding energies. These uncertainties increase
drastically when approaching the neutron-drip line and in
some nuclei they reach 50 MeV. Poorly defined isovec-
tor properties of CEDFs is the major reason for that (see
Ref. [39]). Note that the �E (Z, N ) spreads for the NL3*,
DD-PC1, and DD-ME2 functionals are relatively modest [see
Fig. 8(b)]6 and the major contribution to �E (Z, N ) is coming
from the PC-PK1 functional [compare panels (a) and (b) in
Fig. 8]. The fact that isovector properties of the PC-PK1
functional are significantly different from those of NL3*,
DD-PC1, DD-ME2, and DD-MEδ is also confirmed by the
analysis of binding energies in the Yb (Z = 70) isotopic chain
(see Fig. 3 in Ref. [49]). As follows from the analysis of para-
metric correlations in different classes of CEDFs performed
in Ref. [58], a possible reason for that could be related to
overparametrization of the isoscalar channel in this class of
CEDFs.7 This, in turn, may lead to a somewhat wrong bal-
ance of the isoscalar and isovector channels in known nuclei
which reveals itself in a more pronounced way via different
(as compared with other functionals) isovector dependence of
binding energies in a neutron-rich one.

Figure 9 presents the summary of two-neutron separation
energies S2n(Z, N ) obtained with four employed CEDFs. Note
that some discontinuities in smooth trends of the S2n(Z, N )
distributions as a function of neutron number are either due to

6The addition of the DD-MEδ functional to this set of three func-
tionals is not expected to modify significantly �E (Z, N ) (see Fig. 9
in Ref. [39]).

7The analysis of Ref. [58] suggests that the number of parameters
in the isoscalar channel of PC-PK1 CEDF can be reduced from 4
to 1.

the presence of substantial spherical shell gaps at N = 184
or 258 or due to the crossing of the boundaries between
prolate and oblate shapes. For example, the impact of the
N = 184 spherical shell gap on the S2n(Z, N ) distributions
is clearly visible in Figs. 9(b)–9(d) [see also Figs. 5(b)–
5(d) for deformation distributions]. In contrast, its impact
is substantially suppressed in superheavy nuclei in the cal-
culations with CEDF DD-PC1 [see Fig. 9(a)] because of
the reduced role of the N = 184 spherical shell gap in this
functional.

Finally, the spreads �S2n(Z, N ) in two-neutron separation
energies are presented in Fig. 10. They are the lowest in
known nuclei but in general increase with increasing neutron
number. The �S2n(Z, N ) values are quite large [�S2n(Z, N ) ≈
2.2 MeV] in the vicinity of two-neutron drip lines and the
N = 184 and 258 spherical shell gaps. However, they become
extremely large [�S2n(Z, N ) ≈ 4.0 MeV] at the boundaries
between prolate and oblate shapes. Similar to the spreads
in binding energies (see discussion of Fig. 8 above), the
largest contribution to the �S2n(Z, N ) values comes from the
CEDF PC-PK1. If the PC-PK1 functional is excluded from
consideration these values on average decrease by a factor
of 2 [compare panels (b) and (a) in Fig. 10]. It is interest-
ing that in the neutron-rich deformed N ≈ 190–236 region
the �S2n(Z, N ) values are on average comparable with those
in known nuclei [see Fig. 10(b)]. However, they still show
increased magnitudes at above discussed locations of the nu-
clear chart.

IV. α-DECAY PROPERTIES

In actinides and superheavy nuclei spontaneous fission and
α emission compete and the shortest half-life determines the
dominant decay channel and the total half-life. Only in the
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FIG. 9. Two-neutron separation energies S2n(Z, N ) obtained in the RHB calculations with indicated CEDFs.

cases where the spontaneous fission half-life is longer than
the half-life of α emission can superheavy nuclei be observed
in experiment. In addition, only nuclei with half-lives longer
than τ = 10 μs are observed in experiments.

The α-decay half-life depends on the Qα values which are
calculated according to

Qα = E (Z, N ) − E (Z − 2, N − 2) − E (2, 2) (18)

with E (2, 2) = −28.295 674 MeV [94] and Z and N repre-
senting the parent nucleus.

To estimate theoretical uncertainties in the predictions of
the α-decay half-lives, they were calculated using three phe-
nomenological expressions.

(1) The first expression is the Viola-Seaborg semiempiri-
cal formula [95]

log10τα = aZ + b√
Qα

+ cZ + d (19)

employing two sets of parametrizations. The first
one with the parameters a = 1.661 75, b = −8.5166,
c = −0.202 28, and d = −33.9069 has been fitted in
Ref. [96]. This set and the results obtained with it are
labeled below as VSS-1989. Another set has been de-
fined in Ref. [97] and its parameters are a = 1.640 62,
b = −8.543 99, c = −0.194 30, and d = −33.9054.
The label VSS-2005 is used for it and its results.

(2) The second expression is the phenomenological first
modified Brown fit (mB1) [98]

log10τα = a(Z − 2)b

√
Qα

+ c (20)

with the parameters a = 13.0705, b = 0.5182, and
c = −47.8867. This set and its results are labeled be-
low as MB-2016.
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Two-neutron separation energy spreads ΔS2n(Z,N) [MeV]
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FIG. 10. The S2n spreads �S2n(Z, N ) as a function of proton and neutron number. �S2n(Z, N ) = |Smax
2n (Z, N ) − Smin

2n (Z, N )|, where
Smax

2n (Z, N ) and Smin
2n (Z, N ) are the largest and smallest S2n values obtained with four employed CEDFs for the (Z, N ) nucleus.

(3) The third expression is the phenomenological Royer
model [99]

log10τα = aZ√
Qα

+ bA
1
6

√
Z + c (21)

with the parameters a = 1.5864, b = −1.1629, and
c = −25.31 of Ref. [99]. Its results are labeled below
as Royer-2000.

These phenomenological expressions employ different
functional dependencies (in particular, they show different
dependencies on proton and mass numbers) and are fitted
to different sets of experimental data. This is expected to
lead to different predictions for τα in high-Z and neutron-rich
nuclei.

The Qα values calculated with the DD-PC1, DD-ME2,
NL3*, and PC-PK1 functionals are presented in Fig. 11. One
can see that for a fixed value of Z with increasing neutron
number the Qα values in general decrease. They are positive
in proton-rich nuclei as well as in the nuclei located close to
the β-stability line. The Qα values experience a substantial
increase at shell closure with N = 1848 (see Fig. 11 in the
present paper as well as Fig. 14 in Ref. [59]); note that the
effect of this shell closure is washed out in the Z > 110
nuclei for the DD-PC1 functional. With subsequent increase
of neutron number the Qα values become first smaller, then
they become close (or equal) to zero, and with further increase
of N they get more and more negative. Note that α decay
is energetically not possible for Qα � 0 MeV. Thus, very
neutron-rich nuclei cannot decay by α emission.

8A similar increase is also seen in the vicinity of the N = 258 shell
closure in the calculations with the NL3* and PC-PK1 CEDFs [see
Figs. 11(c) and 11(d)].

Note that general trends in the development of the Qα

values as a function of proton and neutron number are similar
in all functionals. The major differences are related to the lo-
cation of the two-neutron drip line, the impact of the N = 184
and 258 shell closures, and the location of the boundaries
between prolate and oblate nuclear shapes. These differences
between the functionals are summarized in Fig. 12 which
shows the Qα spreads �Qα (Z, N ) as a function of proton and
neutron number. The largest spread in the predictions exists
in the island centered around Z ∼ 110, N ∼ 198 in which
�Qα (Z, N ) > 3 MeV. This spread emerges from different pre-
dictions of the boundaries in the (Z, N ) plane between prolate
and oblate shapes (see Fig. 5) and coincides with the largest
spread in calculated ground-state deformations (see Fig. 7).
The next region with the largest differences in the predictions
is located between neutron numbers N = 236 and 258 (see
Fig. 12). However, these differences are not critical because
(a) this region is not expected to play a role in the r process,
(b) expected α-decay half-lives exceed 1020 s (see Fig. 13),
and (c) many of the nuclei in this region are not expected
to decay by α emission. High �Qα values [�Qα (Z, N ) ≈
1.5 MeV] are observed near shell closure at N = 184 and
in very neutron-rich nuclei near the two-neutron drip line.
This is a consequence of the difference in the predictions of
the ground-state properties such as deformations in the nuclei
near N = 184 (see Ref. [59]) and general deterioration of
predictive power of nuclear models on approaching the neu-
tron drip line (see Ref. [39]). In other regions of the nuclear
chart, �Qα (Z, N ) � 1.0 MeV with smallest spreads seen in
the N < 180 nuclei.

Note that the inclusion of dynamical correlations (for
example, by means of a five-dimensional collective Hamilto-
nian) can locally modify the binding energies and Qα values
[63,68,86] but they have the largest impact on transitional
nuclei which represent only a minor part of the nuclei under
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FIG. 11. The Qα values for even-even actinides and superheavy nuclei calculated with indicated CEDFs.

study. For well-deformed nuclei, the impact of dynamical
correlations on Qα values is rather modest [63]. Thus, their
inclusion is not expected to change drastically the global
picture for the behavior of Qα .

Calculated α-decay half-lives τα (in logarithmic scale) ob-
tained with the VSS-2005 empirical formula for four CEDFs
are shown in Fig. 13. Other phenomenological formulas such
as VSS-1989, MB-2016, and Royer-2000 give similar results;
thus, they are not shown. For a given isotope chain the cal-

Qα spreads ΔQα [MeV]
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FIG. 12. The Qα spreads �Qα (Z, N ) as a function of proton and neutron number. �Qα (Z, N ) = |Qmax
α (Z, N ) − Qmin

α (Z, N )|, where
Qmax

α (Z, N ) and Qmin
α (Z, N ) are the largest and smallest Qα values obtained with four employed CEDFs for the (Z, N ) nucleus.
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α-decay half-lives (log10τα) [s]
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FIG. 13. Calculated log10(τα ) values of the α decays for even-even superheavy nuclei obtained with the VSS-2005 version of the Viola-
Seaborg semiempirical formula for four indicated CEDFs. Open squares are used for the nuclei in which α decay is energetically forbidden.
The white line corresponding to log10(τα ) = 1.0 outlines the region of nuclei in which the alpha-decay half-life is smaller than 10 s.

culated half-lives generally increase with increasing neutron
number. This trend is interrupted only at the N = 184 and
258 shell closures. The consequence of this feature is the fact
that the traditional experimental technique of detecting super-
heavy nuclei by α decay will not work in neutron-rich nuclei
because they can decay faster by spontaneous fission. Note
that α decay is energetically forbidden for a large group of
very neutron-rich nuclei located in the vicinity of the neutron-
drip line. In such nuclei as well as in those which have very
large τα values, the competition of spontaneous fission, neu-
tron induced fission, β decay, and neutron emission will define
the leading channel of decay in the r-process calculations.

It is important to remember that the typical timescale of
the r process is in the seconds range [2–4]. Figure 13 clearly
illustrates that with few exceptions the nuclei located to the
right of white lines have α-decay half-lives exceeding 10 s.
Thus, α-decay half-lives of these nuclei are longer than the

typical timescale of the r process and, as a consequence, their
α decays will not affect the r-process simulations. These white
lines in Fig. 13 also outline the region of the nuclear chart in
which traditional experimental measurements of superheavy
nuclei based on the α decays are possible: these are the regions
located near and to the left of these white lines.

Theoretical uncertainties in the predictions of α-decay
half-lives given via the �[log10(τα )] spreads are summarized
in Fig. 14. The comparison of panels (a) and (b) clearly shows
that these uncertainties mostly emerge from the differences
in the predictions of the Qα values by different functionals.
These uncertainties exceed 50 orders of magnitude in the
nuclei located in the vicinity of the two-neutron drip line
and in some nuclei around Z ≈ 108, N ≈ 198 (see Fig. 14).
The uncertainties in τα originating from different empirical
formulas [see Eqs. (19)–(21)] are significantly smaller [see
Fig. 14(b)]. For absolute majority of the nuclei they are
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FIG. 14. The τα spreads �τα (Z, N ) as a function of proton and neutron number. �τα (Z, N ) = |τmax
α (Z, N ) − τmin

α (Z, N )|, where τmax
α (Z, N )

and τmin
α (Z, N ) are the largest and smallest τα values obtained with a selected set of functionals and empirical formulas. Panel (a) shows these

spreads obtained with four employed CEDFs and the VSS-2005 empirical formula. The DD-PC1 CEDF and four empirical formulas are used
in panel (b). Panel (c) presents the combined spread of τα obtained with four CEDFs and four empirical formulas. Panel (d) is the subversion
of panel (c) in which the PC-PK1 functional is excluded.

smaller than five orders of magnitude and for proton-rich
nuclei and the nuclei located close to the β stability they
are very small. They are larger than ten orders of magnitude
only in neutron-rich nuclei located in close vicinity of the
two-neutron drip line. Combined theoretical uncertainties
in τα emerging from the use of four empirical formulas
and four CEDFs are summarized in Fig. 14(c). One can
see that for almost half of nuclei they exceed ten orders of
magnitude; these nuclei are located on the neutron-rich side
of the nuclear chart. However, these uncertainties are not very
critical since the α-decay lifetimes become extremely large
in such nuclei (see Fig. 13) so α decay can compete neither
with fission nor with β decay. Note also that the removing of
the PC-PK1 functional from consideration does not change
appreciably theoretical uncertainties in the predictions of
α-decay half-lives [compare Figs. 14(c) and 14(d)].

V. FISSION PROPERTIES

A. Primary fission barriers

The distributions of primary fission barrier9 heights in the
(Z, N ) plane obtained with employed functionals are shown
in Fig. 15. Figure 16 presents the maps of the nuclei in the
region under study in which outer fission barriers are higher
than inner ones in the RS-RHB calculations (see Figs. 2 and 3
for more details). It also illustrates that the importance of outer
fission barriers in stabilization of nuclei in general decreases
on going from light actinides to superheavy nuclei because

9The highest in energy fission barrier (among inner and outer ones)
is called primary and it plays an important role in the r-process
modeling (see Ref. [85]).
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Fission barrier heights [MeV]
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FIG. 15. The heights of primary fission barriers (in MeV) obtained in axial RS-RHB and RA-RHB calculations as a function of proton and
neutron numbers for nuclei located between two-proton and two-neutron drip lines.

of increased importance of Coulomb interaction (compare
Figs. 3 and 2). Figure 16 also demonstrates the impact of
octupole deformation (as obtained in RA-RHB calculations)
on the outer fission barriers and on their heights with respect
to inner ones. The lowering of the outer fission barrier due
to octupole deformation indicates that asymmetric fission be-
comes dominant, while the absence of the impact of octupole
deformation on outer fission barrier height indicates that fis-
sion will be symmetric.

Figure 16 shows that similar regions in the (Z, N ) plane, in
which the outer fission barriers are higher in energy than inner
ones in the RS-RHB calculations, appear in the calculations
with all employed functionals. However, these regions are
substantially larger in the density dependent functionals (such
as DD-PC1 and DD-ME2) as compared with CEDFs NL3*
and PC-PK1. Octupole deformation does not affect outer fis-
sion barriers in the nuclei located in the Z ∼ 110, N ∼ 240
region, in the N � 120 nuclei, or in the nuclei located not so
far away from N ≈ 180. On going away from the latter two
regions, octupole deformation starts to reduce the heights of
outer fission barriers but they still remain higher in energy

than inner ones. Further transition away from these regions
leads to the reduction of the heights of outer fission barriers
below the inner ones due to the impact of octupole deforma-
tion.

Figure 15 reveals a lot of similarities in the predictions
of the global structure of the maps of fission barrier heights
obtained with employed functionals. The highest PFBs are
predicted in the islands of low-Z nuclei centered around spher-
ical shell closures with N = 126 and 184 (and N = 258 in
the case of the PC-PK1 functional). Fission barriers reach
15 MeV in the centers of these islands. The next island with
high fission barriers exists around Z ≈ 100, N ≈ 150. The
left bottom part of this island coincides with the region of
actinides (see, for example, Fig. 7 in Ref. [62]) in which
the heights of fission barriers have been experimentally mea-
sured. Relativistic mean-field calculations with the NL3*,
PC-PK1, and DD-PC1 functionals performed by different
groups rather well describe inner and outer fission barriers
in actinides [62–64,69]. Note also that the spreads of the
heights of inner fission barriers obtained with these three func-
tionals in the Z ≈ 100, N ≈ 150 island are relatively small
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The impact of octupole deformation on outer fission barriers
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FIG. 16. The distributions of the nuclei, in which the outer fission barrier is higher than the inner one in the RS-RHB calculations, in the
(Z, N ) plane for four employed CEDFs. Different types of symbols are used to indicate the impact of octupole deformation on outer fission
barriers of these nuclei. Blue solid circles are used for the nuclei, the heights of the outer fission barriers of which are not affected by the
inclusion of octupole deformation. Solid red circles/orange squares are used for the nuclei in which the outer fission barrier is affected by
octupole deformation in the RA-RHB calculations and is higher/lower than the inner fission barrier.

(approximately 1 MeV or less) for the majority of nuclei
in this island [see Fig. 3(b) in Ref. [47]]. In contrast, the
DD-ME2 functional predicts somewhat higher fission barri-
ers in this island [see Fig. 15(b)] which leads to somewhat
higher spreads �EB in the heights of primary fission barriers
[see Fig. 17(a)]. The island of low fission barriers is seen
near Z ≈ 108, N ≈ 192 in all functionals. Then another is-
land of high fission barriers centered around Z ≈ 104, N ≈
216 is formed. The highest fission barriers reaching 10–11
MeV in the center of this island are predicted by the DD-
ME2 functional [see Fig. 15(b)]. Somewhat lower fission
barriers (with approximately 9 MeV height in the center
of the island) are predicted by the DD-PC1 functional [see
Fig. 15(a)]. Fission barriers with height of approximately 6
MeV appear in a broad region of this island in the calcu-

lations with the NL3* and PC-PK1 CEDFs [see Figs. 15(c)
and 15(d)].

With increasing neutron number the predictions start to dif-
fer substantially. The NL3* and PC-PK1 functionals predict
extremely low fission barriers with heights of around 2 MeV
or less for the band of nuclei around N ≈ 240 [see Figs. 15(c)
and 15(d)]. No such band is formed in the calculations with
DD-ME2 and DD-PC1 functionals [see Figs. 15(a) and 15(b)].
This could have a drastic impact on the creation of superheavy
elements in the r process because the nuclear flow during
most of the neutron irradiation step of the r process follows
the neutron drip line and produces in tens of ms the heaviest
drip line nuclei (see the discussion in Sec. 4 of Ref. [12]).
However, this nuclear flow will most likely be terminated at
N ≈ 240 nuclei in the calculations with NL3* and PC-PK1
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Fission barrier spreads ΔEB [MeV]

(a)

(4 functionals)

 120  140  160  180  200  220  240  260  280  300  320

 90

 100

 110

 120

P
ro

to
n 

nu
m

be
r 

 Z

 0
 1
 2
 3
 4
 5

(b)

(DD-PC1 and DD-ME2)

 120  140  160  180  200  220  240  260  280  300  320

 90

 100

 110

 120

 0
 1
 2
 3
 4
 5

(c)

(NL3* and PC-PK1)

 120  140  160  180  200  220  240  260  280  300  320

 90

 100

 110

 120

P
ro

to
n 

nu
m

be
r 

 Z

 0
 1
 2
 3
 4
 5

(d)

(DD-ME2 and NL3*)(DD-ME2 and NL3*)

 120  140  160  180  200  220  240  260  280  300  320
Neutron number  N

 90

 100

 110

 120

 0
 1
 2
 3
 4
 5

FIG. 17. (a) The spreads �EB of the heights of primary fission barriers as a function of proton and neutron numbers. �EB(Z, N ) =
|EB

max(Z, N ) − EB
min(Z, N )|, where, for given Z and N values, EB

max(Z, N ) and EB
min(Z, N ) are the largest and smallest heights of inner fission

barriers obtained with the employed set of four functionals. (b)–(d) The spreads �EB obtained for indicated pairs of the functionals.

since fission will be much faster than neutron capture. Thus,
no superheavy nuclei are expected to be formed beyond N ∼
240 in the r-process calculations based on fission barriers
obtained with these two functionals. This is similar to the
results of the r-process simulations based on nonrelativistic
models (such as the Skyrme DFT with HFB-14 functional,
Thomas-Fermi model, and finite range droplet model) with
low fission barriers in the vicinity of the neutron drip line
[12,15]. In contrast, the formation of superheavy elements
with N > 240 in the r process is more likely in the calcula-
tions based on the DD-ME2 and DD-PC1 functionals since
the (Z, N) region near the neutron drip line is characterized by
relatively high fission barriers [see Figs. 15(a) and 15(b)]. As
a consequence, neutron capture is expected to proceed faster
than fission and nuclear flow during the neutron irradiation
step of the r-process could extend to higher proton numbers
[12,15]. To a degree this is similar to the r-process simulations
based on the models (such as the extended Thomas-Fermi

model) with high fission barriers near the neutron drip line
(see Ref. [15]).

Further increase of neutron number leads to a rise of the
heights of primary fission barriers and the formation of the
band of nuclei near shell closure at N = 258 with the heights
of PFBs exceeding 6 MeV [see Figs. 15(b)–15(d)]. In some
nuclei they even reach 12–15 MeV in the calculations with
PC-PK1 and NL3* CEDFs [see Figs. 15(c) and 15(d)]. Note
that this process is suppressed in the calculations with CEDF
DD-PC1 [see Fig. 15(a)] because of reduced impact of the
N = 258 spherical shell gap on the ground-state deformations
[see Fig. 5(a)]. The nuclear landscape extends substantially
beyond N = 258 in the calculations with NL3* and PC-PK1
[see Figs. 15(c) and 15(d)]. In this region we again see the
alteration of the regions of low (near N ≈ 268) and high (near
N ≈ 280 and above) PFBs. Note that in the N > 258 region
toroidal shapes [65,100] could become the lowest in energy
solutions. This has been verified in the calculations with the
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DD-PC1 functional in Ref. [66] but has not been checked for
other functionals.

B. Theoretical uncertainties in primary fission
barriers and their sources

The spreads �EB of the heights of primary fission bar-
riers as a function of proton and neutron numbers for four
employed functionals are shown in Fig. 17(a). One can see
that on the average they are moderate (on the level of 1.0–
1.5 MeV) in the neutron-poor region of actinides centered
around (Z ∼ 100, N ∼ 140). Then the spreads start to in-
crease with a small island of high �EB ≈ 4.0 MeV values
seen in superheavy nuclei around Z ≈ 110, N ≈ 164. Fur-
ther increase of neutron number leads to the band of high
�EB ≈ 4.0 MeV values for the nuclei with N ≈ 184. The
sources of these uncertainties are directly related to the dif-
ferences in the predictions of the ground-state properties of
these nuclei: spherical ground states are predicted in these
nuclei in the calculations with PCPK1, DD-ME2, and NL3*
functionals [see Figs. 5(b)–5(d)] while the DD-PC1 functional
prefers oblate ground states in superheavy N ≈ 184 nuclei
[see Fig. 5(a)]. After crossing this band, theoretical uncer-
tainties in the heights of primary fission barriers substantially
decrease and for the majority of the nuclei located inside the
triangle with the sides N = 188 (for Z = 96–120), Z = 120
(for N = 188–240), and (Z = 96, N = 188 to Z = 120, N =
240) they are in general better than 2.5 MeV and in many
nuclei they are even better than 1.5 MeV. However, the �EB

spreads start to increase again on approaching the two-neutron
drip line. Here they form a quite wide band of the nuclei
parallel to the two-neutron drip line in which �EB is close
to 4.0 MeV. Even higher spreads reaching 5.5 MeV are seen
near shell closure at N = 258.

The analysis of the spreads �EB allows us to identify
major sources of theoretical uncertainties in the predictions of
the heights of PFBs. These could be reduced to two major con-
tributors, namely, underlying single-particle structure mostly
affecting the ground-state properties and nuclear matter prop-
erties of employed CEDFs. To facilitate the discussion we will
consider the �EB spreads for the pairs of selected functionals.

The lowest spreads exist for the pair of the NL3* and
PC-PK1 functionals [see Fig. 17(c)]: �EB � 0.5 MeV for the
absolute majority of the nuclei and only in specific regions
of the nuclear chart it is higher. Even in those regions it is
higher than 1 MeV only for a limited set of the nuclei. These
regions are (i) the actinides around N = 126, (ii) the Z = 90
and 92 actinides with N ≈ 170, (iii) superheavy nuclei in the
vicinity of the Z = 120 and N = 184 lines, (iv) very neutron-
rich nuclei in the vicinity of the two-neutron drip line, and
(v) the band of the nuclei around N ≈ 246. The differences
in the predictions of the heights of outer fission barriers are
responsible for the spreads in the region (i). At present, their
source is not clear. The spreads �EB seen in the region
(ii) are due both to different proton and neutron dependencies
of the impact of octupole deformation on outer fission barriers
in the NL3* and PC-PK1 functionals [compare panels (c)
and (d) of Fig. 16] and to the fact that in some nuclei we
compare the heights of outer and inner fission barriers. In the

region (iii), the large �EB values are due to the differences
in the predictions of the spherical shell closures at Z = 120
and N = 184 and the densities of the single-particle states
in their vicinities (see Fig. 1 in Ref. [59] and the discussion
in this reference). Slightly different isovector properties of
the NL3* and PC-PK1 functionals (see Table II) may be
responsible for the divergence of their predictions in the re-
gion (iv). The large �EB values in the region (v) are due to
prolate-oblate-spherical shape coexistence which takes place
in slightly different regions of the (Z, N ) chart in these two
functionals [compare Figs. 5(c) and 5(d)].

The comparison of the predictions of the NL3* and PC-
PK1 functionals for the fission barriers is quite illuminating
since it shows in a global way a number of important features.
First, apart from the regions (i)–(v) the comparable (typically
within 0.5 MeV) predictions for the heights of PFBs are
obtained on a global scale by these two functionals despite
the fact that they differ substantially in the predictions of
the ground-state energies in neutron-rich nuclei (see the dis-
cussion of Fig. 8). Thus, the description of the ground-state
energies is to a degree decoupled from the description of
fission barriers; the latter depends on the relative energies
of the saddle and the ground state. As a consequence, good
description of the ground-state energies does not guarantee
good description of the fission barriers and vice versa. Second,
the differences in the predictions of the PFB heights seen in
the regions (iii) and (v) are related to the differences in the
predictions of the ground-state properties, which in turn are
defined by the differences in the underlying single-particle
structure. Third, if we exclude the regions (i)–(v) from con-
sideration it becomes clear that some differences in nuclear
matter properties such as the symmetry energy J and its slope
L0 (see Table II) do not lead to important differences in the
predictions for PFBs. Fourth, comparable global predictions
for the PFBs are obtained despite underlying differences in the
basic structure of the functionals and their fitting protocols.
The NL3* functional includes meson exchange of finite range,
while the PC-PK1 CEDF does not have mesons and thus it has
zero range interactions (see Ref. [58]). The fitting protocol of
the CEDF NL3* is based on 12 spherical nuclei and includes
empirical data on nuclear matter properties (see Ref. [43]),
while the one for PC-PK1 includes only data on binding
energies (60 spherical nuclei) and charge radii (17 spherical
nuclei) [50]. Note that the NL3* and PC-PK1 functionals have
six and nine parameters, respectively. However, the analysis
of parametric correlations shows that in reality there are only
five and six independent parameters in these two functionals
[46,58].

Next we consider the spreads �EB obtained with the
NL3*/DD-ME2 pair of the functionals [see Fig. 17(d)]. These
two functionals have almost identical fitting protocols (see
Refs. [42,43]). The only difference is the fact that the DD-
ME2 fitting protocol uses three experimental data points on
neutron skins as compared with four in NL3* but the impact
of this difference is expected to be small. Thus, larger values
of the �EB spreads in the NL3*/DD-ME2 pair as compared
with the ones in the NL3*/PC-PK1 pair are related to the
basic difference of these two functionals, namely, to the im-
plementation of density dependence. The DD-ME2 functional
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has explicit dependence of the meson-nucleon coupling on
the nucleonic density, while NL3* employs cubic and quartic
powers of the σ meson for density dependence (see Sec. II of
Ref. [39] for details). In addition, the nuclear matter properties
(in particular, the symmetry energy J and its slope L0) of
these two functionals differ substantially (see Table II) and
this difference is expected to contribute to the increase of
the spreads �EB obtained for the NL3*/DD-ME2 pair as
compared with those for the NL3*/PC-PK1 pair.

Finally, the �EB spreads for the DD-PC1/DD-ME2 pair
of the functionals are presented in Fig. 17(b). Nuclear matter
properties of these two functionals are close to each other
and they are located within the limits of the SET2b constraint
set on the experimental/empirical ranges for the quantities of
interest derived in Ref. [51] (see Table II). However, fitting
protocols of these two functionals are drastically different:
CEDF DD-ME2 is fitted to the properties of 12 spherical nu-
clei (see Ref. [43]) while DD-PC1 is defined by the properties
of 64 deformed rare-earth nuclei and actinides (see Ref. [44]).
As a result of this difference in fitting protocols, the largest
�EB spreads appear in the vicinity of spherical shell closures
at N = 184 (with �EB reaching 4.0 MeV) and N = 258 (with
�EB reaching 5.5 MeV) [see Fig. 17(b)]. Indeed, the impact
of these shell closures on the equilibrium deformation differs
substantially in these two functionals [compare Figs. 5(a) and
5(b) and see Fig. 7(b)] and this is a reason for increased �EB

spreads.

C. Comparison with the results obtained
in nonrelativistic calculations

It is interesting to compare the global trends of the heights
of PFB in the (Z, N ) plane obtained in the RHB calculations
(see Fig. 15) with those obtained in earlier nonrelativistic cal-
culations for which maps similar to those presented in Fig. 15
are available. Note that similar to our calculations all these
nonrelativistic calculations have been performed only for axial
nuclear shapes.

Fission barriers obtained in Gogny DFT calculations with
the D1M* functional are presented in Fig. 12 of Ref. [23].
These calculations cover the region from the two-proton drip
line up to the nuclei with two-neutron separation energies of
S2n = 4.0 MeV. In these calculations, the fission barriers of
the N � 186 nuclei typically exceed 6 MeV and in a number
of these nuclei their heights are close to 12 MeV. Then fission
barriers in the N ≈ 190–210 nuclei are lower than 4 MeV
but they increase to approximately 8 MeV on approaching the
S2n = 4.0 MeV line. The differences in the predictions of the
heights of PFB obtained in the CDFT and Gogny DFT calcu-
lations (compare Fig. 15 with Fig. 12 of Ref. [23]) are in part
related to the differences in the predictions of ground-state
properties (compare Fig. 5 in the present paper with Fig. 5 in
Ref. [23]).

Our results for fission barriers (Fig. 15) could also be
compared with those obtained in nonrelativistic DFTs with
the BCPM and HFB14 functionals and FRLDM (see Fig. 7
in Ref. [18]). The calculations with HFB14 predict very low
fission barriers (with EB < 4 MeV) for the Z � 110 nuclei
with exceptionally low fission barriers (EB < 2 MeV) in many

nuclei located in the N ≈ 184–210 region (see middle panel
of Fig. 7 in Ref. [18] and Fig. 13 in Ref. [85]). The RHB calcu-
lations predict in general higher fission barriers (as compared
with HFB14 ones), but a similar island of low fission barriers
is seen near Z ≈ 108, N ≈ 192 in all functionals (see Fig. 15).
However, this island is narrower as compared with the HFB14
one. Fission barriers obtained with the BCPM functional
and FRLDM are somewhat higher than those obtained with
HFB14 (compare top and bottom panel with middle panel of
Fig. 7 in Ref. [18]). However, they share the same general
structure in the (Z, N ) plane.

Fission barriers calculated in the DFT framework with
Skyrme SLy6, SkI3, SV-min, and SV-bas functionals are pre-
sented in Fig. 5 of Ref. [21]. Unfortunately, the color map
used in this figure does not allow us to extract the details
in the most interesting energy range of 6–10 MeV.10 How-
ever, the region of low fission barriers (with EB < 4 MeV)
similar to that discussed above appears in all functionals for
N ≈ 190–210, Z ≈ 94–120. Fission barriers obtained in the
TF and ETFSI models for the (Z = 84–120, N = 140–236)
and (Z = 84–115, N = 140–216) regions of the nuclear chart
are presented in Fig. 2 of Ref. [15]. Both of these models
show the island of low fission barriers centered around Z ≈
110, N ≈ 192. In general, the ETFSI results are close to the
above-mentioned results obtained with Skyrme EDFs.

VI. CONCLUSIONS

A systematic investigation of the ground-state and fission
properties of even-even actinides and superheavy nuclei with
Z = 90–120 from the two-proton up to two-neutron drip lines
has been performed for the first time in the framework of co-
variant density-functional theory. Four state-of-the-art CEDFs
such as DD-PC1, DD-ME2, NL3*, and PC-PK1 are used in
this paper. They represent the major classes of the CDFT
models which differ by basic assumptions and fitting proto-
cols. This allows a proper assessment of systematic theoretical
uncertainties for physical observables of interest. Obtained
results provide a necessary theoretical input for the r-process
modeling in heavy nuclei and, in particular, for the study
of fission cycling. The main results can be summarized as
follows.

(1) Quadrupole deformations of calculated ground states
and related theoretical uncertainties have been inves-
tigated. It turns out that four employed functionals
predict very similar deformations for the majority of
the nuclei. However, large theoretical uncertainties
in quadrupole deformation exist for some nuclei but
they are well localized in the (Z, N ) plane. These un-
certainties are mostly due to the uncertainties in the
predictions of the underlying single-particle structure.
They are dominated by the uncertainties in the predic-
tions of both spherical shell closures at N = 184, N =

10A better color map for the fission barrier height distribution in the
(Z, N ) plane obtained with the Skyrme SV-min functional is used in
Fig. 4 of Ref. [22].
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258, and Z = 120 (for the N < 190 nuclei) and de-
formed single-particle structures leading to somewhat
different boundaries in the (Z, N ) plane between the
regions with oblate and prolate shapes. The differences
in nuclear matter properties of employed functionals
have only marginal impact on theoretical uncertainties
related to calculated quadrupole deformations.

(2) Theoretical uncertainties �E (Z, N ) in binding ener-
gies, emerging from poorly defined isovector proper-
ties of CEDFs, increase drastically when approaching
the neutron drip line and in some nuclei they reach
50 MeV. However, they reduce substantially [down
to a maximum value of �E (Z, N ) ≈ 21 MeV] when
the PC-PK1 functional is removed from consider-
ation. The two-neutron drip line of this functional
is also located at substantially higher neutron num-
bers as compared with the ones obtained with other
functionals. In addition, this functional is the major
source of theoretical uncertainties in two-neutron sep-
aration energies. Parametric correlation leading to an
overparametrization of the isoscalar channel is a pos-
sible reason for such a unique behavior of the CEDF
PC-PK1. Theoretical uncertainties in two-neutron sep-
aration energies reveal a clear importance of the
uncertainties in the N = 184 and 258 spherical shell
closures and in the location of the boundaries between
the regions of prolate and oblate shapes.

(3) α-decay properties, such as the Qα values and the
lifetimes τα , and related theoretical uncertainties have
been investigated employing four empirical formulas
and four CEDFs. While the predictive power of the
models is relatively high on the proton-rich side of the
nuclear chart, it starts to deteriorate on approaching
N = 184. It is especially low in the nuclei around
Z ≈ 108, N ≈ 198 (the region of the transition from
prolate to oblate ground states) and in very neutron-
rich nuclei located in the vicinity of the two-proton
drip line. However, the uncertainties in the latter region
are not very important since the α decay in these nuclei
is not expected to play any role in the r process because
of extremely large lifetimes.

(4) The distributions of the primary fission barriers in the
(Z, N ) plane have been investigated with four em-
ployed CEDFs. Globally, the highest fission barriers
are produced by the CEDF DD-ME2, and the lowest
ones are produced by the NL3* and PC-PK1 func-
tionals. The results obtained with DD-PC1 are located
between these two extremes but closer to the DD-ME2
ones. The presence of the band of nuclei with N ≈ 240
in the (Z, N ) plane with low fission barriers, obtained
in the calculations with the NL3* and PC-PK1 func-
tionals, could have a drastic impact on the creation of
superheavy elements beyond N ∼ 240 in the r process.
The nuclear flow during most of the neutron irradiation
step of the r process follows the neutron drip line and
produces in tens of ms the heaviest drip line nuclei.
However, this nuclear flow will most likely be termi-
nated at N ≈ 240 nuclei since fission will be much
faster than neutron capture. In contrast, the formation

of superheavy elements with N > 240 in the r process
is more likely in the calculations based on the DD-
ME2 and DD-PC1 functionals since the (Z, N ) region
near the neutron drip line is characterized by relatively
high fission barriers and the band of nuclei with low
fission barriers (similar to the one at N ≈ 240 in the
NL3* and PC-PK1 functionals) is absent.

(5) There are two major sources of theoretical uncertain-
ties in the predictions of the heights of PFBs, namely,
underlying single-particle structure mostly affecting
the ground-state properties and nuclear matter prop-
erties of employed CEDFs. For example, the increase
of theoretical uncertainties for the ground states of the
nuclei in the vicinity of the N = 184 and 258 spher-
ical shell closures leads to an increase of theoretical
uncertainties for their fission barriers. The functionals
with nuclear matter properties located in the vicinity of
empirical SET2b estimates [51] tend to produce higher
fission barriers as compared with the predictions of
the functionals the nuclear matter properties of which
are located outside the limits of the SET2b constraint
set. The problem of finding the best functional for the
description of fission barriers is further complicated
by the fact that the description of the ground-state
energies is to a degree decoupled from the description
of fission barriers; the latter depends on the relative
energies of the saddle and the ground state. As a conse-
quence, good description of the ground-state energies
does not guarantee good description of the fission bar-
riers and vice versa.

This is the first ever systematic attempt within the covariant
density-functional theory to provide both the input for the
r-process calculations which includes the ground state and
fission properties of actinides and superheavy nuclei and the
assessment of systematic theoretical uncertainties in the phys-
ical quantities of interest. As such it follows the ideology of
all previous nonrelativistic calculations of relevance for the
r process of heavy and superheavy nuclei, which depend also
on the fission processes, and assumes the axial symmetry of
nuclei. This is a reasonable approximation for the ground-state
properties of the majority of nuclei; the only exception is
transitional nuclei which are soft in γ deformation. However,
the restriction to axial symmetry leads to the fact that the
calculated inner and outer fission barriers represent the upper
limits and can be potentially lowered when the triaxiality is
taken into account. The r-process simulations with the data
obtained in this paper will allow us to limit the region of
the (Z, N ) plane which has an impact on this process. The
hope is that, for this limited set of nuclei, systematic refined
calculations taking into account the dynamical correlations
and the triaxiality in the calculations of the part of the (β2, γ )-
plane covering ground state, inner fission barrier, and second
minimum as well as triaxiality and octupole deformation in
the calculations of the part of the (β2, β3, γ )-plane covering
second minimum, outer fission barrier, and region beyond that
will be possible in the era of exascale computing.

The underlying single-particle structure and nuclear mat-
ter properties of CEDFs emerge as the major sources of
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theoretical uncertainties. However, they affect different phys-
ical observables in a different way. For example, theoretical
uncertainties in the ground-state quadrupole deformations
are defined mostly by the uncertainties in the underlying
single-particle structure. In contrast, both factors contribute
to theoretical uncertainties for fission barriers. The existence
of appreciable theoretical uncertainties in the ground-state
and fission properties calls for better covariant energy density
functionals. The reduction of parametric correlations between
the parameters of CEDFs is one possible way in that direc-
tion [55,58]. In addition, experimental studies of superheavy
elements in the vicinity of the Z = 120 and N = 184 lines,
planned at new facilities such as SHE factory [101], will hope-
fully provide critical data which will allow us to discriminate
the predictions of different models. Such information could
be used for a better constraint of the CEDFs and thus for the
reduction of substantial theoretical uncertainties in this region
of the nuclear chart which affect all physical observables
of interest and have a direct impact on the modeling of the
r process.
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APPENDIX A: NEGLECT OF DYNAMICAL
CORRELATIONS IN THE FISSION BARRIER

CALCULATIONS

Some nonrelativistic calculations, mentioned in the last
paragraph of Sec. II, take into account dynamical correlations,
but others do not. Dynamical correlations are not taken into
account in our calculations due to the following reasons.

First, the analysis performed in Ref. [86] in the CDFT-
based approach indicates that in most of the nuclei dynamical
correlations modify fission barrier heights by less than 1 MeV
but increase substantially computational time. The only ex-
ceptions are the nuclei with soft potential-energy surfaces the
ground-state energy minimum of which is located at spherical
shape. Note that the absolute majority of the nuclei under
consideration are deformed in the ground states (see Sec. III).
Thus, the errors introduced into the fission barrier heights
due to neglect of dynamical correlations are expected to be
smaller than the ones which are coming from the selection of
CEDFs (see Sec. V B). In addition, theoretical uncertainties
in fission barrier heights defined by their spreads [see Eq. (1)]
are not expected to be modified much by the neglect of dy-
namical correlations. This is because in the majority of the
cases the topology of the potential-energy surface of a given
nucleus weakly depends on the underlying functional (see,
for example, Figs. 7 and 8 in Ref. [47], Fig. 8 in Ref. [78],
and supplemental material to Ref. [86]). As a consequence,
dynamical correlations are expected to be comparable for

different functionals and they will at least partially cancel each
other in Eq. (1).

Second, the inner fission barriers are lowered when the
triaxiality is taken into account (see Ref. [62] and refer-
ences quoted therein) and the potential-energy surfaces of
the ground states in many superheavy nuclei are soft in γ

deformation (see Ref. [102] and Appendix B.) In the CDFT
calculations, the outer fission barriers can also be affected by
triaxial deformation11 via two mechanisms. In the first one,
the saddle of the reflection-symmetric triaxial fission path
becomes lower in energy than the saddle of the reflection-
asymmetric (octupole-deformed) axial fission path due to
underlying shell structure [78]. In the second mechanism,
the reflection-symmetric fission path and its saddle lose their
axial symmetry and attain some degree of triaxiality [64,69].
The investigations of the impact of dynamical correlations on
fission barriers in triaxial calculations are very rare and quite
limited in coverage. In nonrelativistic frameworks, only a lim-
ited set of actinides [104–107] and superheavy [108] nuclei
has been studied so far. The impact of dynamical correlations
on fission barriers of a restricted set of superheavy nuclei
along the Z = 120 isotopic and N = 174 and 184 isotonic
chains has been studied in the CDFT-based framework in
Ref. [86].

Third, dynamical calculations do not provide a unique
answer because of underlying assumptions and approxima-
tions [18,23,36,104,106,109,110]. For example, there exist
substantial differences between the predictions based on
Adiabatic Time Dependent HFB (ATDHFB) and Generator
Coordinate Method (GCM) [based on Gaussian overlap ap-
proximation (GOA)] schemes [18,23,36,109]. The differences
between spontaneous fission half-lives τSF obtained in these
two schemes could reach many orders of magnitude and
increase with the decrease of the fissility-related parameter
Z2/A (which is equivalent to the increase of neutron num-
ber within a given isotopic chain; see Fig. 2 in Ref. [23]).
Large differences between experimental and calculated τSF

also exist; for example, in the U isotopes these differences
reach almost 20 orders of magnitudes when ATDHFB values
for τSF are used [23]. As illustrated in Refs. [104,106] on the
example of the 250,264Fm and 240Pu nuclei, the inclusion of
pairing fluctuations within a least-action approach improves
the agreement between the predicted τSF values and experi-
ment. However, it remains to be seen whether that is a general
conclusion applicable to all nuclei. In addition, such calcula-
tions are prohibitively expensive (in part, because of breaking
of axial symmetry) and thus are not scalable to global
calculations.

In addition, the treatment of the ground-state energy E0

(which is also tunneling energy for fission) relies on simplified
approximations in the majority of the publications (see dis-
cussion in Ref. [86]). In microscopic calculations, tunneling
energy is associated with the energy of the collective ground
state defined either in GCM [111] or in the five-dimensional

11The important role of triaxiality in the description of outer fission
barriers of actinides has also been discussed in the framework of the
microscopic plus macroscopic approach in Ref. [103].
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collective Hamiltonian [86]. The energy of the collective
ground state depends on the softness (both in quadrupole
deformation β2 and in triaxial deformation γ ) of the collective
energy surface in the vicinity of the ground-state minimum.
It differs from approximate values substantially [86]; this
could modify calculated τSF by several orders of magnitude
[86,108]. These extremely large theoretical uncertainties in
τSF, coming from the selection of the method (ATDHFB
versus GCM+GOA) and the treatment of the ground-state
energy, are the reasons why we have not attempted to calculate
spontaneous fission half-lives in the present paper.

Fourth, there are some indications that the role of triaxiality
can be reduced in dynamical calculations for some nuclei. For
example, it was shown in Ref. [104] based on least-action
calculations with Skyrme EDF SkM* that pairing fluctuations
act in the direction of restoration of axial symmetry along the
fission path in the 240Pu nucleus. This nucleus is characterized
by a relatively modest decrease (approximately 2 MeV) of
inner fission barrier height by triaxiality in static calculations.
Similar results have also been obtained for 250,264Fm with
similar formalism based on DD-PC1 CEDF in Ref. [106].
The calculations of Refs. [107,108] based on the least-action
principle also indicate that the axial symmetry of the fission
pathway is restored in many nuclei; they are based on the DFT
approach with the Gogny D1S functional [107] and on the
macroscopic plus microscopic method [108].

However, not in all nuclei is the effect of triaxiality
eliminated by the least-action principle. For example, the
least-action fission pathway in 264Fm is still characterized
by triaxiality (although it is somewhat reduced by enhanced
pairing as compared with the static fission path) in the cal-
culations based on the Skyrme SkM* functional [104]. Note
that in this nucleus the triaxiality has a large impact (slightly
more than 4 MeV) on the height of the inner fission barrier in
static calculations. The calculations of Ref. [107] performed
with Gogny D1S functionals also indicate that in some nuclei
the least-action fission pathway goes through triaxial saddles.
More systematic calculations12 based on the macroscopic plus
microscopic method show that the impact of the triaxiality on
the least-action fission pathway (and thus on the spontaneous
fission half-life) shows up in some nuclei with Z = 114 and
becomes much more pronounced in the Z � 120 nuclei [108].
Note that the tendency towards restoration of axial symmetry
of the fission pathway in the least-action calculations may
somewhat be underestimated in Refs. [107,108] because of
the neglect of pairing fluctuations.

The analysis of these publications suggests two possible
situations in which the least-action fission path will most
likely be characterized by triaxiality. In the first one, the de-
crease of the fission barrier by triaxiality in static calculations
is substantial, being on the order of 3–4 MeV [104,108]. In
the second one, the ground state is oblate (or possibly soft
in the oblate-prolate direction [86]) so that the fission path

12These calculations are simplified as compared with quoted DFT
calculations since they use the fixed single-particle spectrum for
all nuclei and neglect the deformations of higher order such as β6

and β8.

across the γ plane is shorter than the one along the γ = 0◦
line [108]. As discussed in Sec. III and Appendix B only
a limited number of nuclei satisfy such conditions. Thus,
the restriction to axial symmetry should be considered as a
reasonable first approximation. However, one should keep in
mind that the values obtained for fission barriers represent
upper limits since their possible lowering due to triaxiality is
neglected.

APPENDIX B: POSSIBLE IMPACT OF TRIAXIALITY
ON INNER FISSION BARRIERS

The restriction to axial symmetry is one of the approxi-
mations used in the present paper which is a consequence
of the global character of the study (see detailed discussion
presented in the end of Sec. II and in Appendix A). In order to
better understand for which nuclei this approximation may be
violated (even in least-action calculations with pairing fluctua-
tions included such as those presented in Refs. [104,106]) we
consider the examples of potential-energy surfaces obtained
in triaxial RHB calculations with the DD-PC1 functional.
These PESs calculated for the Sg (Z = 106), Ds (Z = 110), Fl
(Z = 114), and Og (Z = 118) isotopes with neutron numbers
N = 192, 202, 212, and 222 are presented in Fig. 18. They
represent the extension of the calculations, executed in a more
limited deformation space, the results of which are discussed
in Sec. XI of Ref. [66]. The summary of the heights EB

triax
of triaxial inner fission barriers and the decreases of the fis-
sion barrier heights due to triaxiality �Egain are presented in
Fig. 21 and Table II of Ref. [66]. Note that these superheavy
nuclei are selected in such a way that they cover the part of the
nuclear chart characterized by both oblate and prolate ground
states [see Fig. 5(a)].

The review of existing literature presented in Appendix A
suggests two possible scenarios in which the least-action
fission path will most likely be characterized by triaxial-
ity. In the first one, the decrease of the fission barrier by
triaxiality in static calculations is substantial, being on the
order of 3–4 MeV [104,108]. Such decreases are observed
in 328Sg (�Egain = 4.04 MeV), 310Og (�Egain = 3.42 MeV),
and 320Og (�Egain = 4.93 MeV) [see Figs. 18(d), 18(m), and
18(n) and Table II in Ref. [66]). In the second scenario, the
ground state is oblate (or possibly soft in the oblate-prolate
direction [86]) so that the fission path across the γ plane
is shorter than the one along the γ = 0◦ line [108]. This
condition is satisfied only in the 306Fl [see Fig. 18(i)] and
310,320Og [see Figs. 18(m) and 18(n)] nuclei. Based on general
features discussed in Refs. [104,106], the analysis of PESs of
remaining nuclei [see Figs. 18(a)–18(c), 18(e)–18(h), 18(j)–
18(l), 18(o), and 18(p)] suggests that the least-action fission
pathway will be axial in these nuclei when pairing fluctuations
are taken into account.

Whether one or another scenario takes place depends on
the underlying shell structure (both at the ground state and
saddle) defining the topology of potential-energy surfaces in
the (β2, γ ) plane. Figure 18 shows that the N = 192 isotones
are extremely soft in the γ plane with clear tendency for the
formation of the near-oblate triaxial ground-state minimum
in the Fl and Og nuclei. However, static fission paths from
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FIG. 18. Potential-energy surfaces of the Sg (Z = 106), Ds (Z = 110), Fl (Z = 114), and Og (Z = 118) isotopes with neutron numbers
N = 192, 202, 212, and 222 obtained in the triaxial RHB calculations with the DD-PC1 functional. Neutron number is increasing on going
from left to right. The energy difference between two neighboring equipotential lines is equal to 0.5 MeV. The ground-state minima and saddle
points are shown by white circles and red solid squares, respectively.

these minima are characterized by low fission barriers so these
nuclei are expected to be unstable. A similar (but slightly less
pronounced) situation is also seen for the N = 202 isotones.

The increase of neutron number to N = 212 and 222 leads to
a better localization of the ground-state minimum at prolate
shape and to an increase of fission barrier heights.
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