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Effects of pairing correlation on the quasiparticle resonance in neutron-rich Ca isotopes
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We investigated the effects of the pairing correlation on the quasiparticle resonant energy and width in the
neutron-rich Ca isotopes by using the self-consistent continuum Skyrme Hartree-Fock-Bogoliubov theory with
Green’s function method. The resonant energy and width can be read from three kinds of quasiparticle spectra,
including the quasiparticle-state probability density, the occupation probability density, and the pair probability
density. The results read from different quasiparticle spectra calculated with the same potential are exactly the
same for the narrow resonances, while for the broad resonances, the difference among the results are relatively
larger. From the comparison between the quasiparticle-state probability density calculated with and without the
pairing field, we could separate the effect only from the pairing correlation on the quasiparticle resonances.
We found that the pairing correlation can increase the resonant energy and width for both the hole-like and
particle-like quasiparticle resonances. And this increase is larger when the state is closer to the Fermi energy,
especially for the particle-like quasiparticle resonance originated from the unbound single-particle states with
smaller angular momentum l in weakly bound nucleus.
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I. INTRODUCTION

With the exploration toward the nuclear drip line, people
found that the continuum states could play a delicate role
in the nucleus far from the β-stability line [1–4]. In these
neutron-rich nucleus, since the Fermi energy is very close to
the continuum threshold, the pairing correlation could scat-
ter the neutrons to not only the weakly bound orbits but
also the continuum states [5–9]. In particular, the low-lying
resonant state therein with a small angular momentum l could
play an important role in the halo phenomena, due to its
extended wave function [7,10]. Moreover, in the collective
excitation motion such as the giant resonances, the important
contribution of the continuum states mainly comes from the
single-particle resonances [11,12].

There have been many theoretical methods which can be
used to study the single-particle resonant states in a given
nuclear potential based on the mean-field model, such as the
R matrix theory [13], scattering phase-shift method [14–19],
the Jost function method [20], the real stabilization method
(RSM) [21–24], the analytic continuation in the coupling
constant method (ACCC) [25–30], and the complex scaling
method (CSM) [31–35]. One could also work in the complex
momentum representation to search for single-particle reso-
nances [36–39].

On the other hand, since the continuum level density (den-
sity of states) is connected to the scattering S matrix, it can
be also used to search for the resonances. The level density
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can be calculated by the single-particle Green’s function for
Schrödinger equation [40,41]. Recently, the density of states
calculated by the Green’s function is used to investigate the
single-particle resonance in the relativistic mean-field theory
[42,43]. By imposing the proper boundary conditions on the
wave functions, the Green’s function thus constructed on the
complex energy plane can calculate the level density for both
the bound and resonant states on the same footing. Besides,
the Green’s function can be adopted in the CSM [44–46] and
combined with the complex momentum representation [47] to
investigate the nuclear single-particle resonances.

While approaching the drip line, the single-particle reso-
nances in the mean field could be influenced by the pairing
correlation. Conversely, resonances with certain widths could
also influence the mean-field and pairing properties of
drip-line nucleus. Therefore, it is necessary to describe
the resonances in a self-consistent approach which could
unify both the mean-filed and pairing correlation. In the
mean-field models, the pairing correlation can be treated
with Bardeen-Cooper-Schrieffer (BCS) approximation plus
Hartree-Fock (HF) approach or the Hartree-Fock-Bogoliubov
(HFB) approach. The conventional BCS approximation is not
applicable for the neutron-rich nucleus, where the continuum
states are involved [5,48]. Therefore, in Refs. [9,10,49,50]
the BCS approximation was extended to include the reso-
nant part of continuum through a generalized level density.
It is found that the widths of resonant states have an im-
portant effect on the pairing properties of nuclei close to
the drip line. Besides, the BCS approximation was also
applied in the ACCC method [51,52] and the Berggren
representation [53–56] to include the resonance states in
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the mean-field calculations for the description of neutron-
rich nuclei. It is worth mentioning that there have been
many methods proposed to overcome the drawbacks of
the BCS approximation to solve the pairing Hamiltonian
in the continuum, such as by using the Richardson solu-
tions [50,57,58] and the configuration-space Monte Carlo
approach [59].

The HFB approach in the coordinate space [60,61] is
another powerful tool to unify the description of the mean-
field and pairing correlations [5,7,48,62–68]. The Bogoliubov
quasiparticle resonances have been investigated by several
theoretical methods, such as the scattering phase-shift method
[69–72], the RSM [73,74], the Jost function method [75], and
Gamow HFB method [76]. In particular, with Woods-Saxon
type HF and pair potentials, Refs. [71,72,75] investigated the
effects of the pairing correlation and the depths of the HF
potential on the quasiparticle resonances. Generally speaking,
they found that pairing correlation will increase both the reso-
nant energy and width. However, compared at a fixed resonant
energy, Ref. [71] found that the pairing correlation has the
effect of reducing the width of particle-like quasiparticle res-
onance in weakly bound nuclei.

Since the Green’s function is useful to treat the continuum
states, it was also introduced to the HFB theory [77,78]. To
take into account the continuum effects on the nuclear prop-
erties self-consistently, the Green’s function was applied in
the HFB theory by using the cutoff local energy-density func-
tional together with gradient pairing force [79], and Skyrme
functional with density-dependent delta interaction (DDDI)
for pairing [80–82]. Here the HFB Green’s function is con-
structed by the quasiparticle wave functions with the proper
boundary conditions for the continuum states. The particle
and pair densities are calculated by the HFB Green’s function
and thus have appropriate asymptotic behaviors to describe
the drip-line nuclei. In this way, both the resonant and nonres-
onant continuum states can contribute to the energy density
functional self-consistently. At the same time, the quasiparti-
cle resonance can be identified from the continuum spectral
densities [79], or the occupation number density and pair
number density [81,83].

In order to further analyze the effects of the pairing cor-
relation on the weakly bound or the resonant single-particle
states, the quasiparticle representation could be transformed
into the canonical basis which can give better understanding
of the level structure. We have done this by diagonalizing
the density matrix constructed by the HFB Green’s function

[84]. Then, taking the neutron-rich nucleus 66Ca as a numer-
ical example, we investigated the effects of mean-field and
pairing correlations on the quasiparticle resonances therein
[85]. We found that all the quasiparticle resonances originated
from the deeply bound, weakly bound and positive-energy
single-particle resonant states, are mainly contributed by the
mean-field potential. The pair potential helps to slightly in-
crease the resonant energy and width.

Recently, the neutron-rich Ca isotopes have obtained much
attention in the experiment exploration toward the neutron
drip line. The new shell closure was found in A = 52 and/or
A = 54 [86–89]. The masses have been measured up to A =
57 [86,88]. The newly observed nucleus 60Ca even indicates
the existence of 70Ca [90]. Theoretically, the density func-
tional theory with several Skyrme functionals also predicted
the drip line of Ca isotopes could be around 70Ca [91]. Con-
sidering both the experimental information and global mass
models aided by Bayesian machine learning, the two-neutron
drip line could be extended up to 72Ca [92].

In this paper, we will further investigate the effects of
the pairing correlation on the quasiparticle resonant energy
and width within the self-consistent continuum Skyrme HFB
theory with Green’s function method. Specifically, we will
take the neutron-rich Ca isotopes as examples, and inves-
tigate the effects of the pairing correlation on quasiparticle
resonances originated from different single-particle states as
the Fermi energy approaches the continuum threshold. For
those particle-like quasiparticle resonances originated from
the single-particle resonance in the continuum which already
has a width without pairing, we will try to separate the con-
tribution only from the pairing correlation. In Sec. II, the
calculation details will be listed. Then the bulk properties
of 54−66Ca, such as the two-neutron separation energy and
the canonical single-particle energies will be presented in
Sec. III A. The evolution of the quasiparticle spectra, to-
gether with the resonant energy and width thus obtained as
the Fermi energy approaches the continuum threshold, and
as a function of the pairing strength will be discussed in
Sec. III B and III C, respectively. Finally, a summary is given
in Sec. IV.

II. THEORETICAL METHOD

The HFB theory for finite nuclear system was formulated
first in Ref. [61]. In the coordinate space, the HFB equation
for the quasiparticle states can be written as [5]

∫
dr′ ∑

σ ′

[
h(rσ, r′σ ′) − λδ(r − r′)δσσ ′ h̃(rσ, r′σ ′)

h̃∗(rσ̃ , r′σ̃ ′) −h∗(rσ̃ , r′σ̃ ′) + λδ(r − r′)δσσ ′

]
φi(r′σ ′) = Eiφi(rσ ), (1)

where Ei is the quasiparticle energy, φi(rσ ) =
[ϕ1,i(rσ ), ϕ2,i(rσ )]T is the corresponding quasiparticle wave
function, and λ is the Fermi energy. With Skyrme functionals,
the explicit expressions of p-h and p-p single-particle
Hamiltonians h and h̃ with the HF potential and pairing
potential respectively can be found in Refs. [5,93]. For the

spherical system, the quasiparticle wave function can be
represented as

φi(rσ ) = 1

r

[
ϕ1,l j (r)

ϕ2,l j (r)

]
Yl jm(r̂σ ). (2)
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With the help of the HFB Green’s function [77,78], the radial
local particle and pair densities can be calculated as [81]

ρ(r) = 1

4πr2

∑
l j

(2 j + 1)
1

2π i

∮
CE

dEG11
0,l j (r, r, E ), (3a)

ρ̃(r) = 1

4πr2

∑
l j

(2 j + 1)
1

2π i

∮
CE

dEG12
0,l j (r, r, E ), (3b)

where G11
0,l j (r, r, E ) and G12

0,l j (r, r, E ) are “11” and “12”
components of the radial HFB Green’s functions, respec-

tively. The HFB Green’s function is constructed by the
quasiparticle wave functions obtained by Eq. (1) with scat-
tering boundary condition for the continuum state with E >

|λ|. As a result, the densities thus obtained have appropriate
asymptotic behaviors to describe the extensive density distri-
bution of the nuclei near the drip line [82]. Moreover, the full
continuum states, including the resonant states with certain
width can contribute to the densities and thus to the energy
density functionals self-consistently.

In the calculation, we chose the SLy4 [94] parameter
set for the HF mean field and the DDDI for the pairing

field,


(r) = 1

2
V0

[
1 − η

(
ρq(r)

ρ0

)α]
ρ̃q(r), q = n or p, (4)

where ρq(r) and ρ̃q(r) are the local particle and pair den-
sities, respectively. The parameter V0 = −458.4 MeV fm−3

is chosen together with the energy cutoff Ecut = 60 MeV
to reproduce the neutron-neutron scattering length a =
−18.5 fm in the free space [95]. The parameters η =
0.71 and α = 0.59 were adjusted for Sn isotopes [96],
which can also give the reasonable average pairing gaps
for most of the Ca isotopes with SLy4. The angular mo-
mentum cutoff is j = 19/2. The calculation was carried
out with the box size R = 20 fm and the mesh size

r = 0.1 fm.

To search for the quasiparticle resonance for a given l j
partial wave, one could examine the spectrum as a function
of the quasiparticle energy, such as the quasiparticle states
number density nκ (E ), the occupation number density nv (E ),
and the pair number density ñu(E ) as in Refs. [42,81,82],

nκ (E ) = 2 j + 1

π
Im

∫
dr

[G11
0,l j (r, r,−E − iε) + G22

0,l j (r, r,−E − iε)
] ≡ (2 j + 1)Sκ (E ), (5a)

nv (E ) = 2 j + 1

π
Im

∫
dr G11

0,l j (r, r,−E − iε) ≡ (2 j + 1)Sv (E ), (5b)

ñu(E ) = 2 j + 1

π
Im

∫
dr G12

0,l j (r, r,−E − iε) ≡ (2 j + 1)Su(E ). (5c)

The quasiparticle-state probability density Sκ (E ), occupa-
tion probability density Sv (E ), and the pair probability density
Su(E ) newly defined in the above equations have similar phys-
ical meaning as nκ , nv, ñu but without the degeneracy factor
(2 j + 1).

To plot the quasiparticle spectra for the densities
Sκ (E ), Sv (E ), Su(E ), the energy step is taken as 
E =
0.001 MeV, with a smoothing parameter ε = 0.005 MeV to
visualize the δ-like peaks for the discrete states and nar-
row resonances. A quasiparticle resonance could be identified
from the peak structure in these spectra if its centroid energy
is larger than the quasiparticle continuum threshold −λ, and
its width � can be read from the full width of half maxi-
mum (FWHM) of the peak subtracting the smoothing value
2ε. In addition, to extract the peak centroid energy and the
width from the quasiparticle-state probability density Sκ , one
has to remove the background of the nonresonant continuum
by subtracting the free-particle spectrum calculated with no
potentials as in Ref. [42,85].

III. RESULTS AND DISCUSSIONS

In the following discussions, we will take the neutron-rich
Ca isotopes as examples to investigate their bulk properties

and the quasiparticle resonances therein, especially the effects
of the pairing correlation on these resonances.

A. Properties of neutron-rich Ca isotopes

First, the two-neutron separation energy S2n of
48,50,52,...,68Ca isotopes calculated by the self-consistent
Skyrme HFB theory with Green’s function method, and the
experimental data [88,97] for A = 48–57 are shown in Fig. 1.
We found that, with the present interaction SLy4 and DDDI,
the calculated two-neutron separation energy is consistent
with the experimental data up to A = 56, as also shown in
Ref. [86]. The largest difference between the theoretical
results and the experimental data is around 1 MeV. Our
present calculation further shows that the two-neutron drip
line is 66Ca, which is lighter than the experimental expectation
70Ca [90] and other theoretical predictions 70Ca [91] or 72Ca
[92]. With a close look at the sudden drop of the two-neutron
separation energy, the shell closures are found at A = 48, 52,
and 60 but not obvious at 54.

In order to have a better understanding of the shell struc-
ture, we show the canonical neutron single-particle levels
around the Fermi energy within −10 ∼ +10 MeV for 54−66Ca
in Fig. 2. Obviously, as the neutron number increases, all
the levels fall down, but the Fermi energy raises up from
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FIG. 1. Two-neutron separation energy S2n of 48−68Ca isotopes
calculated by the self-consistent Skyrme HFB theory with Green’s
function method. The experimental data [88,97] for A = 48–57 are
shown as squares. The insert shows the difference between the cal-
culated S2n and the experimental data.

−3.5 MeV to −0.2 MeV. The energy gap δe2p ≈ 2 MeV
between 2p3/2 and 2p1/2 is comparable with the gap δep f

between 2p1/2 and 1 f5/2 at A = 54. As the neutron number
increases, the gap δep f shrinks obviously, while the gap δe2p

remains. The energy gap between 1 f5/2 and 1g9/2 is nearly
4 MeV and also remains as neutron number increases. There-
fore, the shell closure at A = 60 is quite prominent.

Below the Fermi energy, the levels 2p1/2 and 2p3/2 are
bound and occupied. The level 1 f5/2 is bound but above the
Fermi energy at A = 54, 56. The level 1g9/2 is not bound
up to A = 62, and falls into a weakly bound level at A =
64, 66, which are quite close to the Fermi energy. More
highly above, there are levels 2d3/2, 2d5/2, and 3s1/2. All these

FIG. 2. The neutron single-particle energies for 54−66Ca around
the Fermi energy λ.

single-particle levels are transformed into the Bogoliubov
quasiparticle states in the HFB approach.

In Table I, we list the neutron Fermi energy λ and the
average pairing gaps 
̄ for the neutron-rich isotopes 54−66Ca.
For the canonical single-particle states 3s1/2, 2p1/2, 2d5/2, and
1g9/2 in these nuclei, we list the following information: the top
of the HF potential barrier (including the centrifugal potential)
Vmax, the canonical single-particle energy εcan

i , the energy
distance between the canonical single-particle energy and the
Fermi energy |εcan

i − λ|, the state-dependent pairing gap 
i,
the occupation probability v2

i (= 1 − u2
i ), and the factor uivi.

The occupation probability v2
i and the wave function of the

canonical basis �i are obtained by diagonalization of the den-
sity matrix constructed by the HFB Green’s function [84]. The
canonical single-particle energy is the expectation value of
the single-particle hamiltonian on the canonical wave function
εcan

i = 〈�i|h|�i〉. For the states with v2
i ≈ 1 within the same

l j, such as the 1p1/2 and 2p1/2 (listed in Table I) states in
60Ca, the single-particle hamiltonian h should be additionally
diagonalized in the subspace of these two canonical bases to
get the final canonical energy and the wave functions [84]. The
state-dependent pairing gap is calculated by 
i = 〈�i|
|�i〉
[93].

The average pairing gaps 
̄ in 54−66Ca are all about
1 MeV, except that at the shell closure 60Ca with N = 40.
On may notice that the average pairing gap 
̄ = 0.468 MeV
in 60Ca is a bit large for a closed shell nucleus, obtained by
the present pairing parameters η = 0.71 and α = 0.59. We
have checked that with a larger η (corresponding to a smaller
pairing strength), this average pairing gap will be exactly zero
in 60Ca. However, since we mentioned that these parameters
η = 0.71 and α = 0.59 can give the reasonable pairing gaps
for most of the Ca isotopes, we use them to do the analysis
here.

For the canonical state 3s1/2, its energy is always posi-
tive but falls down quickly as the neutron number increases.
The state-dependent pairing gap, 
i ≈ 0.7–0.8 MeV (ex-
cept 60Ca, and we will not mention this exception in the
following discussions), is obviously smaller than the av-
erage pairing gap. As this 3s1/2 level gets closer to the
Fermi energy, its occupation probability v2

i and uivi increase
obviously although it has a positive energy with no centrifu-
gal barrier. This is because the pairing correlation provides
the additional attraction to hold neutrons at the 3s1/2 state
in the continuum. For the bound state 2p1/2, its canonical
energy falls from −3.8 MeV to −5.4 MeV, while its bar-
rier top Vmax ≈ 0.5 MeV almost unchanged. This level is
first close to the Fermi energy, then falls more and more
deeply bound. Its occupation probability increases fast and
then saturates around 0.98. The level 2d5/2 always has a
positive energy above its barrier top Vmax. Similarly to the
3s1/2 state, as it falls down closer to the Fermi energy, its
occupation probability v2

i and uivi increase obviously. But
the state-dependent pairing gap is around 1 MeV, generally
larger than that of 3s1/2. Therefore, at 66Ca, although the
level 2d5/2 is a bit higher than 3s1/2, its occupation prob-
ability is still larger than 3s1/2. The level 1g9/2 falls from
a positive-energy level to a weakly bound level, which is
much below its barrier top Vmax ≈ 7 MeV. Its state-dependent
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TABLE I. Neutron Fermi energy λ and the average pairing gaps 
̄ for 54−66Ca. For the canonical single-particle states 3s1/2, 2p1/2, 2d5/2,
and 1g9/2, the barrier top of the HF plus centrifugal potential Vmax, the canonical single-particle energies εcan

i , the distance between the canonical
single-particle energies and the Fermi energy |εcan

i − λ|, the state-dependent pairing gap 
i, the occupation probability v2
i , and the factor uivi

are listed. All the values except the factors v2
i and uivi are in MeV.

A 54 56 58 60 62 64 66

λ −3.493 −2.939 −2.644 −1.939 −0.817 −0.471 −0.259

̄ 0.942 1.176 1.116 0.468 1.132 1.237 1.188

3s1/2 εcan
i 6.276 5.687 5.127 4.166 2.788 2.125 1.594

|εcan
i − λ| 9.769 8.626 7.771 6.105 3.920 2.596 1.853

i 0.722 0.863 0.809 0.332 0.758 0.802 0.742
v2

i 0.0013 0.0025 0.0027 0.0007 0.0107 0.0223 0.0359
uivi 0.0368 0.0498 0.0518 0.0271 0.1029 0.1475 0.1859

2p1/2 Vmax 0.552 0.536 0.522 0.510 0.504 0.495 0.486
εcan

i −3.856 −4.137 −4.408 −4.756 −4.936 −5.176 −5.447
|εcan

i − λ| 0.363 1.198 1.764 2.817 4.119 4.705 5.188

i 0.886 1.065 1.008 0.429 1.093 1.232 1.219
v2

i 0.6895 0.8702 0.9341 0.9943 0.9833 0.9837 0.9867
uivi 0.4627 0.3360 0.2482 0.0754 0.1283 0.1267 0.1144

2d5/2 Vmax 1.950 1.895 1.850 1.808 1.782 1.754 1.725
εcan

i 4.859 4.374 3.942 3.309 2.626 2.242 1.906
|εcan

i − λ| 8.352 7.313 6.586 5.248 3.443 2.713 2.165

i 0.854 1.027 0.964 0.401 0.977 1.083 1.060
v2

i 0.0026 0.0049 0.0053 0.0015 0.0190 0.0356 0.0509
uivi 0.0508 0.0695 0.0724 0.0381 0.1365 0.1854 0.2199

1g9/2 Vmax 7.956 7.747 7.565 7.402 7.298 7.189 7.087
εcan

i 1.809 1.462 1.023 0.426 0.203 −0.081 −0.408
|εcan

i − λ| 5.302 4.401 3.667 2.365 1.020 0.390 0.149

i 1.137 1.407 1.327 0.553 1.354 1.495 1.452
v2

i 0.0111 0.0238 0.0298 0.0131 0.1991 0.3736 0.5510
uivi 0.1048 0.1523 0.1701 0.1139 0.3994 0.4838 0.4974

pairing gap 
i ≈ 1.1–1.4 MeV is generally larger than
others. In the following, we will take these canonical states
near the Fermi energy as examples to investigate their corre-
sponding quasiparticle spectra, especially the pairing effects
therein.

B. Evolution of quasiparticle resonance as Fermi energy

In Figs. 3–6, we show the neutron quasiparticle spec-
tra respectively for s1/2, p1/2, d5/2, g9/2 partial waves in the
neutron-rich nuclei 54,60,62,66Ca within the energy interval
E = 0–10 MeV, including the quasiparticle-state probability
density Sκ , the occupation probability density Sv and the pair
probability density Su. These spectra are calculated by the
HFB Green’s function as in Eqs. (5) with both the HF and
pair potentials (denoted by the “HFB spectrum” for short in
the following), only with HF potential (denoted by the “HF
spectrum”), only with pair potential (denoted by the “pair
spectrum”) and with no potentials (denoted by the “free-
particle spectrum”). In the occupation probability density Sv

and the pair probability density Su, the free-particle spectrum
is zero since the neutrons are impossible to stay at one state
and make pairs there without any potentials. Similarly, in the
pair probability density Su, the HF spectrum is zero since
neutrons cannot make pairs without pair potential.

In Figs. 3–6, one could recognize some sharp peak struc-
tures which may correspond to quasiparticle resonances. In
Table II, we list the peak centroid energies and the widths
read from the three densities Sκ , Sv, Su, respectively, for
p1/2, d5/2, g9/2 partial waves in 54−66Ca. More explicitly, the
peak centroid energy (width) read from the HFB spectrum
and the HF spectrum of the quasiparticle-state probability
density Sκ are Eκ

HFB(�κ
HFB) and Eκ

HF(�κ
HF), respectively. The

difference between the widths �κ
HFB and �κ

HF should be con-
tributed only from the pairing correlation, so we denote it as

�κ

pair in the following. Those read from the peaks (if there is)
in the occupation probability density Sv are E v

HFB(�v
HFB) and

E v
HF(�v

HF), together with the width difference 
�v
pair. In the

pair probability density Su, since there is no HF spectrum, we
list only the results read from the HFB spectrum Eu

HFB(�u
HFB).

1. Unbound s1/2 states

First, from Fig. 3 for the s1/2 partial wave, we can see
that the absolute value of the density of quasiparticle states
Sκ is 10 times larger than those of the occupation probability
density Sv and the pair probability density Su. But in the
density Sκ , there is a large contribution from the continuum
background near the threshold −λ, where the free-particle
spectrum suddenly appears. In contrast, the densities Sv and
Su do not have such free-particle background. One may notice
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FIG. 3. Neutron quasiparticle spectra for s1/2 partial wave in the neutron-rich nuclei 54,60,62,66Ca within the energy interval E = 0–10 MeV,
including the quasiparticle-state probability density Sκ [(a)–(d)], the occupation probability density Sv [(e)–(h)], and the pair probability density
Su [(i)–(l)]. The spectra are calculated by the HFB Green’s function with both the HF and pair potentials (solid line), only with the HF potential
(dashed line), only with the pair potential (dash-dotted line), and with no potentials (dotted line).

that the free-particle background in Sκ is even larger than other
spectra near the threshold. It was explained in Ref. [42] that
this large peak of free-particle spectrum near the threshold
could be related to the divergent behavior of the density of
states n(ε) = L

π h̄

√ m
2ε

when ε → 0 for free-particle moving
in one dimension box [0, L]. This much larger free-particle
background around the threshold is also found in the p1/2

partial wave later but not in d5/2 and g9/2 partial waves where
there are resonances near the threshold.

One can see from Sκ in Figs. 3(a)–3(d) that the quasi-
particle continuum threshold −λ approaches zero as the
neutron number increases. From these spectra shown within
0–10 MeV, we cannot recognize any resonances in the
quasiparticle-state probability density Sκ after subtracting the
free-particle background. The state 3s1/2 listed in Table I is
one of the canonical states with positive energies, not cor-
responding to any quasiparticle resonance with the pairing
correlation. In spite of this, we can see a bump (not symmetric
peak) in the HFB spectra of Sv and Su near the threshold
−λ in Figs. 3(e)–3(l). This shows that as the neutron number
increases and the Fermi energy approaches zero, more neu-
trons could be scattered to the continuum in the s1/2 partial
wave near the threshold and make pairs there. It is impossible
without pairing correlation since the HF spectra therein are
exactly zero. This is consistent with the increasing occupation
probability v2

i and uivi found in the 3s1/2 state as listed in
Table I. Moreover, it is interesting to see from the pair spectra
of Sv and Su that, even with only pair potential (e.g., in the

asymptotic region where the mean-field potential almost van-
ishes, but the pair potential may retain), there could also be
neutron pairs in the quasiparticle continuum in the s1/2 partial
wave near the threshold. And this is more obvious when the
Fermi energy approaches zero.

Actually, the resonant-like increase of occupation in the
s wave near the continuum threshold was first observed in
Ref. [69], then discussed in detail in Ref. [98], and also found
in d wave in Ref. [99]. This has an important implication that
the low-lying nonresonant continuum can contribute to the
formation of the ground state of the weakly bound nucleus.

2. Bound 2p1/2 state

For the p1/2 partial wave, let us first focus on the
quasiparticle-state probability density Sκ in 54Ca shown in
Fig. 4(a). We can see that the quasiparticle continuum thresh-
old −λ is around 3 MeV. There is a sharp peak in the HFB
spectrum before this threshold. After subtracting the free-
particle background, we could read the peak centroid energy
and the width Eκ

HFB(�κ
HFB) = 0.936(0.001) MeV as listed in

Table II. Since the centroid energy is smaller than the thresh-
old −λ, this peak represents a discrete (bound) quasiparticle
state. Actually, this discrete quasiparticle state originates from
the bound 2p1/2 close to the Fermi energy as shown in Fig. 2
and Table I. The width is not exactly zero for such a discrete
quasiparticle state, since the energy step to plot the spectra is

E = 0.001 MeV, which may induce an uncertainty in width
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TABLE II. Peak centroid energies E and widths � obtained from the quasiparticle spectra of the partial waves p1/2, d5/2, g9/2 within
the energy region E = 0–10 MeV for 54−66Ca. E κ

HF(�κ
HF ) and E κ

HFB(�κ
HFB) are read from the HF and HFB spectrum of the quasiparticle-state

probability density Sκ respectively. E v
HF(�v

HF ) and E v
HFB(�v

HFB) are those read from the occupation probability density Sv , and Eu
HFB(�u

HFB) from
the pair probability density Su. The columns 
�κ

pair and 
�v
pair list the difference between the widths read from the HF and HFB spectrum of

Sκ and Sv , contributed only from the pairing correlation. All the quantities are in MeV.

Sκ Sv Su

E κ
HF(�κ

HF ) E κ
HFB(�κ

HFB) 
�κ
pair E v

HF(�v
HF ) E v

HFB(�v
HFB) 
�v

pair Eu
HFB(�u

HFB)

p1/2
54Ca 0.362(0.001) 0.936(0.001) 0.000 0.362(0.001) 0.936(0.001) 0.000 0.936(0.001)
56Ca 1.175(0.000) 1.567(0.001) 0.001 1.175(0.001) 1.567(0.001) 0.000 1.567(0.001)
58Ca 1.764(0.001) 2.015(0.001) 0.000 1.764(0.001) 2.015(0.001) 0.000 2.015(0.001)
60Ca 2.816(0.001) 2.845(0.006) 0.005 2.816(0.001) 2.845(0.006) 0.005 2.845(0.006)
62Ca 4.119(0.001) 4.260(0.037) 0.036 4.119(0.001) 4.260(0.037) 0.036 4.260(0.037)
64Ca 4.705(0.001) 4.866(0.032) 0.031 4.705(0.001) 4.866(0.032) 0.031 4.866(0.032)
66Ca 5.188(0.001) 5.332(0.020) 0.019 5.188(0.001) 5.332(0.020) 0.019 5.332(0.020)

d5/2
54Ca 5.718(1.418) 5.739(1.402) −0.016 — 5.846(2.419) — 5.810(2.150)
56Ca 5.023(1.524) 5.064(1.500) −0.024 — 5.092(1.978) — 5.067(1.854)
58Ca 4.556(1.534) 4.610(1.536) 0.002 — 4.601(1.670) — 4.581(1.572)
60Ca 3.582(1.446) 3.603(1.457) 0.011 — 3.643(1.404) — 3.636(1.233)
62Ca 2.246(1.307) 2.467(1.422) 0.115 — 2.489(1.172) — 2.477(1.153)
64Ca 1.744(1.020) 2.002(1.316) 0.296 — 2.064(1.036) — 2.053(1.033)
66Ca 1.406(0.699) 1.647(1.119) 0.420 — 1.737(0.880) — 1.729(0.881)

g9/2
54Ca 5.009(0.006) 5.122(0.007) 0.001 — 5.122(0.008) — 5.122(0.008)
56Ca 4.174(0.003) 4.382(0.005) 0.002 — 4.382(0.005) — 4.382(0.005)
58Ca 3.500(0.002) 3.722(0.002) 0.000 — 3.722(0.002) — 3.722(0.002)
60Ca 2.288(0.001) 2.350(0.001) 0.000 — 2.350(0.001) — 2.350(0.001)
62Ca 0.992(0.001) 1.656(0.001) 0.000 — 1.656(0.001) — 1.656(0.001)
64Ca 0.377(0.001) 1.519(0.002) 0.001 0.377(0.001) 1.519(0.002) 0.001 1.519(0.002)
66Ca 0.155(0.001) 1.442(0.002) 0.001 0.155(0.001) 1.442(0.002) 0.001 1.442(0.002)

reading. The HF spectrum of the density Sκ also shows a
sharp peak before the threshold −λ, whose centroid energy
and width is Eκ

HF(�κ
HF) = 0.362(0.001) MeV. It is interesting

to notice that this centroid energy is almost the same with
the energy distance between the corresponding canonical state
and the Fermi energy |εcan

i − λ| = 0.363 MeV as listed in
Table I. This is easy to understand that, according to the
BCS approximation E =

√
(ε − λ)2 + 
2, without the pair-

ing gap (
 = 0), the quasiparticle energy is just the shifted
single-particle energy ε by E = |ε − λ|. The further shift of
the peak centroid energy from HF to HFB spectra could be
also understood by the BCS approximation due to the addition
of 
. This demonstrates that the BCS approximation works
well for such a bound single-particle state and the correspond-
ing quasiparticle state.

Similarly, from Fig. 4(e) we can also see two peaks in the
HF and HFB spectra of the occupation probability density
Sv , which means that once with the HF potential, this state
could be always occupied. Indeed, it corresponds to the bound
single-particle state 2p1/2 below the Fermi energy as we men-
tioned. The peak centroid energy read from the HF and HFB
spectra of Sv listed in Table II are exactly the same as those
read from Sκ . In Fig. 4(i) for the pair probability density Su,
only the HFB spectra has a sharp peak. This peak centroid
energy is also the same as those read from the HFB spectra of
Sκ and Sv .

As the neutron number increases, the sharp peaks in the
three densities shifts to the higher energy region, while the
quasiparticle continuum threshold −λ moves toward zero.
In nucleus 60Ca, as shown in Fig. 4(b), the peak of Sκ

has passed through the threshold −λ. The peak centroid
energy and the width read from the HF and HFB spec-
tra are Eκ

HF(�κ
HF) = 2.816(0.001) MeV and Eκ

HFB(�κ
HFB) =

2.845(0.006) MeV, respectively. Both the centroid ener-
gies are larger than the threshold −λ = 1.9 MeV, denoting
that they are now quasiparticle resonant states. One should
notice that, the single-particle state 2p1/2 is still bound
below the Fermi energy, so the corresponding quasiparticle
resonance is a “hole-like” quasiparticle resonance [71]. In
this case, the width read from the HFB spectra �κ

HFB should
be contributed only from the continuum coupling due to
the pairing correlation. One can see that the width 
�κ

pair =
0.005 MeV is rather small, since the average pairing gap

̄ = 0.5 MeV is quite small in this closed shell nucleus 60Ca.
As discussed in Ref. [71], for a hole-like quasiparticle res-
onance, its width is proportional to the average pairing gap

̄2 according to the Fermi’s golden rule. From the occupa-
tion probability density Sv and the pair probability density Su

shown in Figs. 4(f) and 4(j), exactly the same quasiparticle
resonant energy and width can be read from their HFB spec-
tra, as listed in Table II. This shows that, for such a narrow
hole-like quasiparticle resonance, the three kinds of densities
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FIG. 4. Similar to Fig. 3 but for p1/2 partial wave.

Sκ , Sv , and Su calculated with the same potential can provide
the same resonant energy and width.

With more and more neutrons in 62−66Ca, the peak of the
HFB spectra in the p1/2 partial wave in the densities Sκ , Sv ,
and Su moves higher and higher above the quasiparticle
continuum threshold. The corresponding widths contributed
only from the pairing correlation in 62,64,66Ca are 
�κ,v

pair =
0.036, 0.031, 0.019 MeV respectively read from the densities
Sκ and Sv . These widths are obviously larger than that in
60Ca, since their average pairing gap 
̄ ≈ 1.0 MeV are much
larger. Among these three nuclei, 62,64Ca have relatively larger

�κ,v

pair than 66Ca. Meanwhile, we found that the occupation

probability factors uivi of the 2p1/2 states in 62,64Ca are also
larger than that in 66Ca. It is easy to know that, for a fully
occupied state or an exactly empty state far away from the
Fermi energy, the factor uivi should have the smallest value 0,
and such states will not be affected by the pairing correlation
according to the BCS theory. While, the largest value of uivi

corresponds to the half-occupied state with v2
i = u2

i = 0.5
closest to the Fermi energy, where the pairing correlation
is the most effective. Therefore, the hole-like quasiparticle
resonance originated from the bound single-particle state with
larger uivi and closer to the Fermi energy could have a larger
width contributed from the pairing correlation.

Besides, from the pair probability density Su in the p1/2

partial wave in 62,66Ca shown in Figs. 4(k) and 4(l), it is
interesting to see that, even with only pair potential, the
pair probability density Su above the quasiparticle continuum
threshold obviously grows as the threshold approaches zero.
This is similar to what we found in s1/2 partial wave shown

in Figs. 3(k) and 3(l). This fact indicates that, the continuum
coupling effect near the threshold due to the pairing correla-
tion also happens in the p1/2 partial wave, but to a less extent
than that in the s1/2 partial wave.

3. Unbound 2d5/2 state

The quasiparticle spectra shown in Fig. 5 for the d5/2 partial
wave are quite different from those for p1/2 in Fig. 4. It is
difficult to recognize any peaks from the quasiparticle-state
probability density Sκ due to the free-particle background in
Figs. 5(a)–5(d). It is also difficult to see any peaks in the
occupation probability density Sv in 54,60Ca in Figs. 5(e) and
5(f) due to the small spectrum value. But the density Sv in
62,66Ca in Figs. 5(g) and 5(h), as well as the pair probabil-
ity density Su in Figs. 5(i)–5(l), clearly show that there is a
peak structure above the quasiparticle continuum threshold,
which represents a quasiparticle resonance. This quasiparticle
resonance originates from the unbound single-particle 2d5/2

above the Fermi energy, so it is a “particle-like” resonance
according to Ref. [71]. It cannot be occupied at all only with
the HF potential. So there is no HF spectrum in the occupation
probability density Sv in Figs. 5(e)–5(h). Even with the pairing
correlation, the HFB spectrum in Sv is almost invisible in
54,60Ca, since the single-particle state 2d5/2 is too high above
in the continuum to be scattered to by the pairing correlation.
As the neutron number increases and the state 2d5/2 falls down
closer to the Fermi energy, the peak corresponding to this
quasiparticle resonance in the density Su becomes higher and
narrower in Figs. 5(i)–5(l).
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FIG. 5. Similar to Fig. 3 but for d5/2 partial wave.

From Table I and II, we find that the energy distance be-
tween the canonical state 2d5/2 and the Fermi energy |εcan

i −
λ| is quite different from the peak centroid energy read from
the HF spectra Eκ

HF. This is different from the bound single-
particle state 2p1/2. Therefore, the BCS approximation does
not work so well for such a state high above in the continuum.
However, the shift of peak centroid energy from Eκ

HF to Eκ
HFB

demonstrates that the resonant energy does increase due to the
addition of pairing correlation. This increase is almost invisi-
ble in 54−58Ca but more obvious in 60−66Ca. This demonstrates
again that, the pairing correlation plays a more effective role
in the continuum state when this state is closer to the Fermi
energy.

In Table II, we found that the peak centroid energies and
widths E v

HFB(�v
HFB) and Eu

HFB(�u
HFB) read from the HFB spec-

tra of occupation probability density Sv and pair probability
density Su for 2d5/2 partial wave are close to each other.
However, their difference with Eκ

HFB(�κ
HFB) obtained from the

quasiparticle-state probability density Sκ are much more obvi-
ous. This shows that the resonant energies and widths of such
a broad quasiparticle resonance read from different spectra Sκ

and Sv (Su) are not that close with each other, where more
continuum coupling is involved due to the pairing correlation.

Actually, for such a single-particle state as 2d5/2 in the
continuum, it may be a single-particle resonance who already
has a width in the HF potential, including the centrifugal
barrier, which is also called as “shape resonance” [25]. Indeed,
the HF spectrum of the density of quasiparticle state Sκ shows
a peak with a finite width �κ

HF even without pairing as listed
in Table II. This width should be contributed only from the

HF mean field. One should notice that this single-particle
state 2d5/2 is always above the barrier (εcan

i > Vmax). As the
canonical energy εcan

i falls down while the Fermi energy raises
up, the width �κ

HF first increases a little bit from 54Ca to 58Ca
and then quickly decreases up to 66Ca. It is easy to understand
that the resonant width reduces as its energy decreases in a po-
tential well with finite depth (see textbook such as Ref. [100]).

Meanwhile, the total width read from the HFB spectra
�κ

HFB of the density of quasiparticle state Sκ first increases in
54−58Ca, and then decreases to 66Ca, dominated by the change
of the width �κ

HF. From the width’s difference 
�κ
pair, we can

see that in 54,56Ca, although it is almost negligible, the pairing
correlation even reduces the total width. But in 62−66Ca, the
pairing correlation obviously makes the total width increase.
Specifically, the contribution only from the pairing correlation

�κ

pair grows up to 38% of the total width in 66Ca. Table I
mentions that the occupation probability v2

i and the factor
uivi of the single-particle state 2d5/2 increase as this state gets
closer to the Fermi energy. In 66Ca with the largest 
�κ

pair, the
factor uivi also grows up to the largest value. This is similar
to what we found in the hole-like quasiparticle resonance
originated from 2p1/2. Therefore, the width of particle-like
quasiparticle resonance is also increased due to the pairing
correlation, when the state is closer to the Fermi energy. It is
also worth noting that the widths read from the HFB spectrum
of occupation probability density �v

HFB and pair probability
density �u

HFB monotonically decrease as the state 2d5/2 falls
down. But we cannot separate the contribution only from the
pairing correlation in these spectra due to the lack of the HF
spectrum.
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FIG. 6. Similar to Fig. 3 but for g9/2 partial wave.

4. From unbound to weakly bound: 1g9/2 state

The quasiparticle spectrum in Fig. 6 shows that there is
a sharp peak structure in the HFB spectrum of all the three
densities Sκ , Sv , and Su in g9/2 partial wave. The HF spectrum
in the density of quasiparticle state Sκ almost coincides with
the HFB spectrum in 54−60Ca in Figs. 6(a) and 6(b), but
they separate obviously in 62−66Ca in Figs. 6(c) and 6(d).
The HF spectrum does not appear in the occupation prob-
ability density Sv in 54−62Ca since neutrons cannot occupy
this continuum state above the Fermi energy without pairing
correlation. But when this state falls down to be weakly bound
and below the Fermi energy in 66Ca, it could be occupied and
the HF spectrum of Sv suddenly appears in Fig. 6(h).

More explicitly, Table II shows that as the single-particle
state 1g9/2 gets closer to the Fermi energy, the peak of the HF
spectrum of Sκ falls below the quasiparticle continuum thresh-
old (Eκ

HF < −λ) and becomes a bound quasiparticle state in
64,66Ca. Other peaks of HF spectrum in Sκ and all the peaks
of HFB spectrum in Sκ , Sv, Su represent the quasiparticle
resonances above the threshold −λ. Again, we found the peak
centroid energies and widths read from the HFB spectrum of
three different densities are almost the same. Besides, the peak
centroid energy Eκ

HF is close to the energy distance between
the canonical state 1g9/2 and the Fermi energy |εcan

i − λ| as
listed in Table I. This is similar to what we found in the
bound state 2p1/2, which shows that the BCS approximation
is also robust for this unbound or weakly bound state 1g9/2.
The shift of the peak centroid energy from Eκ

HF to Eκ
HFB is

larger in 62−66Ca, which shows again that the pairing effects

on the quasiparticle energy is more obvious as this state 1g9/2

is closer to the Fermi energy.
On the other hand, both the widths �κ

HF and �κ
HFB read from

the HF and HFB spectra of Sκ are rather small. Although the
state 1g9/2 is in the continuum, its width �κ

HF is very small
since this state is far below its barrier top Vmax. With the
addition of the pairing correlation, the widths �κ

HFB are still
rather small, even in the most weakly bound nucleus 66Ca.
This is obviously different from the state 2d5/2 much higher
above with a smaller pairing gap 
i, where the total width is
quite large (�κ

HFB/Eκ
HFB ≈ 70%) in 66Ca and the contribution

from the pairing correlation 
�κ
pair is almost half of the total

width.
Therefore, the increase of the quasiparticle resonance

width contributed from the pairing correlation is more obvious
for the state with smaller angular momentum l .

C. Evolution of quasiparticle resonance as the pairing strength

As we have shown in the previous section, the continuum
coupling due to the pairing is the exclusive source of the
width for the “hole-like” quasiparticle resonance. But, for
the “particle-like” quasiparticle resonance, besides the pair-
ing, the width of single-particle resonance due to the mean
field is also one important source of the width. As the mean
field changes in different Ca isotopes, the single-particle level
changes obviously, leading to the obvious change of the res-
onant energy and width. In this section, we will focus on one
neutron-rich Ca isotope, 66Ca, with the almost-fixed mean
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TABLE III. Similar to Table I but for the nucleus 66Ca and the canonical single-particle states 2p1/2 and 2d5/2 therein, calculated with
different pairing strengths η = 0.66, 0.71, 0.76, 0.80, 0.84.

η 0.66 0.71 0.76 0.80 0.84

λ −0.234 −0.259 −0.294 −0.324 −0.352

̄ 1.425 1.188 0.998 0.872 0.765

2p1/2 Vmax 0.483 0.486 0.488 0.489 0.490
εcan

i −5.610 −5.686 −5.757 −5.806 −5.849
|εcan

i − λ| 5.376 5.427 5.463 5.482 5.497

i 1.494 1.219 1.001 0.859 0.741
v2

i 0.9805 0.9867 0.9909 0.9932 0.9949
uivi 0.1384 0.1144 0.0949 0.0822 0.0714

2d5/2 Vmax 1.719 1.725 1.729 1.732 1.733
εcan

i 1.939 1.906 1.888 1.881 1.878
|εcan

i − λ| 2.173 2.165 2.182 2.205 2.230

i 1.282 1.060 0.885 0.772 0.679
v2

i 0.0694 0.0509 0.0367 0.0281 0.0217
uivi 0.2541 0.2199 0.1879 0.1653 0.1456

field, and investigate the effects of different pairing strengths
on both the “hole-like” and “particle-like” quasiparticle reso-
nances.

Table III shows the same information as in Table I
but only for 66Ca and the single-particle states 2p1/2 and
2d5/2 therein calculated with different DDDI parameters
η = 0.66, 0.71, 0.76, 0.80, 0.84 in Eq. (4). We can see that
the smaller factor η corresponds to a larger pairing strength.
Both the average pairing gaps and the state-dependent pair-
ing gaps calculated with η = 0.66 are almost twice as much
as those calculated with η = 0.84. The Fermi energy is
also raised up a little as the pairing correlation becomes
stronger. Both the potential barrier tops Vmax and the canon-
ical energies remain almost the same as the pairing strengths
changes, since they are mainly determined by the HF poten-
tial. The occupation probability v2

i of the bound single-particle
states 2p1/2 slightly decreases as the pairing strength in-
creases, while that of the unbound single-particle states 2d5/2

obviously increases. This shows that the stronger pairing cor-
relation can scatter more neutrons from bound to the unbound
states.

Accordingly, Table IV shows the same information as in
Table II but for p1/2 and d5/2 partial waves in 66Ca calculated
with different pairing strength factors η. The peak centroid
energy of the HF spectrum Eκ

HF of both the two quasiparticle
resonances almost remain the same when the pairing strength
changes. Again this is because they are determined by the
HF potential, which is almost unchanged in the calculation.
The peak centroid energy shift from Eκ

HF to Eκ
HFB due to the

addition of pairing correlation is more obvious calculated with
stronger pairing strength.

As we discussed before, for the bound single-particle state
2p1/2, the total width �κ

HFB of the corresponding hole-like
quasiparticle resonance should be all contributed from the
pairing correlation. One can clearly see that both the widths

�κ

pair and 
�v
pair are larger in the stronger pairing case.

This demonstrates that the stronger pairing correlation does
increase the width of the hole-like quasiparticle resonance,
which is consistent with the statements in Ref. [71].

For the particle-like quasiparticle resonance originated
from the single-particle state 2d5/2 in the continuum, the width
read from the HF spectrum �κ

HF almost remains the same,

TABLE IV. Similar to Table II but only for the peak centroid energy and width read from the quasiparticle spectra of the partial waves
p1/2, d5/2 in 66Ca, calculated with different pairing strengths η = 0.66, 0.71, 0.76, 0.80, 0.84.

Sκ Sv Su

E κ
HF(�κ

HF ) E κ
HFB(�κ

HFB) 
�κ
pair E v

HF(�v
HF ) E v

HFB(�v
HFB) 
�v

pair Eu
HFB(�u

HFB)

p1/2 η = 0.66 5.188(0.001) 5.405(0.040) 0.039 5.188(0.001) 5.405(0.040) 0.039 5.405(0.040)
η = 0.71 5.188(0.001) 5.332(0.020) 0.019 5.188(0.001) 5.332(0.020) 0.019 5.332(0.020)
η = 0.76 5.174(0.001) 5.270(0.010) 0.009 5.174(0.001) 5.270(0.010) 0.009 5.270(0.010)
η = 0.80 5.157(0.001) 5.227(0.006) 0.005 5.157(0.001) 5.227(0.006) 0.005 5.227(0.006)
η = 0.84 5.139(0.001) 5.190(0.004) 0.003 5.139(0.001) 5.190(0.004) 0.003 5.190(0.004)

d5/2 η = 0.66 1.378(0.738) 1.767(1.240) 0.502 — 1.813(0.975) — 1.803(0.980)
η = 0.71 1.406(0.699) 1.647(1.119) 0.420 — 1.737(0.880) — 1.729(0.881)
η = 0.76 1.438(0.688) 1.590(0.977) 0.289 — 1.699(0.817) — 1.693(0.814)
η = 0.80 1.464(0.681) 1.577(0.892) 0.211 — 1.688(0.782) — 1.682(0.777)
η = 0.84 1.490(0.677) 1.577(0.830) 0.153 — 1.687(0.757) — 1.681(0.750)

054312-11



YING ZHANG AND XIAO YING QU PHYSICAL REVIEW C 102, 054312 (2020)

since its single-particle energy and the HF potential barrier top
Vmax do not change so much. However, the width �κ

HFB grows
obviously as the pairing strength increases, due to the increase
of the contribution from pairing correlation 
�κ

pair. Mean-
while, we noticed from Table III that with almost the same
single-particle energies of 2d5/2, the larger pairing strengths
produce the larger factors v2

i and uivi, which indicates more
neutrons are scattered to this state with stronger pairing. Here
it is interesting to mention the similar analysis in Ref. [71]
based on the relation between the factor v2

BCS/u2
BCS and the

width of the particle-like quasiparticle resonance. They found
that, at a fixed quasiparticle energy, the larger pairing gap
produced the larger v2

BCS/u2
BCS (corresponding to a larger uivi

in the case of 2d5/2), indicating the increase of the probability
of the quasiparticle state inside the nucleus. This leads to the
decrease of the resonance width. Then they concluded that, the
pairing correlation could “reduce” the width of the particle-
like quasiparticle resonance. This seems to be opposite with
our above findings. However, we noticed from Ref. [71] that,
with a fixed resonant energy and a larger pairing gap, the
corresponding single-particle energy will decrease. This will
indeed lead to the reduction of the total width �κ

HFB which is
dominated by the decrease of �κ

HF according to our findings
in Sec. IIIB3. But, if we look into the contribution from
the pairing correlation 
�κ

pair separately, we could find that
the pairing correlation does increase the total width of this
particle-like quasiparticle resonance when it is near the Fermi
energy.

IV. SUMMARY

We took the neutron-rich Ca isotopes as examples to inves-
tigate the effects of the pairing correlation on the quasiparticle
resonant energy and width. The resonant energy and width
were read from three kinds of quasiparticle spectra, includ-
ing the quasiparticle-state probability density, the occupation
probability density, and the pair probability density calculated
by the self-consistent continuum Skyrme HFB theory with
Green’s function method. We analyzed in detail the evolution
of these quasiparticle spectra and the resonances therein as the
Fermi energy approaches zero, and as a function of the pairing
strength.

We found that for narrow quasiparticle resonances, the
three kinds of quasiparticle spectra calculated with the
same potentials can give the same results for the the reso-
nance energy and the width. While for the broad quasiparticle

resonances, the difference between the results read from
the quasiparticle-state probability density and the occupation
probability density or the pair probability density is more
obvious.

For the hole-like quasiparticle resonance originated from
the bound single-particle states below the Fermi energy, such
as 2p1/2, the pairing correlation is the only source of the reso-
nant width. While for the particle-like quasiparticle resonance
corresponding to the unbound single-particle state above the
Fermi energy, such as 2d5/2, the width is contributed from
both the HF potential and the pairing correlation. Therefore,
the particle-like quasiparticle resonance has much larger res-
onant width. We tried to separate the pairing correlation’s
contribution to the total width by comparing the quasiparticle-
state probability density calculated with and without the pair
potential. We found that the pairing correlation can increase
the resonant energy and the width for both the hole-like and
particle-like quasiparticle resonances. This increase is larger
when the state is closer to the Fermi energy, no matter from
below or above. But it is especially obvious for the unbound
states with smaller angular momentum l when the Fermi
energy approaches zero. Besides, in the s1/2 partial wave of
the neutron-rich Ca isotopes, although there is no quasiparti-
cle resonance near the continuum threshold, we do find that
the pairing correlation can scatter neutrons to the continuum
states just above the threshold and make pairs there. This
could happen even when the HF potential vanishes, e.g., in
the asymptotic region of the neutron-rich nucleus where only
the pair potential may remain. This resonant-like increase
of occupation in the s wave near the continuum threshold
implies that the low-lying nonresonant continuum can have
some contribution to the formation of the ground state of the
weakly bound nucleus.
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