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Temperature evolution of the nuclear shell structure and the dynamical nucleon effective mass
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We study the fermionic Matsubara Green functions in medium-mass nuclei at finite temperature. The single-
fermion Dyson equation with the dynamical kernel of the particle-vibration-coupling (PVC) origin is formulated
and solved in the basis of Dirac spinors, which minimize the grand canonical potential with the meson-nucleon
covariant energy density functional. The PVC correlations beyond mean field are taken into account in the
leading approximation for the energy-dependent self-energy, and the full solution of the finite-temperature Dyson
equation is obtained for the fermionic propagators. Within this approach, we investigate the fragmentation of the
single-particle states and its evolution with temperature for the nuclear systems 56,68Ni and 56Fe relevant for the
core-collapse supernova. The energy-dependent, or dynamical, nucleon effective mass is extracted from the PVC
self-energy at various temperatures.
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I. INTRODUCTION

The problem of predictive description of strongly corre-
lated many-body systems remains at the frontiers of science
for decades. Although its solutions have been lately boosted
by the progress in numerical computation, there is still a
need for conceptual and formal advancements in the related
areas of physics. While finding exact solutions is not possible
in principle, novel ideas to approach these solutions without
referring to the perturbation theory are actively discussed.

One of the systematic ways is offered by the equation of
motion (EOM) framework. The EOMs can be straightfor-
wardly generated for various quantum mechanical quantities,
for instance, the correlation functions of field operators. The
simplest correlation functions are of the propagator type,
which are related to the spectral characteristics of complex
systems. Another advantage of the EOM framework is its
general character and the possibility to accommodate vari-
ous truncation schemes. For example, the simplest truncation
on one-body level leads to the Hartree-Fock, random phase
approximation (RPA), second RPA (SRPA), the Gorkov the-
ory of the superfluidity, and the Bardeen-Cooper-Schrieffer
(BCS) model. Explicit inclusion of higher-rank propagators
leads to more complicated sets of coupled equations for prop-
agators of different ranks. A considerable accuracy can be
achieved by cluster expansions of the dynamical kernels of
the fermionic EOMs in terms of the two-time many-fermion
correlation functions corresponding to the relevant degrees
of freedom, as it is discussed, in particular, in Refs. [1,2].
An attractive feature of the formally exact EOMs for these
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correlation functions, which are known in condensed matter
and quantum chemistry [2–5], is that they have both the static
and dynamical kernels derived consistently from the same
underlying bare interaction. In nuclear physics, however, the
implementations of the analogous methods are still mainly
based on phenomenological interactions.

The formal foundation of such methods typically postulate
phenomenological Hamiltonians, which imply the existence
of the fermionic quasiparticles and phonons of bosonic nature.
The phonon-exchange interaction between the quasiparticles
is added to the pure effective residual interaction between
fermions, for instance, in the nuclear field theory (NFT)
[6–10]. Another class of models is based on the phonon
degrees of freedom [11–14]. The use of effective phenomeno-
logical interactions allows for simpler calculation schemes,
however, more accurate and sophisticated versions of the
nuclear field theory (NFT) were successfully implemented
[15–24]. Analogous models operating with mostly the phonon
degrees of freedom [11–14], were extended to very complex
correlations, and there have been a few recent attempts at
using the bare nucleon-nucleon interaction [25–28].

In this work we present a finite-temperature extension of
the many-body model for the nuclear shell structure [29,30],
which combines the relativistic quantum hadrodynamics
(QHD) [31–34] and the quantum field theory techniques
based on the EOM [23,35–37]. We focus on the single-
particle EOM, which is represented by the Dyson equation,
and elaborate on its dynamical kernel. As it follows from
Refs. [23,36], the leading contribution to the dynamical ker-
nel, also called self-energy, in finite nuclei can be associated
with the particle-vibration coupling (PVC). Formally similar
to the phenomenological PVC proposed quite early by Bohr
and Mottelson [6,7] and that of the NFT, it is now understood
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in terms of the EOM derived from ab initio nucleon-nucleon
potentials. Although in this work we still keep the phe-
nomenological effective interaction adjusted in the framework
of the covariant density functional theory (CDFT) [34] for the
static part of the EOM kernel and PVC, it is supposed to pave
the way to a fully ab initio description in the near future.

The approach is designed to clarify the nuclear phenom-
ena, which may occur in astrophysical environments, such as
neutron stars and supernovae. In such environments finite tem-
perature becomes an essential factor, which modifies the rates
of various nuclear reactions, from the radiative neutron cap-
ture to the weak processes [38,39]. It was pointed out in earlier
works, such as Refs. [40,41], that the nuclear single-particle
states underly the mechanisms of those processes and impact
the statistical properties, such as the level density, entropy, and
specific heat. At the same time, the single-particle states are
modified considerably by the PVC mechanism, which results
in an enhancement of the effective mass and of the level
density around the Fermi surface. The results presented in this
work allow for a detailed discussion of the latter phenomenon
and its evolution with temperature.

II. DYSON EQUATION FOR THE FERMIONIC
PROPAGATOR AT FINITE TEMPERATURE

We define the atomic nucleus as a many-body quantum
system, which consists of protons and neutrons, commonly
called nucleons, in the regimes associated with the energies
below the pion mass. Nucleons are coupled through the strong
interaction represented by the meson exchange at such low
energies. The Coulomb interaction acts between the positively
charged protons. In this work we will use the concept of effec-
tive mesons, whose masses and coupling vertices are adjusted
to reproduce the nuclear masses and radii on the Hartree level.
While the latter constitutes the famous Walecka model for
nuclear QHD, it will be used, as in the preceding series of
works, only as a starting point and a convenient basis for the
description of nucleonic in-medium correlations far beyond
the mean field.

One of the most convenient ways to quantitatively ap-
proach these correlations is to directly calculate certain
correlation functions, namely the propagators (also called
Green functions). We will employ the advantage of this for-
malism as it gives a direct access to the excitation spectra
and ground-state properties of the nuclear system. Here we
are interested in nuclear systems, which are in thermal equi-
librium with the surroundings and can thus be assigned the
temperature. The temperature, or Matsubara, Green function
of a fermion is defined as [42–44]

G(1, 1′) ≡ Gk1k1′ (τ1 − τ1′ ) = −〈Tτψ (1)ψ̄ (1′)〉, (1)

with the help of the chronological ordering operator Tτ , which
acts on the fermionic field operators in the Wick-rotated pic-
ture:

ψ (1) ≡ ψk1 (τ1) = eHτ1ψk1 e−Hτ1 ,

ψ̄ (1) ≡ ψ†
k1

(τ1) = eHτ1ψ†
k1

e−Hτ1 , (2)

where H = H − μN with H being the many-body Hamilto-
nian, μ the chemical potential, and N the particle number
operator. The subscript k1 stands for the full set of the single-
particle quantum numbers in a given representation and the
imaginary time variables τ are related to the real times t as
τ = it . The fermionic fields satisfy the usual anticommutation
relations, and the angular brackets in Eq. (1) stand for the
thermal average [43,44].

If the many-body Hamiltonian H is confined by the
one-body part, i.e., contains only the free-motion and the
mean-field contributions, the single-fermion Matsubara Green
function can be easily calculated and reads

G̃(2, 1) =
∑

σ=±1

G̃σ (2, 1),

G̃σ (2, 1) = −σδk2k1 n(−σ (εk1 − μ), T )e−(εk1 −μ)τ21θ (στ21),

(3)

with τ21 = τ2 − τ1, in the basis {ki} of the single-fermion
states. In Eq. (3) εk1 are the eigenvalues of the single-particle
Hamiltonian and n(ε, T ) stands for the Fermi-Dirac distribu-
tion,

n(ε, T ) = 1

exp(ε/T ) + 1
, (4)

at the temperature T . The spectral representation of the
thermal mean-field Green function is calculated with the op-
eration,

G̃k2k1 (ε�) =
∫ 1/T

0
dτeiε�τ G̃k2k1 (τ ), (5)

which leads to

G̃k2k1 (ε�) = δk2k1 G̃k1 (ε�), G̃k1 (ε�) = 1

iε� − εk1 + μ
, (6)

defined at the discrete Matsubara frequencies ε�,

ε� = (2� + 1)πT, (7)

where the �’s are integer. The “̃ ” sign in Eqs. (3)–(6)
indicates the mean-field character of the respective Green
function.

In this work we are interested in nontrivial correlations
beyond mean field which occur from the residual interaction,
i.e., in the presence of two-body and higher-rank terms in
the many-body Hamiltonian. In this case, the single-fermion
propagator G obeys the Dyson equation,

Gk1k2 (ε�) = G0
k1k2

(ε�) +
∑
k3k4

G0
k1k3

(ε�)
k3k4 (ε�)Gk4k2 (ε�), (8)

where G0 is the free propagator and 
 is the self-energy,
or the mass operator. As it can be shown within the equa-
tion of motion (EOM) framework, the exact self-energy is
decomposed into the energy-independent (static) 
̃ and the
energy-dependent (dynamical) 
e parts:


k3k4 (ε�) = 
̃k3k4 + 
e
k3k4

(ε�), (9)

that is also valid at finite temperature. In “ab initio” cal-
culations based on the Hamiltonians with bare interactions

054321-2



TEMPERATURE EVOLUTION OF THE NUCLEAR SHELL … PHYSICAL REVIEW C 102, 054321 (2020)

the static part of the self-energy is given by the contrac-
tion of the matrix element of the bare interaction with
the exact one-fermion density, while its dynamical part is
represented by the three-fermion correlated propagator con-
tracted with two matrix elements of the bare interaction
[23,36,45].

Using Eq. (9), it is convenient to eliminate the unperturbed
propagator G0 from Eq. (8), and work with the thermal mean-
field propagator G̃ which satisfies the equation:

G̃k1k2 (ε�) = G0
k1k2

(ε�) +
∑
k3k4

G0
k1k3

(ε�)
̃k3k4 G̃k4k2 (ε�). (10)

Then, the Dyson equation for the full propagator takes the
form:

Gk1k2 (ε�) = G̃k1k2 (ε�) +
∑
k3k4

G̃k1k3 (ε�)
e
k3k4

(ε�)Gk4k2 (ε�). (11)

The energy-dependent part of the mass operator 
e de-
scribes the coupling between single fermions and in-medium
emergent degrees of freedom. In this work, we employ the
particle-vibration coupling model, which approximates the
exact energy-dependent part of the self-energy 
e by a cluster
expansion truncated at the two-body level [23]. When retain-
ing only the coupling to normal phonons, the analytical form
of this self-energy, in the leading approximation, reads


e
k1k2

(ε�) = −T
∑
k3,m

∑
�′

∑
σ=±1

G̃k3 (ε�′ )
σgm(σ )

k1k3
gm(σ )∗

k2k3

iε� − iε�′ − σωm
,

(12)

where gm are the phonon vertices and ωm their frequencies,
which can be found from the EOM for the two-fermion corre-
lation functions. The phonon vertices are determined via

gm
k1k2

=
∑
k3k4

Ũk1k4,k2k3ρ
m
k3k4

, (13)

gm(σ )
k1k2

= δσ,+1gm
k1k2

+ δσ,−1gm∗
k2k1

, (14)

where ρm
k3k4

are the transition densities of the phonons and

Ũk1k4,k2k3 are the matrix elements of the nucleon-nucleon inter-
action. In principle, the relationship (13) is model independent
and, ideally, the transition densities are the exact ones, while
the interaction Ũ is the bare interaction. However, numerous
models employing effective interactions and the random phase
approximation based on these interactions for the computation
of the phonon vertices and frequencies typically provide quite
realistic approaches to the dynamical self-energy. In this work,
we use the effective interaction of the covariant energy density
functional (CEDF) [33,34] with the NL3 parametrization [46]
and the concept of the “no-sea” relativistic random phase
approximation (RRPA) [47] adopted to finite temperature in
our previous developments [38,48,49].

The summation over �′ in Eq. (12) can be transformed
into a contour integral by the standard technique [44]. Af-
ter the analytical continuation to complex energies, we then
obtain the final expression for the mass operator 
e of the

form:


e
k1k2

(ε) =
∑
k3,m

{
gm

k1k3
gm∗

k2k3

N (ωm, T ) + 1 − n(εk3 − μ, T )

ε − εk3 + μ − ωm + iδ

+ gm∗
k3k1

gm
k3k2

n(εk3 − μ, T ) + N (ωm, T )

ε − εk3 + μ + ωm − iδ

}
, (15)

where

N (ωm, T ) = 1

exp(ωm/T ) − 1
(16)

are the occupation numbers of phonons with the frequencies
ωm. It is easy to see that in the limit T → 0 Eq. (15) recovers
the zero-temperature result for the energy-dependent mass
operator in the PVC model:


e
k1,k2

(ε) =
∑
k3, m

εk3 >εF

gm
k1k3

gm∗
k2k3

ε − εk3 + εF − ωm + iδ

+
∑
k3, m

εk3�εF

gm∗
k3k1

gm
k3k2

ε − εk3 + εF + ωm − iδ
, δ → + 0,

(17)

where εF is the Fermi energy, i.e., the energy of the last
occupied single-particle state. Indeed, in the limit T → 0 the
phonon occupation number N (ωm, T ) → 0, and the fermion
occupation number n(εk3 − μ, T ) takes the value 1 (0) for
εk3 � εF (εk3 > εF ).

III. NUMERICAL SOLUTION OF THE
FINITE-TEMPERATURE DYSON EQUATION:

RESULTS AND DISCUSSION

We have selected the atomic nuclei 56,68Ni and 56Fe to
illustrate the performance of the developed approach. This
choice was determined, in particular, by the astrophysical
relevance of these nuclear systems. Indeed, nickel and iron
isotopes with the mass number A = 56 play a very important
role in current understanding of stellar evolution. For instance,
they are associated with the final stage of formation of massive
evolved stars before core collapse. Characteristics of all the
three nuclei are important ingredients for understanding pre-
supernova and neutron stars. Also, comparison between 56Ni
and 68Ni can be informative for evaluating the range of the
relevant characteristics within a single isotopic chain.

The calculation scheme consists of the following steps.
First, we solve the closed set of the relativistic mean-
field (RMF) equations with the NL3 parametrization [46]
of the nonlinear sigma model with the thermal fermionic
occupation numbers (4). This leads to a set of temperature-
dependent single-particle Dirac spinors and the corresponding
single-nucleon energies, which form the basis for subsequent
calculations. Second, the finite-temperature relativistic ran-
dom phase approximation (FT-RRPA) equations are solved
to obtain the phonon vertices gm and their frequencies ωm.
The set of the obtained FT-RRPA phonons, together with
the RMF single-nucleon basis, forms the pp ⊗ phonon and
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ph ⊗ phonon configurations for the particle-phonon coupling
self-energy 
e(ε). Third, Eq. (11) is solved in the truncated
configuration space, as described in [29] for the T = 0 case,
in the diagonal approximation, i.e., 
e

k1k2
(ε) = δk1k2


e
k1

(ε).
The particle-hole basis for the FT-RRPA calculations of the

phonons was limited by the particle-hole (ph) configurations
with the energies εph � 100 MeV and the antiparticle-hole
(αh) ones with εαh � −1800 MeV with respect to the
positive-energy continuum. Test calculations within the com-
plete RMF basis showed that the excitation spectra converge
reasonably well with this truncation. The set of phonons
included vibrations with the quantum numbers of spin and
parity Jπ = 2+, 3−, 4+, 5−, 6+ below the energy cutoff,
which amounts to 20 MeV for the considered nuclei. This
cutoff is justified by our previous calculations. A truncation
of the phonon space was applied according to the values
of the reduced transition probabilities of the corresponding
electromagnetic transitions: We included the modes with the
reduced transition probabilities B(EL) equal or more than
5% of the maximal one (for each Jπ ). The same truncation
criteria are applied to the phonon energy, Jπ and the reduced
transition probability for all temperature regimes to make
a fair comparison of the calculated single-particle strength
distributions at different temperatures. As in our previous
calculations [38,48,49], at high temperatures we see the ap-
pearance of many additional phonon modes as a consequence
of the significant thermal unblocking that may cause slower
saturation of the results with respect to the B(EL) cutoff. This
happened typically at the temperatures of 5–6 MeV, which
we do not consider here because of their little relevance to
the astrophysical applications. Another truncation was made
on the single-particle intermediate states k3 in the summa-
tion of Eq. (15): Only the states with the energy differences
|εk3 − εk1 | � 50 MeV were included in the summation.

We investigated the neutron and proton states in the ap-
proximately 20-MeV energy window around the respective
Fermi energies of 56,68Ni and 56Fe nuclei. While 56Ni is a
doubly magic, or closed-shell, nucleus, the proton subsys-
tem of 68Ni is of the closed-shell nature and the neutron
subsystem is open shell. The 56Fe is, in turn, an open-shell
nucleus for both neutrons and protons. Thus, the super-
fluid character of the respective subsystems, because of the
presence of the pairing correlations, can importantly affect
the single-particle spectra. Within our formalism, this phe-
nomenon was discussed in Refs. [30,50]. On the mean-field
level, the Bardeen-Cooper-Schrieffer (BCS) or the Bogoli-
ubov’s approximations typically give a reasonable description
of pairing correlations, which manifest themselves through
considerable redistributions of the single-particle states in the
vicinity of the Fermi energy and their fractional occupan-
cies in the superfluid subsystems, along with some minor
rearrangements of the single-particle states in their nonsuper-
fluid counterparts. In the calculations beyond the mean field,
such as RMF + PVC, pairing correlations may have stronger
impacts. The main underlying reason for these impacts is
that taking pairing correlations into account leads to the ap-
pearance of the phonon modes, first of all, the quadrupole
modes, at significantly lower energies. Such phonons play the
major role in the dynamical self-energy. As it was shown in

FIG. 1. Single-particle states in 68Ni at zero and finite tempera-
tures calculated in the RMF approximation.

Ref. [30], the modification of the phonon spectrum from the
pairing correlations further affects the single-particle struc-
ture, as compared to the mean-field approach. The PVC
fragmentation effects become stronger in general and, in par-
ticular, the shell structure of the nonsuperfluid counterparts
are modified considerably toward much higher single-particle
level densities.

As the superfluidity in the Bogoliubov’s or BCS sense
vanishes at the critical temperature Tc, which has a well-
established relation to the pairing gap �p at zero temperature,
Tc ≈ 0.6�p(T = 0), the role of pairing correlations dimin-
ishes quickly with the temperature growth. For the nuclei
considered in this work, whose pairing gaps were adjusted to
the odd-even mass differences using the three-point formula
and the data on nuclear binding energies from Ref. [51],
the values of pairing gaps deduced by this procedure are
�(n)

p = 1.6 MeV for neutrons in 68Ni, and �(n)
p = 1.8 MeV

and �
(p)
p = 2.1 MeV for neutrons and protons in 56Fe, respec-

tively. For these cases the critical temperatures have the values
in the 0 � T � 1.3 MeV interval. Therefore, in the results
presented below on 1-MeV temperature grid pairing correla-
tions in superfluid systems are taken into account for T = 0
and neglected for T � 1 MeV. Accordingly, a transition from
superfluid to nonsuperfluid phases between T = 0 and T =
1 MeV takes place in 68Ni. In 56Fe, where the neutron pairing
gap �(n)

p vanishes at approximately 1.1 MeV and the proton

pairing gap �
(p)
p at approximately 1.3 MeV, we assume that

the role of pairing correlations is negligible already at T =
1 MeV, too. The T = 0 calculations with pairing correlations
are performed within the superfluid RMF + PVC approach
developed originally in Ref. [30]. Thus, in the following
by single-particle states we mean those of the Bogoliubov’s
quasiparticles, which differ from the canonical single particles
below the critical temperature and coincide with the latter
ones above the critical temperature.

The obtained single-particle shell structure for 68Ni is
shown in Figs. 1 and 2. Figure 1 displays the states computed
within the thermal RMF approach, while Fig. 2 presents the
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FIG. 2. The dominant fragments of the single-particle states in
68Ni at zero and finite temperatures calculated in the RMF + PVC
approximation.

dominant states, which are the outcome of calculations within
the finite-temperature particle-vibration coupling (RMF +
PVC). It is quite common in the literature to assume that
the nuclear mean field remains almost unchanged with tem-
perature in a relatively broad temperature range 0 � T �
3 MeV, and this assumption is widely used in the finite-
temperature calculations of the nuclear shell structure and
response [40,52,53]. However, as one can see from Fig. 1,
the mean-field states can develop quite sizably within these
temperatures. In addition, the chemical potential has some
temperature dependence. These effects had, for instance, a
notable influence on the spin-isospin response, which was
investigated within our framework in Ref. [39]. While in the
latter study this effect mixed with the thermal unblocking,
in the present work the temperature evolution of the nuclear
mean-field characteristics can be tracked explicitly. In addi-
tion to the superfluid phase transition at about T = 1 MeV, the
overall trend in the neutron subsystem is the relatively minor
densifying of the spectrum with the temperature increase,
while the proton mean-field states move up nearly uniformly
by 1–2 MeV in the 0 � T � 4 MeV temperature interval.

To demonstrate the smoothness of the superfluid phase
transition, we have implemented a calculation scheme, which
solves the thermal RMF equations together with the thermal
BCS equation in a self-consistent cycle. Such calculations
allow for establishing the pairing gap values together with the
energies of the single-quasiparticle states at various tempera-
tures. The critical temperature is identified as the temperature,
at which the pairing gap vanishes. The results for the neutron
subsystem of 68Ni on the temperature grid T = 0.0, 0.2, 0,4,
0.6, 0.8, 1.0, 1.1, and 1.2 are presented in Fig. 3.

The performed self-consistent microscopic calculations
show that the temperature dependence of the neutron pairing
gap in 68Ni displayed in the top panel of Fig. 3 follows
the well-known trend with the coefficient ≈ 0.7 between
the pairing gap value at T = 0 and the critical tempera-
ture, while the phase transition occurs between T = 1.1 MeV
and T = 1.2 MeV. The quasiparticle energies Ek defined in

FIG. 3. Temperature evolution of the neutron pairing gap (top)
and the neutron single-quasiparticle states (bottom) around the Fermi
surface in 68Ni. The dashed line indicates the chemical potential.

the Bogoluibov’s theory as Ek = μ ±
√

(εk − μ)2 + �2
k and

presented in the bottom panel of Fig. 3 follow the same
trend in a sense that, while the pure mean-field single-
particle energies εk vary relatively little within 0 � T � Tc,
the change of the quasiparticle energies Ek is mostly related
to the change of the pairing gap. The maximal changes occur
for the 2p1/2 (δE2p1/2 = 0.84 MeV) and the 1g9/2 (δE1g9/2 =
0.49 MeV) states, which are the closest ones to the Fermi
surface, and the values of the quasiparticle energies at T =
Tc practically match the values of the mean-field energies
obtained at the same temperature without pairing. This fact,
together with the closeness of the microscopically determined
critical temperature to the empirical one, justifies our as-
sumption that at temperatures higher than ≈1 MeV the BCS
pairing correlations can be neglected. As the standard BCS
theory of pairing correlations is very approximate and should
be, in principle, replaced by a more accurate approach (see
below), in this work we also neglect a small difference of
≈100−200 keV between the microscopically obtained critical
temperature and the phenomenological one.

We note that such behavior of the pairing gap is specific
for the BCS theory, which is a simplified approximation to
superfluidity in Fermi systems. As it was discussed, for in-
stance, in recent Ref. [54], a more general equation of motion
implies that higher-rank correlations should be included in the
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integral part of the pairing gap equation. Moreover, even the
particle number conserving BCS manifests a smooth phase
transition [55], at variance with the standard one considered in
the present work, where we focus mainly on the PVC effects.
More sophisticated approaches to pairing in the PVC context
will be explored quantitatively elsewhere.

The dominant states shown in Fig. 2 are the states obtained
as a full solution of Eq. (11) with the maximal spectroscopic
factors for each spherical single-particle quantum number set.
As it is known from numerous studies of the PVC effects
on the nuclear single-particle states, including the relativistic
ones [29,30,50,56], the typical outcome of such studies is the
fragmentation of the single-particle states as compared to the
mean-field ones. However, the fragmentation from the PVC
mechanism is of a selective character. In general, if the system
has closed shells or subshells, like in the case of 68Ni, for each
state close to the Fermi energy there is one fragment with the
spectroscopic factor of 0.8–0.9, while the rest of the fragments
are characterized by very little, mostly less than one percent
spectroscopic factors. The fragment with the largest spectro-
scopic factor is commonly called dominant, and the states
with this fragmentation pattern are called good single-particle
states. Typically, for such states the energy of the dominant
fragment is somewhat close to the energy of the original
mean-field state. In other words, in nonsuperfluid systems the
single-particle states in the vicinity of the Fermi energy are not
very much affected by the PVC. In contrast, the states far away
from the Fermi energy are strongly fragmented. For many
states it is still possible to identify the dominant fragment,
although with a considerably quenched spectroscopic factor,
and this fragment can be quite far from the original mean-field
state. The algebraic reasons behind this qualitatively outlined
picture are discussed, for instance, in Ref. [29].

For the second type of states, i.e., the states remote from
the Fermi energy, often two or more fragments exhibit compa-
rable spectroscopic factors. These are the cases, for instance,
for the 1f7/2 state in the neutron subsystem and 2s1/2 state in
the proton subsystem, which show 0.28/0.17 and 0.39/0.37
shares of the spectroscopic factors between two dominant
fragments, respectively, at T = 0. Our calculations reveal that
the general pattern described above persists with the tempera-
ture increase within the interval 0 � T � 4 MeV: Although
the entire spectrum exhibits quite a remarkable evolution,
the states in the vicinity of the Fermi energy remain good
single-particle states, while those away from the Fermi energy
remain strongly fragmented. In particular, as one can observe
from Fig. 2, the states ν1f7/2, ν1g7/2, π2s1/2, and π1g9/2 show
splitting into two major fragments with comparable strengths.
The gaps between these fragments as well as the ratios of their
spectroscopic factors change with the temperature increase.

To illustrate and better understand the temperature evo-
lution of the fragmentation mechanism, we display four
examples of strongly fragmented single-particle states in 68Ni
at the temperatures of T = 0, 1, 2, and 3 MeV in Figs. 4–
7. The neutron state 1f7/2 in 68Ni is shown in Fig. 4. At
T = 0 it consists predominantly of the two fragments approx-
imately 6 MeV apart with the spectroscopic factors of 0.28
and 0.17 located on the opposite sides of the uncorrelated, or
mean-field, hole state (below the Fermi energy). The phase

FIG. 4. Temperature evolution of the neutron 1f7/2 state in 68Ni.
Blue bars represent the spectral strength distributions (spectro-
scopic factors) of the fragmented state calculated within the thermal
“RMF + PVC” approach. The red bar corresponds to the pure RMF
state, and the dashed green line indicates the chemical potential.

transition, which occurs around T = 1 MeV, together with the
beginning thermal unblocking, slightly changes the strength
distribution preserving, however, the general two-peak struc-
ture. With further temperature increase, the two-peak structure
persists, while each of the two peaks undergo fragmentation.
At temperatures T = 3 MeV and T = 4 MeV we find that the
lower-energy major fragment dominates, although its spec-
troscopic factor continues to quench. The evolution of the
state 3d3/2 in the neutron subsystem of 68Ni is illustrated
in Fig. 5. This is the particle state (well above the Fermi
energy), which appears at T = 0 as a structure with a single
dominant peak and where at T = 1 another major fragment
appears to compete with the share of 0.21/0.39 between the
spectroscopic factors. In contrast to the case of the neutron
1f7/2 state, these fragments are only about 1 MeV apart in
energy and somewhat close to the mean-field 3d3/2 state, from
which they originate. With the temperature increase one of the

FIG. 5. Same as in Fig. 4, but for the neutron 3d3/2 state in 68Ni.
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FIG. 6. Same as in Fig. 4, but for the proton 1d3/2 state in 68Ni.

two major fragments undergoes further fragmentation, and at
T = 3 MeV the other fragment, which is closer to the original
mean-field 3d3/2 state, becomes absolutely dominant.

The examples from the proton subsystem are represented
by the states 1d3/2 and 1g9/2 shown in Figs. 6 and 7, re-
spectively. The case of the proton 1d3/2 state is similar to
the one of the neutron 3d3/2 state discussed above. At T = 0
the dominant state appears surrounded by the multitude of
weaker fragments and a relatively strong second fragments
with 0.23/0.45 share of the spectroscopic factors. With the
temperature increase, the entire spectrum undergoes gradual
fragmentation with strong quenching of the dominant frag-
ment. In all temperature regimes the major fragment is located
very close to the original mean-field state. The behavior of the
proton 1g9/2 state is again different. At T = 0 the dominant
fragment splits out from a number of weaker fragments, which
are grouped around the original mean-field state. After the
phase transition, rearranging the distribution into a competing
two-peak structure, the temperature growth causes a redistri-
bution and eventually a stronger fragmentation of this group of
fragments, which nevertheless remain around the mean-field

FIG. 7. Same as in Fig. 4, but for the proton 1g9/2 state in 68Ni.

state. The dominant fragment retains its dominance, although
its spectroscopic factor gets gradually quenched as the tem-
perature increases.

Thereby, while the evolution of the good single-particle
states is quite similar to the evolution of the mean-field states,
the strongly fragmented states may exhibit various scenarios.
The latter is determined by the spin and parity of the state,
its closeness to the Fermi energy as well as by the mag-
nitudes of the most relevant PVC matrix elements and the
associated phonon frequencies. These factors define the inter-
play of coupling to various phonon modes [57]. As we have
shown explicitly for the case of the most important quadrupole
modes in Ref. [49], the nontrivial temperature evolution of
the phonon spectrum gives the corresponding feedback on the
PVC and the related fragmentation of the nuclear excitation
modes. On the large scale of temperatures, the fragmenta-
tion is enhanced with the temperature increase because of
the general trend of the thermal unblocking. However, we
also observed a countertrend at moderate temperatures, when
the thermal unblocking is not yet developed sufficiently to
generate new strong low-energy phonon modes, but weak-
ens those modes which play the major role at T = 0; see
Refs. [38,48,49] for more details. The feedback of this effect
on the nuclear excited states was observed as a minor weaken-
ing of the fragmentation at small and moderate temperatures
of about 1–2 MeV, while with further temperature increase the
fragmentation became reinforced again. Now we can see that
some of the single-particle states show a similar behavior: The
examples of those are the neutron 3d3/2 and the proton 1g9/2
states.

An example of a nucleus with strong pairing correla-
tions in both neutron and proton subsystems is represented
by 56Fe. Indeed, the first excited state in this nucleus is
the 2+ state at 846.78 keV followed by the 4+ state at
2085.1 keV, according to the experimental measurements
[58]. Such a low-lying quadrupole state indicates the ten-
dency of this nucleus to have a prolate deformation, although
the calculations of Ref. [59], which reproduce very well the
nuclear masses, predict spherical shape for this nucleus. We
assumed that our calculations in the spherical RMF basis still
provide an adequate approximation, while the PVC takes care
of coupling between single quasiparticles and the oscillating
core, whose low-frequency oscillations may mimic the static
deformation or possible shape coexistence. We also neglected
the thermal shape fluctuations, which can play a non-
negligible role in both structural [60] and dynamical [61,62]
observables.

Although the relativistic quasiparticle RPA (RQRPA)
cannot reproduce accurately the excitation spectrum, it never-
theless returns the energies E (2+

1 ) = 1.12 MeV and E (4+
1 ) =

4.07 MeV, which stipulate strong PVC effects. As a result
of the RMF + PVC calculations with pairing correlations for
this nucleus at T = 0, we obtain strong fragmentation of the
single-particle states even around the Fermi surface. This is
reflected in Fig. 9, where one can see quite a number of
such states represented by pairs of their competing major
fragments. A significant compression of both neutron and
proton single-particle spectra relative to the RMF calculations
shown in Fig. 8 is another consequence of the strong PVC in

054321-7



WIBOWO, LITVINOVA, ZHANG, AND FINELLI PHYSICAL REVIEW C 102, 054321 (2020)

FIG. 8. The single-particle states in 56Fe at zero and finite tem-
peratures calculated in the RMF approximation.

the broad energy region around the Fermi energy. As it can
be seen in Fig. 9, the first step of the temperature evolution
of 56Fe is the phase transition from the superfluid to the
nonsuperfluid state, which is indicated by the drastic decrease
of the density of the single-particle spectra in both neutron and
proton subsystems, when the temperature raises from T = 0
to T = 1 MeV. Further temperature evolution consists of a
somewhat smooth redistribution of the spectroscopic strength
between the major fragments.

It is difficult, however, to assess the global evolution of the
shell structure by looking only at the major fragments. A very
important characteristic of the strongly coupled fermionic
systems, namely the effective mass, is linked to both the
single-particle level density and the nucleonic self-energy and,
thus, can help evaluate the general trends. For relativistic
systems, the authors of Ref. [63] introduced the nonrelativistic
type effective mass, whose energy dependence at low energies

FIG. 9. The dominant fragments of the single-particle states in
56Fe at zero and finite temperatures calculated in the RMF + PVC
approximation.

FIG. 10. Neutron (blue) and proton (red) dynamical effective
masses in 56Ni (left) and 68Ni (right) computed with the imagi-
nary parts of the energy variable � = 2 MeV (dashed curves) and
� = 5 MeV (solid curves) at T = 0. The dynamical effective masses
are averaged over the single-particle states within 40-MeV energy
window around the neutron and proton Fermi surfaces, respectively.

is similar to that of nonrelativistic systems [64,65]:

M̄(k)(ε)

M
= 1 − d

dε
Re
e

(kk)(ε), (18)

where the energy argument is a complex number and M is the
mass of the bare nucleon. We can call the quantity M̄(k)(ε)/M
dynamical, or energy-dependent, effective mass. The indices
in the brackets indicate the reduced matrix elements: k =
{(k), mk}, where mk is the projection of the total angular mo-
mentum on the quantization axis, which is commonly called
magnetic quantum number in spherical symmetry. The effec-
tive mass averaged over the single-particle levels reads [65]

〈
M̄(ε)

M

〉
=

∑
(k)

(2 j(k) + 1)
M̄(k)(ε)

M

/ ∑
(k)

(2 j(k) + 1). (19)

To evaluate the nucleonic effective mass in nuclei, a finite
imaginary part of the energy variable is used in Eq. (18):
ε = E + i�. The role of the imaginary part is to soften the
singularities of the self-energy by averaging over the discrete
single-particle spectrum. In this way, the self-energy acquires
both real and significant imaginary parts. While the real part
contributes to the effective mass as in Eq. (18), the imaginary
part plays the role of the optical potential. The value of �

should be thus associated with the average distance between
the single-particle states. In our approach, for the medium-
mass nuclei in the iron and nickel mass region the value of
� = 5 MeV satisfies this criterion. However, to have an idea
about the sensitivity of the effective mass to this parameter, we
have calculated it with � = 2 MeV and � = 5 MeV for two
isotopes of nickel, 56Ni and 68Ni, at T = 0, where we have
neglected the pairing correlations in the latter nucleus. The
calculations and averaging were performed within symmetric
40-MeV intervals around the Fermi energies for both neutrons
and protons. The results for the neutron and proton effective
masses are displayed in Fig. 10. One can see that, indeed,
the effective mass as a function of energy is sensitive to the
averaging parameter, which reflects the noncontinuity of the

054321-8



TEMPERATURE EVOLUTION OF THE NUCLEAR SHELL … PHYSICAL REVIEW C 102, 054321 (2020)

FIG. 11. The dynamical effective masses of neutrons and protons
in 56Fe calculated with (solid curves) and without (dashed curves)
pairing correlations at zero temperature. The value � = 5 MeV was
used for the imaginary part of the energy variable. The symbol �p

stands for the superfluid pairing gap.

single-particle spectrum. Independently of that, the neutron
and proton effective masses can be different, although both
of them exhibit broad peaks around the corresponding Fermi
energies, when a sufficiently large averaging is used. In the
N = Z nucleus 56Ni the neutron and proton effective masses
show very similar behavior, although the neutron effective
mass varies in a slightly larger range, than the proton one. The
situation is different in the neutron-rich nucleus 68Ni, where
the proton effective mass demonstrates a remarkably stronger
variation between its central and peripheral values. This result
is consistent with the general trend, according to which the
effective mass increases with the density of states: Indeed,
one can conclude from Figs. 1 and 2 that the overall density
of the proton single-particle states in 68Ni is more affected
by the PVC effects than the density of states in the neutron
subsystem.

Figure 11 illustrates the sensitivity of the dynamical effec-
tive mass to pairing correlations by displaying the neutron and
proton effective masses in 56Fe at T = 0. As the neutron ex-
cess in this nucleus is small, the effective masses of neutrons
and protons are represented by similar functions of energy, al-
though the variation of the proton effective mass is somewhat
stronger. Both effective masses show peaks in broad energy
intervals around the Fermi surfaces. The widths of the peaks
diminish when the pairing correlations are taken into account.
The pairing correlations also cause stronger variations of the
effective masses: the higher peak values and the lower values
in the peripheral areas. Overall, this result is consistent with
the well-established proportionality of the dynamical effective
mass to the density of states, which is higher around the Fermi
surface, when pairing is included.

Finally, Fig. 12 illustrates the temperature evolution of the
dynamical effective masses in 56,68Ni. As it was mentioned
above, it is difficult to make definite conclusions on the
evolution of the overall density of states by looking at the frag-
mented states themselves. The calculations of the effective
masses, however, offer this opportunity. The results of calcu-
lations at various temperatures show a smooth evolution of the
effective masses toward a more uniform energy dependence.
With the temperature increase, the effective masses in the

FIG. 12. Temperature evolution of the nucleon dynamical effec-
tive masses in 56,68Ni calculated with � = 5 MeV.

peak region become less pronounced, while in the peripheral
areas their values grow. In all the cases, when the temperature
grows to higher values T � 3 MeV, the dynamical effective
masses tend to approach unity showing some minor
oscillations around this value. The temperature evolution
of the dynamical effective masses in 56Fe shows similar
trends, that are consistent with the study of Ref. [40],
although we have obtained overall smaller effective mass
values at the Fermi surfaces.

It was already noticed that, although the calculations pre-
sented in this work are quite advanced with respect to the pure
mean-field approach, some assumptions were made regarding
the role of the shape fluctuations of the mean nuclear potential.
The shape fluctuations neglected here should be carefully
examined in future work. Another remark, which needs to be
added here, concerns the continuum effects. It is known, for
instance, from Refs. [66,67] that an accurate treatment of the
single-particle continuum states in the presence of Coulomb
forces leads to diverging thermodynamical observables, while
the continuum states are associated with the nucleon vapor
surrounding the atomic nucleus in a hot environment. It was
shown that a separate calculation for the nucleon vapor with
the subsequent subtraction procedure allows for a correct and
convergent description of the nuclear characteristics at finite
temperature. However, the results of Refs. [66,67] based on
Skyrme interaction, being in agreement with the more recent
RMF study [68], showed that the continuum effects become
important at temperatures T � 4 MeV, which are less relevant
for the astrophysical applications.

IV. SUMMARY AND OUTLOOK

We have developed a many-body approach to de-
scribe fragmentation of the single-particle states in strongly
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coupled fermionic systems at finite temperature. The dynami-
cal finite-temperature self-energy is detailed for applications
to atomic nuclei, where the leading fragmentation mecha-
nism is the coupling to correlated particle-hole pairs, which
represent emergent phonons of predominantly vibrational
character. The Dyson equation with the particle-vibration
self-energy was solved numerically in the basis of the rela-
tivistic mean field for medium-mass nuclei, such as 56,68Ni
and 56Fe, which play important roles in understanding stellar
evolution. The temperature evolution of the fragmentation
mechanism was analyzed in detail by extracting the complete
fragmented single-particle spectra in the 40-MeV window
around the Fermi energies of the considered nuclei. Vari-
ous scenarios realized for different types of states have been
discussed.

To characterize the spectra globally, we have computed the
averaged dynamical neutron and proton effective masses as
functions of energy at various temperatures. In cold nuclear
systems, i.e., at zero temperature, the dynamical effective
masses show a clear bell-shaped behavior with maxima
around the Fermi energy. We found that, depending on the
interpretation and on the value of the averaging parameter,

the variation of the dynamical effective mass can reach 10%–
20% between the central and peripheral values, with respect
to unity. Pairing correlations were found to sharpen the dy-
namical effective mass as a function of energy, while the
temperature increase reduces the variation between the central
and peripheral values.

The obtained results may have some significance for as-
trophysical modeling of various stages of stellar evolution.
As the nucleon effective mass is directly related to the
density of states, entropy, and symmetry energy, its cor-
rect temperature dependence can be important, in particular,
for the core-collapse supernova modeling [40]. The existing
strategies to accommodate this dependence suggest simple
parametrizations of the dynamical effective mass, however,
some sensitivity studies would be helpful to establish whether
its nonsmooth oscillating behavior can be neglected on the
global scale.
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