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Background: The variational Hartree-Fock-Bogoliubov (HFB) mean-field theory is the starting point of various
(ab initio) many-body methods dedicated to superfluid systems. In this context, pairing correlations may be
driven towards zero either on purpose via HFB calculations constrained on, e.g., the particle-number variance or
simply because internucleon interactions cannot sustain pairing correlations in the first place in, e.g., closed-shell
systems. While taking this limit constitutes a text-book problem when the system is of closed-shell character,
it is typically, although wrongly, thought to be ill-defined whenever the naive filling of single-particle levels
corresponds to an open-shell system.
Purpose: The present work demonstrates that the zero-pairing limit of an HFB state is well-defined indepen-
dently of the average particle number A it is constrained to. Still, the nature of the limit state is shown to depend
on the regime, i.e., on whether the nucleus characterizes as a closed-shell or an open-shell system when taking
the limit. Finally, the consequences of the zero-pairing limit on Bogoliubov many-body perturbation theory
(BMBPT) calculations performed on top of the HFB reference state are illustrated.
Methods: The zero-pairing limit of a HFB state constrained to carry an arbitrary (integer) number of particles
A on average is worked out analytically and realized numerically using a two-nucleon interaction derived within
the frame of chiral effective field theory.
Results: The zero-pairing limit of the HFB state is mathematically well-defined, independently of the closed-
or open-shell character of the system in the limit. Still, the nature of the limit state strongly depends on the
underlying shell structure and on the associated naive filling reached in the zero-pairing limit for the particle
number A of interest. First, the textbook situation is recovered for closed-shell systems, i.e., the limit state is
reached for a finite value of the pairing strength (the well-known BardeenCooperSchrieffer (BCS) collapse) and
takes the form of a single Slater determinant displaying (i) zero pairing energy, (ii) nondegenerate elementary
excitations, and (iii) zero particle-number variance. Contrarily, a nonstandard situation is obtained for open-shell
systems, i.e., the limit state is only reached for a zero value of the pairing interaction (no BCS collapse) and takes
the form of a specific finite linear combination of Slater determinants displaying (a) a nonzero pairing energy, (b)
degenerate elementary excitations, and (c) a nonzero particle-number variance for which an analytical formula
is derived. This nonzero particle-number variance acts as a lower bound that depends in a specific way on the
number of valence nucleons and on the degeneracy of the valence shell. All these findings are confirmed and
illustrated numerically. Last but not least, BMBPT calculations of closed-shell (open-shell) nuclei are shown to
be well-defined (ill-defined) in the zero-pairing limit.
Conclusions: While HFB theory has been intensively scrutinized formally and numerically over the last decades,
it still uncovers unknown and somewhat unexpected features. In the present paper, the zero-pairing limit of a HFB
state carrying an arbitrary number of particles has been worked out and shown to lead to drastic differences and
consequences depending on the closed-shell or open-shell nature of the system in that limit. From a general
perspective, the present analysis demonstrates that HFB theory does not reduce to HF theory when the pairing
field is driven to zero in the HFB Hamiltonian matrix.
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I. INTRODUCTION

Based on the use of a single product state, Hartree-
Fock-Bogoliubov (HFB) theory [1] provides a variational
mean-field approximation method to many-fermion sys-
tems capable of tackling pairing correlations responsible for
(nuclear) superfluidity. It does so at the price of breaking
U (1) global gauge symmetry associated with particle-number
conservation. As a result, the HFB solution can only be con-
strained to carry the correct particle number A on average and
displays a nonzero particle-number dispersion reflecting, i.e.,
varying with, the amount of pairing correlations in the system.

While the HFB state captures the essence of static (strong)
correlations associated with superfluidity in open-shell nuclei,
additional correlations must be incorporated in order to reach
a fully quantitative description of the exact, e.g., ground state
of H , i.e.,

(1) dynamical (weak) correlations can be efficiently cap-
tured by expanding the exact ground state around the
HFB reference state in a perturbative fashion, i.e., via
Bogoliubov many-body perturbation theory (BMBPT)
[2–4] or in a nonperturbative way via, e.g., Bogoliubov
coupled cluster (BCC) [5] or Gorkov self-consistent
Green’s function (GSCGF) [6,7] theories.

(2) Given that the HFB state is not an eigenstate of the
particle-number operator A, it contains, together with
the (truncated) expansions built on it, a symmetry con-
tamination. Removing the contaminants by restoring
U (1) global gauge symmetry leads to capturing ad-
ditional static correlations. This can be achieved via
projected BMBPT (PBMBPT) [8] or projected BCC
(PBCC) theory [8,9]. At lowest order, PBMBPT and
PBCC reduce to projected HFB (PHFB) theory [1].

It is often casually stated that the HFB state, or any Bo-
goliubov state for that matter, reduces to a Slater determinant
(i) when taking a zero-pairing limit or (ii) when targeting a
closed-shell system, typically implying that both statements
are essentially equivalent knowing that (iii) the zero-pairing
limit is ill-defined for an open-shell system, i.e., it can only
be safely considered for a closed-shell nucleus. Because these
statements are only partially correct, the goal of the present
contribution is to investigate analytically and illustrate numer-
ically

(1) the zero-pairing limit of a HFB state constrained to
carry an arbitrary particle number A on average,

(2) the behavior of BMBPT in such a limit.

In the present work, the HFB state is shown to reach
a mathematically well-defined zero-pairing limit, even for
open-shell nuclei. However, the nature and characteristics of
that limit state depend strongly on the closed- or open-shell
character of the system, i.e., on the nature of the underlying
shell structure and of the associated naive filling reached in the
zero-pairing limit. The state obtained for open-shell system
is unexpectedly nontrivial. To the best of our knowledge,
these basic properties of HFB theory and of the underlying
Bogoliubov algebra have never been uncovered. Last but not

least, the impact of taking the zero-pairing limit on PHFB and
BMBPT is further discussed.

The present paper is organized as follows. While Sec. II
introduces the necessary ingredients for the remainder of the
paper, Sec. III proceeds to the analytical investigation of
the zero-pairing limit. Next, Sec. IV displays the results of
the numerical calculations illustrating the analytical conclu-
sions reached in the previous section. Eventually, Sec. V
provides the conclusions of the present work. A short Ap-
pendix complements the paper.

II. BASIC INGREDIENTS

The present section briefly introduces constrained and un-
constrained HFB, PHFB, and BMBPT formalisms in order to
be in position to discuss their zero-pairing limit in Sec. III.

A. Hartree-Fock-Bogoliubov formalism

1. Unconstrained calculations

The Bogoliubov state |�〉 is a vacuum for the set of quasi-
particle operators obtained via a unitary linear transformation
of the form [1]

βν ≡
∑

p

U ∗
pνcp + Vpνc†

p , (1a)

β†
ν ≡

∑
p

U ∗
pνc†

p + Vpνcp , (1b)

where {c†
p} ({cp}) defines the set of creation (annihilation)

operators associated with the working basis of the one-body
Hilbert space H1.

While |�〉 is not an eigenstate of the particle-number op-
erator A, its expectation value must be constrained to match
the number of particles A of the targeted system. This is
enforced by adding a Lagrange term to the Hamiltonian, thus
introducing the so-called grand potential � = H − λ(A − A).
The Lagrange multiplier λ plays the role of the chemical
potential and is to be adjusted so that the particle number is
indeed correct on average.1 In this context, the HFB formal-
ism corresponds to minimizing the expectation value of �,
i.e., the Routhian,

�|�〉 ≡ 〈�|�|�〉

=
∑

i j

ti j ρi j + 1

2

∑
i jkl

vi jkl ρki ρl j

+ 1

4

∑
i jkl

vi jkl κ∗
i j κkl − λ

(∑
i j

δi j ρi j − A

)
(2)

1In actual applications, one Lagrange multiplier relates to con-
straining the neutron number N and one Lagrange multiplier is used
to constrain the proton number Z. In our discussion A stands for
either one of them.
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within the manifold of Bogoliubov states. This procedure
delivers the HFB eigenvalue equation [1](

h − λ 


−
∗ −(h − λ)∗

)(
U

V

)
μ

= Eμ

(
U

V

)
μ

, (3)

providing the set of quasiparticle eigenstates making up the
columns of the transformation matrices (U,V ) as well as the
set of quasiparticle energies {Eμ} as eigenvalues.

In Eq. (3), the Hartree-Fock and Bogoliubov fields depend
on matrix elements of the one-body kinetic energy operator
{ti j} and of the two-body interaction2 operator {vik jl} accord-
ing to

hi j ≡ ti j +
∑

kl

vik jl ρlk , (4a)


i j ≡ 1

2

∑
kl

vi jkl κkl , (4b)

where

ρi j ≡ 〈�|c†
j ci|�〉 =

∑
ν

V ∗
iνVjν, (5a)

κi j ≡ 〈�|c jci|�〉 =
∑

ν

V ∗
iνUjν , (5b)

respectively, denote the normal and anomalous density matri-
ces associated with |�〉. When building the density matrices
in Eq. (5) from the solutions of Eq. (3), the sum is actu-
ally restricted to quasiparticle states associated with positive
quasiparticle energies {Eμ � 0}; i.e., the fully paired vacuum
carrying even-number parity is considered throughout the
present paper.

Once Eq. (3) is solved, the HFB state can be most conve-
niently written in its canonical, i.e., BCS-like, form [1]

|�〉 ≡
∏
k>0

[uk + vka†
ka†

k̄
]|0〉 . (6)

In Eq. (6), operators {a†
k, ak} characterize the so-called canon-

ical one-body basis in which pairs of conjugated states (k, k̄)
are singled out by the Bogoliubov transformation. Con-
ventionally, the two members of the conjugated pair are
distinguished as k > 0 and k̄ < 0, thus, effectively splitting
the basis into two halves. The coefficients uk = +uk̄ and
vk = −vk̄ are BCS-like occupation numbers. They make up
the simplified Bogoliubov transformation obtained through
the Bloch-Messiah-Zumino decomposition [1] of the full Bo-
goliubov transformation extracted from Eq. (3). The BCS-like
occupation numbers can be chosen real and satisfy the identity
u2

k + v2
k = 1.

2In the present investigation, original and induced three-nucleon
forces are omitted for simplicity given that none of the conclusions
depend on their inclusion. When taking them into consideration, the
particle-number conserving normal-ordered two-body (PNO2B) ap-
proximation introduced in Ref. [10] can be used to take the dominant
part of three-body forces into account via an effective two-body-like
interaction as was done in, e.g., Ref. [2].

Employing Eq. (6), the canonical form of the norm and
density matrices of the HFB state are obtained as

〈�|�〉 =
∏
k>0

(
u2

k + v2
k

) = 1 (7)

and

ρkk′ = v2
k δkk′ , (8a)

κkk′ = ukvk δk̄k′ , (8b)

respectively.
Thanks to an appropriate adjustment of the chemical po-

tential λ in Eq. (3), the average particle number carried by the
HFB state is constrained to the integer value A, which in the
canonical basis reads as

〈�|A|�〉 =
∑

k

v2
k

≡
∑

k

1

2

⎛
⎝1 − εk − λ√

(εk − λ)2 + 
2
k

⎞
⎠

= A , (9)

where εk ≡ hkk = hk̄k̄ and 
k ≡ 
kk̄ = −
k̄k .
Eventually, the total HFB energy is obtained as

E|�〉 ≡ 〈�|H |�〉
≡ Ekin

|�〉 + EHF
|�〉 + EB

|�〉

=
∑

i j

ti j ρi j + 1

2

∑
i jkl

vi jkl ρki ρl j + 1

4

∑
i jkl

vi jkl κ∗
i j κkl

=
∑

k

tkk v2
k + 1

2

∑
kk′

vkk′kk′ v2
k v2

k′

+ 1

4

∑
kk′

vkk̄k′ k̄′ ukvk uk′vk′ , (10)

and is equal to the Routhian �|�〉 [Eq. (2)] as long as the
constraint on the average particle number is indeed satisfied.

2. Constrained calculations

The zero-pairing limit is to be achieved by constraining the
variational determination of the HFB state, i.e., by subtracting
from the grand potential � a Lagrange term proportional to
an appropriate operator O in such a way that the pairing field
is entirely driven to zero in the resulting HFB Hamiltonian
matrix.

Any quantity O varying monotonically with the amount
of pairing correlations carried by the HFB state, i.e., acting
as an order parameter of the breaking of U (1) global-gauge
symmetry, can be employed as a constraint. A typical example
is the two-body operator associated with the particle-number
variance (A − 〈�|A|�〉)2 [11–18]. In the present paper, the
Hermitian one-body particle-number nonconserving operator


C ≡ 1

2

∑
i j


i j c†
i c†

j + 1

2

∑
i j


∗
i j c jci (11)
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with 
i j defined in Eq. (4b), is employed. With this operator
at hand, � is replaced by the constrained grand potential

�(δ) ≡ � − 1
2 (1 − δ)
C (12)

to perform the minimization within the manifold of even-
number parity Bogoliubov states. This leads to minimizing the
modified, i.e., constrained, Routhian

�(δ)|�〉 ≡ 〈�|�(δ)|�〉

=
∑

i j

ti j ρi j + 1

2

∑
i jkl

vi jkl ρki ρl j

+ δ

4

∑
i jkl

vi jkl κ∗
i j κkl − λ

(∑
i j

δi j ρi j − A

)
, (13)

which takes the same form as the unconstrained Routhian,
except that the pairing, i.e., Bogoliubov, term is now rescaled
by the parameter δ.

The minimization of �(δ)|�〉 leads to solving a constrained
HFB eigenvalue equation taking the form3(

h − λ δ × 


−δ × 
∗ −(h − λ)∗

)
(δ)

(
U (δ)

V (δ)

)
μ

= Eμ(δ)

(
U (δ)

V (δ)

)
μ

,

(14)

under the additional constraint that the solution, denoted as
|�(δ)〉, carries the average nucleon number A. As visible in
Eq. (14), the use of �(δ) eventually boils down to multiply-
ing the pairing field in the HFB matrix by the parameter δ,
which is itself effectively equivalent to rescaling all two-body
matrix elements entering the pairing field [Eq. (4b)] by that
same factor. Whereas δ = 1 corresponds to the unconstrained
calculation, taking δ → 0 characterizes the zero-pairing limit
of present interest.

Eventually, all quantities introduced in the context of un-
constrained calculations can be similarly defined here at the
price of providing them with a δ dependence. The expression
of the constrained HFB energy E|�(δ)〉 is formally identical to
the unconstrained one given in Eq. (10) except that it acquires

3All the results and conclusions uncovered in the present paper are
independent of the particular operator used to constrain the pairing
field to zero in the HFB matrix, e.g., one can equally use the particle-
number variance and we have indeed done so. It only happens that
the constraining one-body operator 
C is gentler numerically and
allows one to reach the zero-pairing limit in a controlled fashion.
The numerical easiness is also largely due to the constraining method
employed here. Instead of using an actual Lagrange method in which
the driving parameter δ is self-consistently adjusted to make the
constraint 〈�(δ)|
C|�(δ)〉 equate a set of predefined values, the
calculation is performed for a fixed value of δ and is repeated such
that δ scans a chosen interval [0, δmax]. This approach is appropriate
because (i) the specific value of the quantity 〈�(δ)|
C|�(δ)〉 is of
no particular interest and because (ii) the particle-number variance
varies monotonically with δ such that the end results can anyway be
displayed as a function of it. In this context, δmax can always be taken
large enough to cover any desired range of particle-number variance
values.

an implicit dependence on δ through the density matrices of
the constrained HFB state |�(δ)〉. This is at variance with the
constrained Routhian �(δ)|�(δ)〉 and the pairing field matrix
elements 
i j (δ) that additionally carry an explicit dependence
on δ in their very definition. In any case, the δ dependence of
the various quantities at play is omitted for simplicity in the
remainder of the paper, except if specified otherwise.

B. Bogoliubov many-body perturbation theory

One of the focuses of the present study is to investigate the
consequence of driving the HFB state to the zero-pairing limit
when performing a BMBPT calculations on top of it. This
investigation happens to raise nontrivial questions regarding
the way a perturbative expansion is best formulated when per-
formed on top of a reference state delivered via a constrained
minimization.

1. Unconstrained HFB reference state

To be in position to address these questions, let us first
briefly recall the main ingredients of BMBPT based on an
unconstrained HFB reference state. For a detailed account of
the BMBPT formalism, the reader is referred to Ref. [3].

Because the HFB reference state is not an eigenstate of A,
the operator meaningfully driving the BMBPT expansion is
not H but � [8] and is thus the same as the one at play in the
HFB minimization. To set up BMBPT, � must be first normal
ordered with respect to |�〉:

� = �
[0]
|�〉 + �

[2]
|�〉 + �

[4]
|�〉

= �00
|�〉 + �20

|�〉 + �11
|�〉 + �02

|�〉

+ �40
|�〉 + �31

|�〉 + �22
|�〉 + �13

|�〉 + �04
|�〉 , (15)

where �
i j
|�〉 denotes the normal-ordered component involving

i ( j) quasiparticle creation (annihilation) operators associated
with |�〉, e.g.,

�31
|�〉 ≡ 1

3!

∑
μ1μ2μ3μ4

�31
μ1μ2μ3μ4

β†
μ1

β†
μ2

β†
μ3

βμ4 . (16)

In Eq. (15), �00
|�〉 is nothing but the Routhian �|�〉 introduced

in Eq. (2), �
[2]
|�〉 is an effective, i.e., normal-ordered, one-body

operator and �
[4]
|�〉 is an effective two-body one. Details on

the normal-ordering procedure as well as expressions of the
matrix elements of each operator �

i j
|�〉 in terms of the original

matrix elements of the Hamiltonian and of the (U,V ) matrices
can be found in Ref. [5].

To actually set up the perturbation theory, the grand poten-
tial is split into an unperturbed part �0 and a residual part �1,

� = �0 + �1 , (17)

such that

�0 ≡ �00
|�〉 + �̃11

|�〉;{Ẽμ} , (18a)

�1 ≡ �20
|�〉 + �̆11

|�〉;{Ẽμ} + �02
|�〉

+�40
|�〉 + �31

|�〉 + �22
|�〉 + �13

|�〉 + �04
|�〉 (18b)
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with �̆11
|�〉;{Ẽμ} ≡ �11

|�〉 − �̃11
|�〉;{Ēk}. The one-body part of �0 is

diagonal, i.e.,

�̃11
|�〉;{Ẽμ} ≡

∑
μ

Ẽμ β†
μβμ (19)

with {Ẽμ} denoting an arbitrary set of positive energies.
As |�〉 solves the unconstrained HFB variational prob-

lem, i.e., Eq. (3), one has that �20
|�〉 = �02

|�〉 = 0. Furthermore,
while the choice of �̃11

|�〉;{Ẽμ}, i.e., of the set of energies {Ẽμ},
is arbitrary, a natural choice is to pick the eigenvalues of the
HFB eigenvalue equation, i.e., to choose Ẽμ ≡ Eμ > 0 for all
μ in Eq. (19). This choice additionally leads to �̆11

|�〉;{Eμ} = 0
such that the residual interaction �1 in Eq. (18b) reduces to its
effective two-body part �

[4]
|�〉. This particular setting defines

the canonical version of BMBPT and reduces significantly
the number of nonzero diagrams to be considered. Otherwise,
noncanonical diagrams involving �20

|�〉, �̆11
|�〉;{Ẽμ}, and �02

|�〉
vertices must be further considered.

The power of BMBPT relies on the fact that the superfluid
character of open-shell nuclei ensures that the HFB reference
state is nondegenerate, i.e., elementary quasiparticle excita-
tions of the HFB vacuum display nonzero energies. This key
property relates to the fact that the quasiparticle energies {Eμ}
are bound from below by the superfluid pairing gap at the
Fermi energy

Minμ{Eμ} � 
F > 0 , (20)

when the system is indeed superfluid, i.e., exhibits pairing
correlations. The benefit of this feature can be best appreciated
by considering as an example the first BMBPT correction that,
added to the reference HFB energy [3], defines second-order
BMBPT calculations, i.e., BMBPT(2),

E (2)
|�〉;{Ẽμ} = − 1

2

∑
μ1μ2

H20
μ1μ2

�02
μ1μ2

Ẽμ1 + Ẽμ2

− 1

4!

∑
μ1μ2μ3μ4

H40
μ1μ2μ3μ4

�04
μ3μ4μ1μ2

Ẽμ1 + Ẽμ2 + Ẽμ3 + Ẽμ4

. (21)

Using Ẽμ ≡ Eμ > 0 leads to strictly positive energy denom-
inators. As E (2) is representative of all correction terms, the
expansion is in this case, if not necessarily convergent [4,19],
at least ensured to be non singular in open-shell nuclei. This
would not be the case in standard MBPT due to the degenerate
character of the Hartree-Fock (HF) Slater determinant refer-
ence state in open-shell nuclei, i.e., elementary particle-hole
excitations of the Slater determinant within the valence shell
are zero in such a situation.

2. Constrained HFB reference state

Because the reference state |�(δ)〉 is now obtained by
solving the constrained HFB eigenvalue equation, the operator
� driving the BMBPT expansion differs from the one, i.e.,
�(δ), at play in the HFB minimization. This results in the fact
that

(i) the normal-ordered form of � with respect to |�(δ)〉
is not canonical,4 i.e., �20

|�(δ)〉 and �02
|�(δ)〉 are not zero,

(ii) the partitioning of �, i.e., Eqs. (17)–(18) associ-
ated with the choice of {Ẽμ(δ)} in the definition of
�̃11

|�(δ)〉;{Ẽμ(δ)} is neither natural nor obvious.

Consequently, the application of BMBPT on top of a
constrained HFB state necessarily requires the evaluation of
noncanonical diagrams and to make a nonobvious choice for
the partitioning of �. To illustrate the encountered difficulty,
two choices of quasiparticle energies are presently tested at
any given value of δ:

(1) Ẽμ(δ) = Eμ(δ),
(2) Ẽμ(δ) = Eμ = Eμ(1),

where the second choice is independent of δ. These two op-
tions are, respectively, denoted as Option 1 (BMBPT-1) and
Option 2 (BMBPT-2) in the remainder of the paper.

C. Projected Hartree-Fock-Bogoliubov formalism

The PHFB formalism invokes gauge-rotated HFB states
obtained as

|�(ϕ)〉 ≡ R(ϕ)|�〉
=

∏
k>0

(uk + e2iϕvka†
ka†

k̄
)|0〉 , (22)

where the rotation operator spanning the U (1) group is given
by R(ϕ) ≡ eiAϕ with ϕ ∈ [0, 2π ]. The off-diagonal norm ker-
nel between the HFB state and any gauge-rotated partner
generalizes the norm overlap of Eq. (7) according to

〈�|�(ϕ)〉 =
∏
k>0

(
u2

k + e2iϕv2
k

)
. (23)

One notices that 〈�|�(π/2)〉 = 0 whenever a specific shell is
such that u2

k = v2
k = 1/2. Whenever the corresponding shell

is characterized by pk conjugated pairs, the gauge-dependent
integrand at play in the PHFB calculation of an observable
associated with a (pk +1)-body (or higher-body) operator dis-
plays an apparent pole [20–23]. While this pole is in fact a
mere intermediate artefact and disappears when combining
the various terms contributing to the observable, it can gen-
erate numerical difficulties in applications if not accurately
resolved [22–25].

III. ZERO-PAIRING LIMIT

With the ingredients of Sec. II at hand, the goal is now to
actually investigate the even-number parity solution of HFB
equations zero-pairing limit.

A. Naive filling

The discussion below crucially relies on the naive filling
characterizing a given system of interest in the zero-pairing

4The operator �(δ) is in canonical form when normal ordered with
respect to |�(δ)〉 but � is not, except for δ = 1 of course.
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limit. The naive filling corresponds to occupying single-
particle canonical states characterized by the A lowest
energies εk . Doing so, one exhausts the A nucleons in such
a way that 0 � av � dv nucleons sit in the so-called valence,
i.e., last occupied, shell characterized by energy εv and de-
generacy dv (and thus pv ≡ dv/2 pairs of conjugated states).
The naive occupation of each canonical state belonging to the
valence shell denoted as

ov ≡ av

dv

, (24)

ranges between 0 and 1, i.e., 0 < ov � 1.
Two crucially different categories of nuclei emerge in this

context, i.e., a nucleus is either of closed-shell character when
ov = 1 or of open-shell character whenever 0 < ov < 1. In
the present context, the definition of these two categories
must be understood in a broad sense, i.e., independently of
the symmetries, and thus of the degeneracies, characterizing
the spectrum {εk}. The fact that a given nucleus belongs to
one category or the other can only be inferred a posteriori.
In particular, and as illustrated in the numerical applications,
enforced or relaxed symmetries play a crucial role in this re-
spect. For example, any semimagic even-even nucleus whose
unconstrained HFB solution is of spherical open-shell char-
acter will converge to a deformed closed-shell solution in the
zero-pairing limit if SU (2) rotational symmetry is allowed to
break in the calculation. In absence of pairing correlations, the
quadrupole-quadrupole term contained in any realistic nuclear
Hamiltonian will indeed make energetically advantageous for
the system to deform and converge to a closed-shell Slater
determinant. The fact that such systems end up being of
open-shell character in the zero-pairing limit can thus only
be the result of strictly enforcing spherical symmetry in the
calculation.

Let us exemplify the above considerations by looking into
the case of 26O. Whenever spherical symmetry is enforced,
canonical energies {εk} display a degeneracy dk ≡ 2 jk + 1,
where jk denotes the one-body total angular momentum
shared by all degenerate single-particle states. The textbook
expectation for 26O is that it is semimagic in the zero-pairing
limit, i.e., neutrons exhibit an open-shell configuration charac-
terized by the d3/2 valence shell carrying degeneracy dv = 4
and fitting two neutrons such that ov = 1/2. However, when-
ever SU (2) rotational symmetry is allowed to break, 26O has
energetic advantage to deform in absence of pairing correla-
tions in order to seek for a neutron closed-shell configuration.
The deformation indeed leads the canonical spectrum {εk}
to be only left with the two-fold Kramers degeneracy such
that the naive filling of this even-even nucleus becomes of
(deformed) doubly closed-shell character.

B. Definition of the limit

Except when the naive filling reached in the zero-pairing
limit corresponds to a closed-shell system, i.e., whenever ov =
1, |�〉 cannot reduce to a Slater determinant. Thus, open-shell
nuclei characterized by 0 < ov < 1 constitute the nontrivial
focus of the present study. Of course, the higher the degree
of symmetry, i.e., the degenerate character of single-particle
energy shells, the larger the occurrence rate of open-shell sys-
tems. For such nuclei, the zero-pairing limit must be formally

defined and performed with care. How the zero-pairing limit
is taken is important and nontrivial because the HFB state

(1) must be constrained to fulfilling Eq. (9),
(2) is solution of the iterative HFB eigenvalue prob-

lem [Eq. (14)] involving an interference between the
Hartree-Fock and the Bogoliubov fields.

As the zero-pairing limit (δ → 0) is taken by scaling the
Bogoliubov field down to zero in Eq. (14), the search for the
limit reached by |�(δ)〉 can be analytically materialized by


i j −→ 0 ∀ (i, j) subject to 〈�|A|�〉 = A . (25)

Applying Eq. (25) in a meaningful fashion leads to distin-
guishing three categories of canonical single-particle states,
i.e., states characterized by

(1) εk − λ < 0, casually denoted as “hole states”,
(2) εk − λ = 0, casually denoted as “valence states”,
(3) εk − λ > 0, casually denoted as “particle states”,

when reaching the limit. Valence states, which can only con-
cern one shell, must be explicitly considered in order to satisfy
Eq. (25) under the assumption that 0 < ov � 1.

C. Closed-shell system

For reference, let us first study closed-shell systems. In this
case, one can arbitrarily define the valence shell to be the last
fully occupied (ov = 1) or the first fully empty (ov = 0) shell
when proceeding to the naive filling. While the first choice
is presently made here, general formulas derived later can be
used with both conventions.

Whenever SU (2) symmetry is self-consistently satisfied,
closed-shell systems are obtained each time a spherical shell
is fully occupied when proceeding to the naive filling, e.g., in
the semimagic 22O for which the neutron 1d5/2 shell is fully
occupied. Consequently, only a small subset of semimagic
nuclei do (potentially) belong to this category. When relaxing
SU (2) rotational symmetry though, all even-even nuclei that
are not already of spherical doubly closed-shell nature deform
in the zero-pairing limit due to the quadrupole-quadrupole
component of any realistic nuclear Hamiltonian and acquire
a doubly closed-shell character as a result of the residual
two-fold Kramers degeneracy.

In this situation, no specific surprise occurs. Equation (9)
can be trivially fulfilled in the zero-pairing limit by fully
occupying (emptying) the A lowest (remaining) canonical
single-particle states such that

lim

k→0
〈A〉=A

v2
k = 1(0) . (26)

Equation (26) stipulates that no genuine valence shell emerges
through the zero-pairing limit and that all single-particle
states converge towards either a hole or a particle state.
Consequently, the HFB state itself converges trivially to the
closed-shell Slater determinant

|�̄〉 ≡ lim

→0
〈A〉=A

|�〉

=
A/2∏
h=1

a†
ha†

h̄
|0〉 , (27)
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which is an eigenstate of A with eigenvalue A and zero
particle-number variance

VAR|�̄〉 ≡ 〈�̄|(A − 〈�|A|�〉)2|�̄〉
= 〈�̄|A2|�̄〉 − 〈�̄|A|�̄〉2

= 0 . (28)

Correspondingly, the HFB energy [Eq. (10)] takes the stan-
dard mean-field, i.e., HF, form associated with a Slater
determinant

Ē =
A∑

k=1

tkk + 1

2

A∑
kl=1

vklkl , (29)

where the Bogoliubov term, i.e., the pairing energy, is strictly
zero.

D. Open-shell system (ov = 1/2)

Let us continue with the simplest nontrivial case where
the naive valence fractional occupation is ov = 1/2. The next
section will address the general case. Dealing with even
particle numbers and spherical symmetry, ov = 1/2 corre-
sponds to a half-filled valence shell, e.g., to two nucleons
sitting in a p3/2 or d3/2 valence shell, four nucleons sitting
in a f7/2 or g7/2 valence shell, etc. This situation is also
encountered when treating odd systems under the constraint
of time-reversal symmetry, i.e., when employing an even-
number parity vacuum [26], and when the odd nucleon sits
in a doubly degenerate valence shell. This occurs whenever
enforcing spherical symmetry with a s shell lying at the Fermi
energy or as soon as the systems deforms such that the valence
shell necessarily displays the two-fold Kramers degeneracy.

To conduct the present discussion, let us consider the sim-
plest situation of two nucleons eventually sitting in a d3/2

valence shell. Based on a textbook spherical single-particle
spectrum, this situation is expected to be encountered for ex-
ample in 26O. It corresponds to having av = 2 and dv = 4. The
pv = 2 pairs of conjugate valence states, generically denoted
as (v, v̄), are presently specified as (v1, v1̄ ) and (v2, v2̄ ).

The zero-pairing limit of hole and particle states works as
in Eq. (26) with A − 2, i.e., 24, particles eventually occupying
hole states. For valence states, the situation is more subtle. To
reach the average occupation ov = 1/2 in the limit, one must
assume5 that

lim

v→0
〈A〉=A

∣∣∣∣εv − λ


v

∣∣∣∣ = 0 , (30)

i.e., that (εv − λ) goes to 0 faster than 
v . With Eq. (30) at
hand, one indeed obtains the required limit for the average
single-particle valence state occupation

lim

v→0
〈A〉=A

v2
v = 1

2 = ov . (31)

Together with Eq. (26) for 24 particles, Eq. (31) allows one to
fulfill Eq. (9) for A = 26 in the zero-pairing limit.

5This property is validated numerically in Sec. IV.

With this carefully performed limit, one obtains

|�̄〉 ≡ lim

→0
〈A〉=A

|�〉

= 1

2

(
1 + a†

v1
a†

v1̄

)(
1 + a†

v2
a†

v2̄

) (A−2)/2∏
h=1

a†
ha†

h̄
|0〉 , (32)

which is a linear combination of four Slater determinants,
one of which has A − 2 = 24 particles (zero particles in
the valence shell), two of which have A = 26 particles (two
particles in the valence shell) and one that has A + 2 = 28
particles (four particles in the valence shell). The fact that the
limit state |�̄〉 can be written as the sum of a finite number
(different from 1) of Slater determinants is remarkable given
that |�〉 can only be expanded over an infinite sum of Slater
determinants as soon as one moves away from the zero-pairing
limit.

Given the form of |�̄〉 in Eq. (32), it can easily be checked
that the constraint defined through Eq. (9) is indeed satisfied

〈�̄|A|�̄〉 = 1
4 [(A − 2) + 2A + (A + 2)]

= A , (33)

even though |�̄〉 is not eigenstate of A in spite of being
obtained through the zero-pairing limit. Accordingly, the
particle-number variance of |�̄〉 is given by

VAR|�̄〉 = 1
4 [(A − 2)2 + 2A2 + (A + 2)2] − A2

= 2 , (34)

and is thus different from zero.
It is worth noting that |�̄〉 does not correspond to the

so-called equal-filling approximation (EFA) that is rigorously
formulated on the basis of a mixed-state density matrix oper-
ator [27] in the sense of statistical quantum mechanics. The
limit state |�̄〉 obtained in Eq. (32) is a pure state obtained
through the straight resolution of the HFB eigenvalue prob-
lem. Its normal density matrix is the same as in the EFA, i.e.,
v2

v = 1/2 but its anomalous density matrix is also nonzero
in the valence shell, i.e., κvv̄ = uvvv = 1/2. As a result, the
pairing (i.e., Bogoliubov) contribution to the total energy
[Eq. (10)]

ĒB
|�̄〉 = 1

4

(
vv1v1̄v1v1̄

+ vv1v1̄v2v2̄
+ vv2v2̄v1v1̄

+ vv2v2̄v2v2̄

)
(35)

is not zero in the limit state. While |�̄〉 is indeed obtained
through a zero-pairing procedure in the sense that the pairing
field is strictly driven to zero in the HFB eigenvalue problem
[Eq. (14)], the pairing energy of the limit state is not zero due
to the remaining nonzero anomalous density matrix within the
valence shell.

Eventually, the above analysis provides several key in-
sights. When driving the spherical HFB state associated with
26O towards its zero-pairing limit |�̄〉, one observes that

(i) the limit state |�̄〉 carrying A particles on average
is mathematically well-defined and takes the form of
a linear combination of a finite number, i.e., 4, of
Slater determinants that do not all carry the physical
number of particles. As a result, the limit state is not
an eigenstate of the particle-number operator.

054320-7



T. DUGUET, B. BALLY, AND A. TICHAI PHYSICAL REVIEW C 102, 054320 (2020)

(ii) There exists a nonzero lower bound6 to the particle-
number variance that can actually be achieved within
the manifold of spherical HFB states constrained to
carry 26 nucleons (18 neutrons), i.e.,

VAR|�〉 � VAR|�̄〉 = 2 . (36)

(iii) Consistently with this non-zero particle-number vari-
ance, the limit state carries nonzero anomalous
density matrix and pairing energy even though it is
obtained by diagonalizing an HFB matrix in which
the pairing field is vanishing.

(iv) As a consequence of Eq. (31), the off-diagonal norm
overlap associated with |�̄〉 [Eq. (23)] is 0 at ϕ =
π/2. While the particle-number projection (PNP) on
the value A is well-defined given that a component
with the targeted number of particles does enter |�̄〉
according to Eq. (32), it requires numerical care
given that for dv = 4 the computation of two-body
observables requires a fine-tuned treatment of a zero-
over-zero.

(v) By virtue of Eqs. (25) and (30), the lowest quasiparti-
cle energy solution of Eq. (14) fulfills7

lim

→0
〈A〉=A

MinμEμ = 0 , (37)

such that Eq. (20) does not apply anymore in the
zero-pairing limit. Thus, the BMBPT expansion based
on Option 1 becomes ill-defined in the limit given that
zero energy denominators enter; even if the reference
energy Ē|�(0)〉 is well defined and contains a nonzero
Bogoliubov contribution, the second-order correction
E (2)

|�(0);{Eμ(0)}〉 [Eq. (21)] diverges. Obviously, no such
problem arises in closed-shell nuclei (ov = 1) given
that BMBPT safely reduces to standard HF-MBPT
[2,3] in this case, with the lowest two quasi-particle
excitation converging towards the non-zero particle-
hole gap at the Fermi energy.

E. General case

Let us now consider the general open-shell case character-
ized by 0 < ov < 1 and ov 
= 1/2.8 The valence shell gathers
pv = dv/2 pairs of conjugated states generically denoted as
(v, v̄) and presently specified as (v1, v1̄ ), . . . , (vpv

, vp̄v
).

The zero-pairing limit of hole and particle states works
as before such that A − av particles eventually occupy hole
states. As for the valence shell, one needs to fit av particles in
dv degenerate states characterized by identical average occu-

6The fact that it is indeed a lower bound is proven in Appendix B.
7The analytical proof of Eq. (37) relies on using the BCS expression

Ek = √
(εk − λ)2 + 
2

k that is known to be a good approximation
of HFB quasiparticle energies, except for s states near the threshold
[28].

8As will be shown below, the case ov = 1/2 must be treated sepa-
rately such that it was not only a question of convenience to cover it
first in Sec. III D.

pations v2
vk

≡ v2
v . To do so, the identity

av = 2
pv∑

k=1

v2
vk

= dv v2
v (38)

must be fulfilled in the zero-pairing limit in order to ensure
that

v2
v = ov . (39)

The only way to satisfy Eq. (39) requires now that εv − λ and

v go to 0 in a strictly proportional fashion, i.e., that

lim

v→0
〈A〉=A

∣∣∣∣ 
v

εv − λ

∣∣∣∣ = γ (40)

with γ a nonzero real number. In fact, this property is indeed
consistent with Eq. (39) under the condition that

γ = 2
√

ov (1 − ov )

|1 − 2ov| . (41)

One observes that γ is ill-defined for ov = 1/2, which reflects
the fact that Eq. (40) is inappropriate in that case and must
be replaced by Eq. (30), i.e., when ov = 1/2 one must rather
make the hypothesis that

lim

v→0
〈A〉=A

∣∣∣∣ 
n
v

εv − λ

∣∣∣∣ = γ ′ , (42)

for some real number n > 1.
With this at hand, one eventually obtains

|�̄〉 ≡ lim

→0
〈A〉=A

|�〉 (43)

=
pv∏

k=1

(√
1 − ov + √

ov a†
vk

a†
vk̄

) (A−av )/2∏
h=1

a†
ha†

h̄
|0〉 .

Thus, the HFB state carrying A particles on average is well-
defined in the zero-pairing limit and takes the form of a
linear combination of a finite number, i.e., 2pv , of Slater de-
terminants. Again, the fact that |�̄〉 is a finite sum of Slater
determinants is remarkable. Among the 2pv Slater determi-
nants,

( b
pv

)
of them carry B(b) = A − av + 2b particles,9 with

the integer b ranging from 0 to pv . It is easy to see from
Eq. (43) that the weight of each Slater determinant carrying
B(b) particles is equal to ob

v (1 − ov )pv−b.
Given the form of |�̄〉, it can first be checked10 that the

constraint defined through Eq. (9) is indeed satisfied in the

9The number of particles carried by the Slater determinants thus
ranges from A − av to A + (dv − av ). The total number of summed
Slater determinants is indeed

∑pv

b=0

( b
pv

) = 2pv .
10Identities (A1) and (A2) provided in Appendix A are employed

to derive Eq. (44) while the additional identity (A3) is necessary
to derive Eq. (45). Similar analytical results could be derived for
higher moments of A at the price of considering higher derivatives
of Newton’s binomial formula.
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zero-pairing limit

〈�̄|A|�̄〉 =
pv∑

b=0

(
b

pv

)
ob

v (1 − ov )pv−b(A − av + 2b)

= (A − av )
pv∑

b=0

(
b

pv

)
ob

v (1 − ov )pv−b

+ 2ov

pv∑
b=1

(
b

pv

)
b ob−1

v (1 − ov )pv−b

= A − av + 2ov pv

= A , (44)

where ov = av/dv and pv = dv/2 were eventually used. Simi-
larly, the particle-number variance is obtained after a long but
straightforward calculation as

VAR|�̄〉 =
pv∑

b=0

(
b

pv

)
ob

v (1 − ov )pv−b(A − av + 2b)2 − A2

= 2av (1 − ov ) , (45)

and constitutes a lower bound as proven in Appendix B. Last
but not least, a nonzero pairing contribution

ĒB
|�̄〉 = ov (1 − ov )

pv∑
kl=1

vvkvk̄vl vl̄
, (46)

to the total HFB energy is once again obtained in the limit
given that the anomalous density matrix is nonzero within
the valence shell and equal, for each canonical pair (v, v̄), to
κvv̄ = uvvv = √

ov (1 − ov ).
From a general perspective, the present analysis demon-

strates that HFB theory does not reduce to HF when the
pairing field is driven to zero in the HFB Hamiltonian matrix.

F. Illustrative examples

Given the above analysis, typical examples can be dis-
cussed on the basis that the expected, i.e., textbook, sequence
of shells is indeed obtained in each case in the zero-pairing
limit. This assumption can only be checked a posteriori from
an actual numerical calculation associated with a code char-
acterized by a certain set of constrained/relaxed symmetries.
This important aspect will be scrutinized in Sec. IV. Relying
for now on the textbook sequence of shells, the following
results can reasonably be anticipated:

(i) The first typical example, already discussed in
Sec. III D, is 26O. Based on a textbook spherical
canonical spectrum, this semi-magic nucleus cor-
responds to having av = 2 and dv = 4, and thus
ov = 1/2. Inserting these numbers into Eq. (45),
the minimal particle-number variance reached in the
zero-pairing limit is indeed VAR|�̄〉 = 2.

(ii) A similar but slightly different case relates to the
semi-magic 44Ca nucleus whose naive filling based on
a textbook spherical canonical spectrum corresponds
to putting four particles in the f7/2 shell, i.e., av = 4
and dv = 8, thus also leading to ov = 1/2. As a result,

the minimal particle-number variance obtained in the
zero-pairing limit is VAR|�̄〉 = 4.

(iii) The textbook naive filling of the semimagic 18O
nucleus corresponds to putting two particles in the
spherical d5/2 shell, i.e., av = 2 and dv = 6, thus
leading to ov = 1/3. This eventually provides the
zero-pairing particle-number variance VAR|�̄〉 = 8/3.

(iv) One can focus next on the semi-magic 22O nu-
cleus whose naive filling corresponds to putting six
particles in the same d5/2 shell, i.e., av = 6 and
dv = 6, thus leading to ov = 1 and a zero mini-
mal variance VAR|�̄〉 = 0 as expected for a spherical
closed-subshell system.

(v) Considering an even-even doubly open-shell nucleus,
e.g., 240Pu, the unconstrained HFB minimum is typ-
ically obtained for a deformed configuration, which
is even more so true when the pairing is decreased.
Given that the associated canonical spectrum only
retains Kramers two-fold degeneracy, the zero-pairing
limit state necessarily takes the form of a deformed
closed-shell Slater determinant with a zero particle-
number variance VAR|�̄〉 = 0.

(vi) Considering the odd-even neighbor, i.e., 241Pu, con-
strained to be time-reversal symmetric, the naive
filling corresponds to putting one particle in a doubly
degenerate valence shell, i.e., av = 1 and dv = 2. It
corresponds to having ov = 1/2 and a nontrivial HFB
state characterized by VAR|�̄〉 = 1.

IV. APPLICATIONS

In this section, results obtained from constrained HFB and
BMBPT calculations based on it, are presented.

A. Numerical set up

The computations are performed using a realistic nu-
clear Hamiltonian H derived from chiral effective field
theory (χEFT). The Hamiltonian contains a two-nucleon (2N)
interaction derived at next-to-next-to-next-to leading order
(N3LO) in the chiral expansion [29] and evolved down to
lower resolution scale (α = 0.08 fm4) via a similarity renor-
malization group (SRG) transformation [30].

Two HFB solvers dedicated to ab initio calculations, i.e.,
capable of handling 2N and 3N interactions (either in full or
within the normal-ordered two-body approximation [31]), are
presently employed. The first code is restricted to spherical
symmetry and is based on the actual diagonalization of the
HFB matrix [32]. The second code, named TAURUSvap, solves
HFB or variation after particle-number projection (VAPNP)
equations for symmetry-unrestricted (real) Bogoliubov quasi-
particle states [33], thus allowing for spatially deformed
solutions. Employing a gradient method, the code can actu-
ally solve the variational equations under a large variety of
constraints and was recently used to perform first practical
calculations [34].

In both codes, one-, two-, and three-body operators are rep-
resented in the eigenbasis of the spherical harmonic oscillator
(SHO) Hamiltonian. In the present calculations, the one-body
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FIG. 1. Results of constrained HFB calculations of 18O (left column), 26O (center column), and 44Ca (right column). Top row: log-log
plot of the valence shell canonical pairing gap |
v| against |εv − λ|. The slope 1/n of the curve in the limit 
v → 0 [see Eqs. (40)–(42)] is
extracted through a numerical fit. Bottom row: |
n

k/(εk − λ)| as a function of |
k | for the valence shell and for the particle (hole) shell just
above (below). The power n employed corresponds to the value extracted in the associated top panel.

basis is characterized by a SHO frequency h̄ω = 20 MeV and
includes single-particle states up to emax ≡ (2n + l )max = 4
whereas the two-body basis is built from its tensor product.
While realistic ab initio calculations typically require to use
emax = 12 or 14 in midmass nuclei to reach convergence with
respect to the basis set, calculations performed in a reduced
model space are sufficient to investigate the points of present
interest.

B. Constrained Hartree-Fock-Bogoliubov

1. Characterization of the limit

For the zero-pairing limit to be analytically meaningful,
canonical matrix elements of the pairing field have been pre-
dicted in Sec. III to be driven to zero in a specific way when
the constraining parameter δ goes itself to zero. In this context,
the half-filled valence-shell case (ov = 1/2) had to be explic-
itly distinguished, i.e., see Eq. (42) versus Eq. (40). In Fig. 1,
these predictions are tested via numerical calculations of three
representative semimagic nuclei, i.e., 18,26O and 44Ca. Under
the assumption that they remain spherical all the way down to
the zero-pairing limit, the expected textbook shell structures
stipulate that these systems all qualify as open-shell nuclei as
discussed in Sec. III F.

The top panels of Fig. 1 display the valence-shell canonical
pairing gap |
v| against |εv − λ| in log-log scale. The slope
1/n of the curve in the limit 
v → 0 is extracted through
a numerical fit. In the general case, i.e., ov 
= 1/2, Eq. (40)

stipulates that both quantities must go to zero in a strictly
proportional fashion, i.e., n = 1. It is indeed what is obtained
for 18O (ov = 1/3), thus validating the theoretical prediction.
Moving to 26O and 44Ca characterized by a half-filled valence
shell, the extracted slope is such that n > 1, also corroborating
the prediction.

Based on the numerical extraction of the parameter n from
the top panels, the bottom panels of Fig. 1 display the ratio
|
n

k/(εk − λ)| as a function of |
k| for the valence shell and
for the particle (hole) shell just above (below) it. As predicted
theoretically, this ratio behaves characteristically in the zero-
pairing limit, i.e., it goes to zero for all shells except for the
valence shell of open-shell nuclei where it goes to a nonzero
value. This behavior is indeed numerically obtained in the
three cases. More over, the nonzero limit γ was predicted
analytically for ov 
= 1/2 [Eq. (41)] and is indeed accurately
obtained numerically for 18O.

2. Characterization of the limit state

Now that the analytical premises of the zero-pairing limit
have been validated numerically, its consequences on the
structure of the HFB solution can be investigated. Based on
Eq. (43), the limit state |�̄〉 is predicted to display a spe-
cific structure, i.e., to be a linear combination of 2pv Slater
determinants. Among them,

( b
pv

)
carry B(b) = A − av + 2b

particles, with b ranging from 0 to pv , each entering the sum
with the weight ob

v (1 − ov )pv−b. This prediction is put to the
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FIG. 2. Weights of the Slater determinants associated with a given particle number (solid lines) making up the constrained HFB state as a
function of δ. The weights are obtained via PNP after variation calculations. The numerical results are compared to the predicted weights in
the zero-pairing limit (dashed curves).

test in Fig. 2 where the weights of each component obtained
via particle-number projection after variation (PNPAV) calcu-
lations are displayed as a function of δ for 18,22,26O and 44Ca.
The numerical weights are compared to the zero-pairing limit
prediction, i.e.,

( b
pv

)
ob

v (1 − ov )pv−b.
As visible from the four panels, the HFB state is a linear

combination of an infinite number11 of Slater determinants
as long as δ 
= 0, albeit with weights quickly decreasing for
components moving away from A. In the zero-pairing limit,
a qualitatively different structure is obtained, i.e., the linear
combination does collapse to 2pv states carrying the predicted
neutron numbers, i.e., from 8 to 14 in 18O, only 14 in 22O,
from 16 to 20 in 26O and from 20 to 28 in 44Ca. Furthermore,
the predicted weights are indeed exactly recovered in the limit.

It must be noted that the single Slater determinant in 22O is
actually reached for a nonzero value of δ. This feature relates
to the well-celebrated BCS collapse and reflects the point at
which the pairing strength is too weak to sustain a non-zero
pairing field against the finite single-particle gap at the Fermi
energy. As visible from Fig. 2, no such pairing collapse occurs
in open-shell nuclei. Eventually, the numerical results fully
validate the nontrivial structure of the HFB state predicted to
be obtained in the zero-pairing limit.

To complement the vision given in Fig. 2, the weights
obtained from the PNPAV calculation are displayed differ-
ently in Fig. 3 for 18,22,26O, i.e., the distribution of weights is
shown as a function of the particle number for δ = 0, 2, 4. For
strong enough pairing, i.e., δ = 4, one recovers the textbook
distribution following quite closely a Gaussian distribution
in all three cases [1]. For a moderate pairing regime, i.e.,
δ = 2, the distribution may be distorted,12 e.g., in 18O. Even-
tually, the distribution obtained in the zero-pairing limit takes

11In practice, this infinity is of course made finite by the truncation
of the one-body Hilbert space to a finite dimension ndim. In this
condition, the HFB state mixes Slater determinants spanning the full
range of possible (even) particle numbers, i.e., from 0 to ndim.

12Notice that unconstrained calculations (δ = 1) based on the
presently used 2N interaction and the omission of any 3N interaction
provides too little pairing compared to empirical data.

the usual/unusual form for closed-shell/open-shell isotopes
predicted in Sec. III. While the HFB state contains a single
nonzero weight associated with the Slater determinant limit in
22O, the distribution extends over a finite number of isotopes
for open-shell 18,26O. The distribution over this finite interval
is symmetric (asymmetric) in 26O (18O) as a testimony of the
naive valence-shell occupation ov = 1/2 (ov = 1/3).

3. Particle-number variance

With the aim to further characterize the zero-pairing limit
HFB state, the neutron-number variance is displayed in Fig. 4
as a function of the constraining parameter δ for 18,22,26O
and 44Ca. As expected, the closed-subshell Slater determinant
describing 22O in this limit exhibits a zero neutron-number
variance. Contrarily, a nontrivial HFB state displaying a
nonzero neutron-number variance VARmin ≡ VAR|�̄〉 charac-
terizes the three open-shell nuclei. As anticipated, VARmin

acts as a minimum along the constraining path whose numeri-
cal value corresponds in all cases to the one predicted through
Eq. (45).

One must once again note that the zero particle-number
variance is reached for a nonzero value for δ in 22O, whereas
no such pairing collapse occurs in open-shell nuclei.

4. Spectroscopic quantities

The HFB state |�̄〉 reached in the zero-pairing limit is
further scrutinized in Fig. 5 where several key quantities
are displayed as a function of the neutron-number variance
for 18,22,26O and 44Ca. Whereas canonical pairing gaps near
the Fermi energy are visible in the top panels, associated
canonical single-particle occupations are shown in the mid-
dle panels. While pairing gaps are driven to zero when the
neutron-number variance reaches VARmin, single-particle oc-
cupations converge to the expected values for all four nuclei,
e.g., the valence-shell occupation smoothly attains the naive-
filling value associated with a text-book spherical canonical
spectrum, e.g., v2

v = ov = 1/3 in 18O.
In the bottom panel, quasiparticle energies, i.e., eigenval-

ues of the constrained HFB equation are displayed below
6 MeV. The lowest quasiparticle energy reaches a nonzero

054320-11



T. DUGUET, B. BALLY, AND A. TICHAI PHYSICAL REVIEW C 102, 054320 (2020)

FIG. 3. Distribution of weights of the good particle-number components of the constrained HFB state in 18O (left panel) and 22O (right
panel) for δ = 0, 2, 4.

value for the closed-subshell nucleus 22O in the zero-pairing
limit. Contrarily, the lowest quasiparticle energy does go to
zero in 18,26O and 44Ca. While the former characteristic re-
flects the presence of the finite particle-hole gap at the Fermi
energy in 22O, the latter is a fingerprint of the open character
of the valence shell in 18,26O and 44Ca. The two different
behaviors have decisive consequences for the application of
BMBPT in the zero-pairing limit as discussed in Sec. IV C
below.

5. Binding energy

To complement the numerical analysis, Fig. 6 provides the
total HFB energy, as well as its pairing (i.e., Bogoliubov) con-
tribution, in 18,22O as a function of the constraining parameter
δ. The behavior is again qualitatively distinct for closed-shell
and open-shell nuclei. In 22O, the pairing energy goes to
zero for a non-zero values of δ, a point at which the total
energy is nondifferentiable, thus, signaling the sharp transition
associated with the BCS collapse to the non-superfluid phase.
Contrarily, the constrained HFB energy evolves smoothly all
the way down to δ = 0 in 18O, point at which its pairing
component is still different from zero.

According to Eq. (46), the pairing contribution to the
energy is predicted to evolve characteristically when filling
a given valence shell in the zero-pairing limit. Under the
assumption that the sum of valence-shell interaction matrix
elements making up the second factor at play in Eq. (46) is
constant while filling the shell, the pairing energy should be
strictly proportional to ov (1 − ov ). This prediction is put to
the test in Fig. 7 from 40Ca till 48Ca, i.e., when filling up
the neutron f7/2 shell. Dividing ĒB

|�̄〉 by the sum of matrix

elements evaluated in 44Ca, the rescaled pairing energy is
compared to ov (1 − ov ), where the latter is evaluated on the
basis that the neutron f7/2 shell indeed acts as the valence
shell in the zero-pairing limit. In spite of the fact that the
canonical basis, and thus the sum of matrix elements at play
in Eq. (46), differs in each nucleus in principle, the rescaled
pairing energy closely follows ov (1 − ov ), thus confirming the
theoretical prediction.

6. Impact of spatial symmetries

So far, the zero-pairing limit has been investigated in
semimagic nuclei under the hypothesis that the associated
solution of the constrained HFB problem remains spherical
all the way down to the pairing limit. In the present section,

FIG. 4. Neutron-number variance of the constrained HFB solution for 18O (left column), 22O (center-left column), 26O (center-right
column), and 44Ca (right column) as a function of the constraining parameter δ. In each case, the grey zone materializes the interval of
neutron-number variance values that cannot be reached within the manifold of appropriate HFB solutions. The upper limit of the grey zone
denotes the predicted value in the zero-pairing limit [Eq. (45)] that is provided on each panel as VARmin.
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FIG. 5. Results of constrained HFB calculations of 18O (left column), 22O (center-left column), 26O (center-right column), and 44Ca (right
column) as a function of the neutron-number dispersion. Top row: pairing gaps of neutron canonical states around the Fermi energy. Middle
row: average occupation of neutron canonical states around the Fermi energy. Full (red) lines relate to the valence shell whereas the (blue)
dotted/dashed-dotted lines relate to the highest hole/lowest particle shells. Bottom row: lowest neutron eigenvalues (i.e., quasiparticle energies)
of the HFB matrix. The right-hand limit of the grey zone stipulates the theoretical lower bound of the neutron-particle variance accessible
within the manifold of appropriate Bogoliubov states that is reached in the zero-pairing limit [Eq. (45)]. Horizontal full lines in the center row
denote the theoretical value of the valence shell average occupation ov reached in the zero-pairing limit. Vertical dashed lines characterize the
neutron-number dispersion of the unconstrained calculation.

the possibility that the system breaks spherical symmetry,
i.e., lowers the constrained Routhian by relaxing spherical
symmetry, is investigated. Because it is clear that all dou-
bly open-shell systems do deform in the zero-pairing limit,
the situation is more subtle, and thus more informative, in
semimagic nuclei. As a result, 18O is first used as a primer
example.

Figure 8 displays the results of a HFB calculation of 18O
in the zero-pairing limit, i.e., constrained to δ = 0, as a func-
tion of the number of iterations in the minimization process.
Inputting a spherical ansatz at iteration 0, the system evolves
freely until iteration 499, at which point it is subjected to an
infinitesimal constraint on the axial quadrupole deformation
(β20 = 0.001)13 during one iteration, before continuing the
unconstrained iteration process until convergence.

The top panel of Fig. 8 shows that the solution remains
strictly spherical for the first 499 iterations given that rota-
tional invariance is a self-consistent symmetry, i.e., the input

13The multipole moments are computed as βlm ≡
4π/[3A(1.2A1/3)l ]〈�|Qlm|�〉, where Qlm ≡ rlYlm(r̂) denotes
the multipole operator [35].

solution at iteration 0 being spherically symmetric, the invari-
ance cannot be spontaneously broken during the minimization
process. Because the solution is provided with an infinitesimal
quadrupole deformation at iteration 500, the system can take
advantage of deformation for the remaining iteration process.
Indeed, 18O constrained to the zero-pairing limit does deform
and converges to a state with nonzero axial quadrupole and
hexadecapole deformations.

The second panel of Fig. 8 confirms that it is indeed ad-
vantageous for the system to exploit spatial deformation, i.e.,
while a fully converged spherical solution is obtained by the
time iteration 499 is reached, the system does further lower
the constrained Routhian once allowed to deform such that
a newly converged solution is obtained by the time iteration
1500 is reached.14 However, while the constrained Routhian is
indeed lower for the deformed configuration, the constrained

14While the present calculation is performed in the zero-pairing
limit, it is not always advantageous for 18O to deform when δ 
=
0. With the present Hamiltonian and for parity-conserving axially
deformed calculations (which is the framework to consider after
the perturbation at iteration 500), the minimum of the constrained
Routhian is a spherical Bogoliubov state for 0.70 � δ � 1, a nontriv-
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FIG. 6. Results of constrained HFB calculations of 18O (blue
curves) and 22O (red curves) as a function of the constraining param-
eter δ in the HFB matrix. Top panel: total binding energy rescaled to
the zero-pairing limit. Bottom panel: contribution of the Bogoliubov
term, i.e., pairing energy, to the total binding energy.

HFB energy E|�(δ)〉 is not. This means that the deformed
solution corresponds to an excited configuration higher in
energy than the converged spherical configuration reached
before iteration 499 in the zero-pairing limit.

The fact that the spherical configuration has lower energy
than the deformed one is a consequence of their distinct
nature as can be understood from the last three panels dis-
playing canonical single-particle energies and occupations as
well as the neutron-number variance. Before iteration 499,
the spherical solution corresponds to the zero-pairing limit
discussed at length for 18O in previous sections, i.e., a nontriv-
ial HFB state corresponding to a partially filled d5/2 valence
shell and a neutron-number variance equal to 8/3. Contrarily,
the converged solution obtained after nearly 1500 iterations
is a deformed Slater determinant with zero neutron-number
variance. From iteration 500 till convergence, the spherical
degeneracy of canonical single-particle energies is progres-
sively lifted to give rise to the two-fold Kramers degeneracy.
In particular, the d5/2 valence shell is split into three pairs
of doubly degenerate shells among which the lowest pair
becomes gradually fully filled whereas the other two become
fully empty. Consequently, the constrained solution transi-
tions in the zero-pairing limit from a spherical open-shell HFB
state characterized by ov = 1/3 to a deformed closed-shell

ial deformed Bogoliubov state for 0.30 � δ � 0.70 and a deformed
Slater determinant for 0 � δ � 0.3.

FIG. 7. Rescaled pairing energy (see text) in the zero-pairing
limit for 40–48Ca compared to the analytical prediction ov (1 − ov ).
To compute the latter, ov is taken to be the value obtained for each
nucleus on the basis that the neutron f7/2 shell indeed acts as the
valence shell in the zero-pairing limit.

Slater determinant characterized by ov = 1. This change of
structure indeed has a marked impact on the energetic of the
system. While the spherical HFB solution benefits from a
nonzero pairing contribution responsible for the lowering of
the constrained energy compared to the constrained Routhian,
it is not the case for the deformed Slater determinant for which
both quantities are equal. The net result is that the constrained
HFB energy is eventually lower for the spherical configuration
than for the deformed one.

However, it happens that this behavior is also a conse-
quence of the specificities of the perturbation imposed at
iteration 500, in particular of its remaining symmetries. In-
deed, while applying a constraint on β20 for one iteration
opens up the possibility for the system to deform later on, it
does so only for parity-conserving axial deformations. When
considering an ansatz that breaks all spatial symmetries (but
still preserves the separation between neutrons and protons),
the HFB reference state obtained at δ = 0 is a deformed Slater
determinant with a total energy below the one of the spherical
solution even if only by a few keV.

Moreover, systematic calculations over the full set of even-
even sd-shell nuclei performed in the zero-pairing limit show
that, although a nontrivial HFB solution exists for semimagic
open-shell nuclei when enforcing spherical symmetry, the
actual symmetry-unrestricted ground state is systematically
provided by a Slater determinant with zero particle-number
variance,15 either spherical or deformed depending on the
nucleus considered.

15For odd-even nuclei, the deformed even-number parity solution
remains a nontrivial HFB state in the zero-pairing limit. Running
19O as an example, its spherically symmetric solution is a nontrivial
HFB state associated with the spherical d5/2 valence shell (av = 3,
dv = 6, ov = 1/2) and a neutron-number variance equal to 3 whereas
the symmetry-unrestricted solution is a deformed HFB state with
neutron-number variance equal to 1. If one where to search for a odd-
number parity solution associated with one quasiparticle excitation,
19O would converge in the zero-pairing limit to a deformed Slater
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FIG. 8. Results of constrained HFB calculations of 18O in the
zero-pairing limit (δ = 0) as a function of the number of itera-
tions. Top panel: axial quadrupole (β20) and hexadecapole (β40)
deformations. Second-to-top panel: total constrained grand potential
and Hamiltonian expectation values. Middle panel: canonical single-
particle spectrum. Second-to-last panel: canonical single-particle
occupations. Bottom panel: particle-number variance. Horizontal
dashed lines stipulate the theoretical limits for a spherical solution
with a text-book single-particle spectrum, i.e., a neutron d5/2 valence
shell. The vertical full line denotes the point at which the converged
spherical solution is constrained to deformation β20 = 0.001 during
one iteration.

determinant breaking time-reversal symmetry, and thus Kramers de-
generacy, carrying zero neutron-number variance.

C. Bogoliubov many-body perturbation theory

Based on spherical HFB reference states, BMBPT(2) cal-
culations have been performed as a function of the pairing
constraint using the numerical code whose first results were
reported in Ref. [2]. The two options regarding the definition
of the unperturbed Hamiltonian �0 discussed in Sec. IIB2
have been tested. The associated total energy curves (TEC) are
displayed in Fig. 9 for four nuclei along with the first order,
i.e., HFB, one. Away from the unconstrained HFB minimum,
the average particle number receives a nonzero contribution at
second order such that the reference value must be iteratively
readjusted in order for the sum of both contributions to match
the physical value A. In Ref. [19], a so-called a posteriori cor-
rection was shown to provide an excellent approximation to
this costly readjustment method. This a posteriori correction
is presently utilized.

Focusing on Option 1, i.e., BMBPT(2)-1 results, one ob-
serves that the TEC essentially retains the memory of the
HFB one, albeit the several tens of MeV of added correlation
energy. Looking closer, one however remarks that the TEC
becomes markedly different in 18O, 26O, and 44Ca as the zero-
pairing limit is approached. Because the lowest quasiparticle
energy of the constrained HFB spectrum {Eμ(δ)} goes to zero
in open-shell nuclei as the limit is reached, the second-order
correction E (2)

|�(δ)〉;{Eμ(δ)} [Eq. (21)] diverges as δ → 0. Obvi-

ously, no such problem occurs in 22O given that BMBPT
safely reduces to HF-MBPT in this case, with the lowest
two quasiparticle excitation converging towards the nonzero
particle-hole gap at the Fermi energy.

Moving to BMBPT-2, the issue arising in the zero-pairing
limit is regularized by construction, i.e., defining �0 from
the unconstrained HFB spectrum {Eμ(1)} for all values of δ,
the energy denominators at play in the second-order energy
correction can never be singular. As a result, none of the TEC
diverges as δ → 0. However, the TEC behave at odd with
HFB and BMBPT-1 when increasing δ. This behavior relates
to the noncanonical term �̆11

|�(δ)〉;{Eμ(1)} becoming very large,
probably leading to a highly diverging BMBPT expansion.
Thus, except for the benefit brought by construction in zero-
pairing limit, the (nonstandard) partitioning associated with
BMBPT-2 is not to be trusted in general and shall probably
only remain as an academic exercise performed for the sake
of the present study.

V. CONCLUSIONS

The zero-pairing limit of an even-number parity Bogoli-
ubov state solution of the Hartree-Fock-Bogoliubov equation
under the constraint to carry a fixed number of particles A
on average has been investigated in details, i.e., both analyti-
cally and numerically. This investigation is both of academic
interest and of relevance to calculations involving a constraint
on a collective variable that directly or indirectly impacts the
amount of pairing correlations in the system.

It was demonstrated that the HFB state reaches a math-
ematically well-defined limit, independently of the closed-
or open-shell character of the system. While the HFB state
trivially goes to a Slater determinant carrying A particles in
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FIG. 9. Total energy curve of 18O (left column), 22O (center-left column), 26O (center-right column), and 44Ca (right column) as a function
of the constraining parameter δ. Results are showed for HFB and for the two variants of BMBPT(2) (see text). Vertical dashed lines localize
the unconstrained HFB calculation.

closed-shell systems, it converges in open-shell systems to
a specific linear combination of a finite number of Slater
determinants, among which only a subset carries the physi-
cal particle number A. Consequently, and in spite of being
obtained through a zero-pairing limit, the corresponding state
carries a nonzero pairing energy and a nonzero particle-
number variance acting as the lower bound accessible within
the manifold of appropriate HFB states. From a general per-
spective, the present analysis demonstrates that HFB theory
does not reduce to HF when the pairing field is driven to zero
in the HFB Hamiltonian matrix.

All the characteristics of the HFB state predicted analyti-
cally in the zero-pairing limit have been validated numerically
for a selected set of representative nuclei. Calculations were
performed on the basis of a realistic two-nucleon interaction
derived within the frame of chiral effective field theory but are
actually generically valid.

Eventually, the consequences of taking the zero-pairing
of the HFB state on expansion many-body methods built on
top of it, e.g., Bogoliubov many-body perturbation theory,
have been further illustrated. While BMBPT smoothly goes
to standard, i.e., Slater-determinant-based, many-body pertur-
bation theory for closed-shell systems, it becomes ill-defined
for open-shell systems when taking the zero-pairing limit.

It will be interesting to extend the investigation of the
zero-pairing limit to the finite-temperature Hartree-Fock-
Bogoliubov formalism in the future.
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APPENDIX A: USEFUL FORMULAE

Newton’s binomial formula along with its first and second
derivatives with respect to x provide three useful identities

(x + y)n =
n∑

k=0

(
k

n

)
xkyn−k , (A1)

n(x + y)n−1 =
n∑

k=1

(
k

n

)
k xk−1yn−k , (A2)

n(n − 1)(x + y)n−2 =
n∑

k=2

(
k

n

)
k(k − 1)xk−2yn−k . (A3)

APPENDIX B: MINIMAL PARTICLE-NUMBER VARIANCE

Given the second-quantized form of A, the average
particle-number variance associated with a Bogoliubov state
is easily obtained via Wick’s theorem under the form

VAR|�〉 =
∑
αβ

(κ∗
αβκαβ − ρβαραβ ) +

∑
α

ραα

= −Tr[κκ∗] − Tr[ρ2] + Tr[ρ] , (B1)

which is a positive or null quantity. Resorting to the unitarity
of the Bogoliubov transformation [1], the identity

−Tr[κκ∗] + Tr[ρ2] − Tr[ρ] = 0 (B2)

can be proven and added (2α − 1) times, with α an arbitrary
real number, to Eq. (B1) to generate the alternative expression

VAR|�〉 ≡ −2αTr[κκ∗] + 2(1 − α)(Tr[ρ] − Tr[ρ2]) . (B3)

This procedure allows one to vary the proportion with which
the terms depending on normal or anomalous density matrices
contribute to the particle number variance. Choosing α = 0,
an expression depending solely on the normal density matrix
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is conveniently obtained

VAR|�〉 = 2(Tr[ρ] − Tr[ρ2])

= 2

( ∑
k

v2
k −

∑
kk′

v2
k v

2
k′

)
, (B4)

where the latter expression results from using the canonical
basis.

Next, the differential form of the particle-number variance
under an infinitesimal variation of the canonical pairing field
matrix elements is computed:

δVAR|�〉 =
∑

kk′>0

δVAR|�〉
δ
kk̄′

δ
kk̄′

=
∑

kk′>0

∑
l>0

δVAR|�〉
δv2

l

δv2
l

δ
kk̄′
δ
kk̄′

=
∑
k>0

(εk − λ)2|
k|
[(εk − λ)2 + 
2

k]2
δ|
k|, (B5)

where the partial derivatives at play have been obtained using
both Eqs. (B4) and (9)

δVAR|�〉
δv2

l

= 2
(
1 − 2v2

l

)

= 2(εl − λ)√
(εl − λ)2 + 
2

l

, (B6a)

δv2
l

δ
kk̄′
= (εk − λ)|
k|

2[(εk − λ)2 + 
2
k]3/2

δkk′δkl . (B6b)

Consequently, the particle-number variance is an increas-
ing function of each of the canonical pairing gap matrix
elements and takes its minimum value when all these pair-
ing gap matrix elements go to zero, i.e., in the zero-pairing
limit. While the actual value of the particle-number variance
reached in the zero-pairing limit does depend on the situation,
i.e., on the particle number A and the (symmetry of the)
canonical spectrum, as discussed at length in the body of the
paper, this value acts as a lower bound within the manifold
of HFB states characterized by a given symmetry and a given
average particle number A.
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