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A simple model to study the collective coupling between pairing and rotational degrees of freedom in well-
deformed even-even nuclei is proposed. It relies on the description of the effects of pairing correlations on the
rotational motion in terms of intrinsic vortical currents. As a result, an expression of the rotational energy within
a band is provided as a polynomial of order three in the square of the angular velocity. The coefficients of this
polynomial have a well-defined analytical form and their values are determined from merely three experimental
pieces of data: the energy of the first 2+ state, the ground-state charge quadrupole moment as deduced from
B(E2, 2+ → 0+) measurements, and a quantity deduced from the odd-even mass differences in neighboring odd
nuclei. This model is tested in 24 deformed nuclei chosen across the rare-earth and actinide regions. In spite of
the very restricted input of data, and moreover which is limited to nuclear properties at zero or very low excitation
energies, the agreement with the data within the yrast line is in many cases, especially in actinide nuclei, excellent
up to angular momenta of the order of 30h̄ or more. Of course, such an approach is by construction unable to
reproduce physical effects which do not result from this Coriolis antipairing (CAP) type of collective quenching
of pairing correlations. This is especially the case in the rare-earth region, where a backbending effect is often
observed. In such cases our model may be considered as a baseline in order to disentangle the effect of the CAP
collective mode from those of other existing spectroscopic phenomena.
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I. INTRODUCTION

The concept of rotational bands has been introduced in
physics through the infrared-absorption studies of diatomic
molecules [1]. Such an energy spectrum exhibits, as is well
known, an I (I + 1) variation corresponding to states having
angular momenta h̄I in so far as the three angular variables
defining the inertia frame are solely involved. In actuality,
couplings to various other degrees of freedom perturb this
ideal spectral scheme. These couplings belong to two cat-
egories: some are of a collective nature (such as gradual
weakening of pair correlations, centrifugal stretching, and
coupling to collective vibrations), others more related to
single-particle degrees of freedom (such as rotation-induced
changes in the mean field and sudden occurrences of single
pair breaking).

To describe these spectra, setting apart numerous micro-
scopic calculations of various kinds (shell-model calculations,
Routhian Hatrtree-Fock-Bogoliubov and corresponding rela-
tivistic approaches) one has developed purely phenomenolog-
ical approaches dubbed at the beginning [2] “variable moment
of inertia” (VMI) approaches. One possible formal frame un-
der those lines is to embed such a variation in a truncated
expansion of the rotational energies in powers of I (I + 1).
Casten [3] has shown that the inclusion of the second-order
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term could be connected in some cases with a coupling
between the ground and gamma bands in reasonably well
deformed nuclei. In a complementary approach initiated by
Harris [4] one considers an expansion E (�) of the rotational
energy as a power series of the angular velocity � and perform
a fit of its parameters.

In the present study we aim at providing a polynomial
expression for E (�) in well-deformed even-even nuclei, à
la Harris thus, but whose algebraic form is deduced from
an underlying dynamical property and which includes only
a limited amount of experimental information, namely, the
energy of the first 2+ state, together with the ground-state
quadrupole deformation and some measure of the amount of
ground-state pairing correlations. It relies on consideration of
the coupling between pairing correlations for all Cooper pairs
with the global rotation (at least up to moderate spin values)
leading to a substantial reduction of the moments of inertia
from their rigid-body values. This effect was deemed in the
seminal paper of Bohr, Mottelson, and Pines [5] as one clear
indicator of the existence of pairing correlations in low-lying
nuclear states, which was later confirmed theoretically by
Migdal [6] within the framework of time-dependent Green’s
functions and by Belyaev [7] and Nilsson and Prior [8] within
a non-self-consistent version of the adiabatic time-dependent
Hartree-Fock-Bogolyubov approximation. It results from the
Pauli principle quenching of pairing correlations due to the
existence of particle-hole excitations generating the rota-
tional collective mode. Explicit early calculations both purely
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phenomenological [9] or using the Belayev formula [10] sub-
stantiated these theoretical findings.

Of particular interest for our study was the recognition
by Mottelson and Valatin [11] of this effect as an explicit
intrinsic collective mode known as the Coriolis antipairing
(CAP) mode. It corresponds to a gradual collective reduction
of the pair correlations similar (upon making the standard
connection between the Lorentz force and the Coriolis pseud-
oforce) to the response of a type-I superconductor immersed
in a magnetic field.

Recent successful phenomenological descriptions of rota-
tional bands in well-deformed heavy nuclei have been pro-
duced by using a rather simple yet effective parametrization
of the CAP effect [12,13]. This approach has been pursued
upon including, in an equally simple way, the possibility of
some centrifugal stretching [14]. This rotation-induced pos-
sible deformation has been tested in well-deformed nuclei of
the actinide region. As a result, it does not seem to play there
a crucial role for the nuclear states studied.

In our present study, the rotational pair-correlation quench-
ing is interpreted as resulting from the generation, in a
pair-correlated fluid, of intrinsic vortical currents which are
counter rotating with respect to the global rotation observed
in the laboratory frame. This work is rooted in the theoreti-
cal approach developed in Ref. [15], where it is shown that
the counter-rotating intrinsic currents which are generated by
pairing correlations can be very well described by an intrinsic
vortical mode proposed within the so-called Chandrasekhar’s
S-ellipsoid dynamics [16].

The paper is organized as follows: The model in use for the
rotational energy is presented in Sec. II and the determination
of its parameters is the subject of Sec. III. In Sec. IV, the
relation within our theoretical framework between the angular
velocity and the angular momentum is established. Finally,
the results of our model for the variation, within a band, of
the excitation energies and the kinematic moments of inertia
with respect to the angular momentum or angular velocity
are presented and discussed for an extended sample of well-
deformed even-even nuclei in Sec. V, with some conclusions
drawn in Sec. VI.

Note that some preliminary accounts of the present ap-
proach have been briefly discussed in Refs. [14,17].

II. THE MODEL

A. The velocity field

Within the S-ellipsoid description of fluid dynamics, one
introduces a divergence-free, and thus nondeforming, linear
intrinsic velocity field. It induces a dynamical mode which
may be described as resulting from the product of three geo-
metrical transformations (as explained in Ref. [18]) for a fluid
contained in a spheroid having Oz as symmetry axis:

(a) a volume-conserving scaling Ŝ of the spheroidal vol-
ume of the fluid container (supposed here to be axially
symmetric) into a spherical shape;

(b) a uniform rotation R̂ of the fluid with a rotation axis
perpendicular to the Oz axis, e.g., the Ox axis, with
angular velocity ω;

(c) a scaling of both the coordinate and the velocity vec-
tors, which is just the inverse of Ŝ from the previous
spherical shape back into the initial spheroid.

This intrinsic collective mode is then coupled to a global
rotation around the same axis perpendicular to the Oz axis,
e.g., the Ox axis, with angular velocity � with respect to the
laboratory frame. The nature of this coupling when applied to
the rotation of a pairing-correlated nuclear state is investigated
within a model where the angular velocity ω of the vortical
mode appears as a function of the angular velocity � of the
global rotation.

The dependence of ω on � (see, e.g., Ref. [15]) should first
be such that the product ω� is negative corresponding to the
counter-rotational character of this intrinsic mode.

All other things being kept constant, the absolute value
of the angular velocity ω should be an increasing function
of � since the pair correlation counter-effect should be an
increasing function (taken here as linear) of its cause, namely,
the global rotation.

All other things being kept constant, the absolute value of
the angular velocity ω should also be an increasing function
of the so-called pair condensation energy Econd, defined as
the absolute value of the expectation value of the residual
interaction in the considered nuclear state. This expectation
value is sometimes, in the context of nuclear physics, merely
referred to as the pairing energy, as in the seminal paper [19],
which must not be confused with the correlation energy, which
is the gain in energy due to the presence of correlations with
respect to an uncorrelated solution.

This dependence of ω on Econd is due, again, to the fact
that the pair correlation counter-effect should be an increasing
function (taken here as linear) of its cause, namely, a quantity
related to the intensity of pair correlations. This quantity is a
decreasing function of � which is assumed (as in the simple
model of Ref. [15]) to have a quadratic behavior as

Econd(�) = Eo

[
1 −

(
�

�c

)2]
= Eo[1 − ξ 2], ξ = �

�c
, (1)

where Eo is the pair condensation energy at zero angular mo-
mentum and �c is the critical angular velocity where pairing
correlations vanish. The above dependence of Econd on � can
be justified as follows: Due to the already advocated mathe-
matical similarity between the Lorentz force and the Coriolis
pseudoforce, one can take stock of the behavior of the energy
qap in the vicinity of the superfluid-normal first-order phase
transition, as a function of the temperature, in superconductors
(see, e.g., Ref. [20]), and postulate that its variation �(B) as a
function of the norm B of the magnetic field is given from its
zero-field value �(0) as:

�(B)

�(0)
=

[
1 −

( B

Bc

)2]1/2

, (2)

where Bc is the critical field value for the transition from the
superconducting phase to the normal phase. This, replacing
the norm B of the magnetic field and its critical value Bc by �

and �c, leads to Eq. (1) upon noting that, in the seniority force
model approximation, the energy Econd is proportional to the
square of �.
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From the above, we thus propose

ω = −k�[1 − ξ 2], (3)

where k is a positive constant to be determined below.
It is our contention that the critical angular velocity �c

should depend on the level of correlations in the ground state,
i.e., at zero angular momentum. Let us denote in what follows
the pair condensation energy Econd as a function of � by
Econd(�) and by Jc the critical value (i.e., for � = �c) of
the moment of inertia. For such a critical angular velocity,
the pairing correlations are vanishing, by definition, and thus
Econd(�c) = 0. For finite systems as atomic nuclei, we do
know that, of course, there is no such thing as a sharp cutoff
of these correlations. This is a model approximation shared
by most, if not all, of the current microscopic description of
rotating nuclei. At any rate, our approach is not designed to
describe such situations and the concept of criticality serves
here only to model the behavior of the function ω(�) at values
of � significantly smaller than �c in most cases.

It is appropriate to approximate the moment of inertia Jc,
thus in absence of pairing correlations, by its rigid-body value
JR, known to be well represented by its semiclassical, or
liquid drop model, value. The effect of the nuclear deforma-
tion should be taken into account, through some appropriate
parametrization (using here the usual quadrupole parameter β

or the semi-axis ratio q within an axially symmetrical descrip-
tion in terms of an ellipsoid).

The precise definition of �c will result in the theory of
superconductivity (for Bc in that case) from a relation between
the critical rotational energy E rot

c = 1/2Jc�
2
c and the pair

condensation energy at zero angular velocity, Econd(0) = Eo,
as discussed in the forthcoming Sec. III A.

B. Collective energy

As in Ref. [15] we assume a quadratic expression for the
total excitation energy as a function of the two angular veloc-
ities � and ω, corresponding thus to a low-velocity ansatz,

E (ω,�) = 1
2 [Aω2 + 2B�ω + C�2], (4)

in terms of generalized moments of inertia A, B, and C to be
defined below.

Using now Eq. (3) in Eq. (4), one obtains the total excita-
tion energy E (�) as a function of �:

E (�) = �2

2
[C − 2Bk(1 − ξ 2) + Ak2(1 − ξ 2)2]. (5)

According to Ref. [18] the generalized moments of inertia A,
B, and C can be evaluated semiclassically (up to second-order
terms in h̄ similarly to what has been done in Ref. [21] for the
global rotation) as

A = η�

[
1 − D

η
�

]
, B = η

[
1 − D

η
�

]
,

C = η�

[
1 − D

η�

]
, (6)

where

η = J o
R q1/3, � = 1

2

(
q + 1

q

)
, (7)

D = −m(3π2)−2/3
∑

ν=n,p

∫∫∫
fν (�r )ρ1/3

ν (�r )d3r, (8)

and where J o
R is the rigid-body moment of inertia for a spher-

ical nuclear shape, and q = cz/c⊥ is the ratio of the semi-axis
of the nuclear shape (approximated as being of a spheroidal
type) along the symmetry z axis to that along the perpendic-
ular direction. The function � is minimal at the sphericity
where �(1) = 1. The latter thus entails that B � A � C. Note,
in passing, that the moment of inertia JR corresponding to a
rigid-body rotation is given by C.

The definition of the above constant D contains the
isoscalar nucleon effective mass form factor in a finite nucleus
fν (�r ) = m/m∗

ν (�r ), and the corresponding density distribution
ρν (�r ) (where ν = {n, p} stands for the nucleon charge state).
It has been shown in Ref. [18] that the ratio D/η can quite
accurately be approximated by

D

η
= 5

(
8

9π

)2/3

fNMA−2/3, (9)

where fNM = m/m∗
NM is the (constant) isoscalar nucleon

effective-mass form factor in nuclear matter and where A is
the total number of nucleons. For a spherical nucleus one has
A = B = C = η(1 − D

η
). One gets, e.g., for A = 240 D/η =

0.07, upon using the Skyrme SkM� interaction [22] where
fNM = 1.27.

Now, an important remark is in order. In Ref. [21] one has
evaluated the semiclassical corrections beyond the classical
Thomas-Fermi moment of inertia (for the global rotation).
These come, indeed, from two sources. One stems from a
paramagnetic coupling of the rotation with the spin degrees
of freedom; the other, of a diamagnetic nature, is related to
the orbital motion in the nuclear surface. As it turns out, both
effects correspond roughly to the same order of magnitude (in
absolute values). Actually, the orbital contribution is generally
weaker than its spin counterpart. In Ref. [21] it was found that
the relevant moment of inertia at sphericity is given by

C = J o
R [1 + (ζl + ζs)A−2/3], (10)

where J o
R is the Thomas-Fermi (rigid-body) moment of in-

ertia and where for the Skyrme SkM� interaction, one has
obtained

ζl ≈ −1.9, ζs ≈ 2.6, (11)

for the orbital and spin correction terms, respectively. One
may wonder how these figures depend on the particular effec-
tive interaction under consideration. First, the absolute value
of the orbital diamagnetic corrective term D/η is inversely
proportional to the effective mass in nuclear matter. We thus
expect its contribution to be slightly larger, for instance,
with the SIII parametrization [23] than with SkM� [22] (with
m�/m = 0.76 for the former and 0.79 for the latter). On the
other hand, the magnitude of the paramagnetic spin correc-
tion clearly depends on the spin susceptibility (see Table 2
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of Ref. [21], where one observes significant variations of
this quantity for a sample of commonly used Skyrme force
parametrizations. For the sake of simplicity and in view of
the small size of the corrections involved, we will, in what
follows, merely use the SkM� interaction as a reference (well
suited, as is well known, to describe large deformation proper-
ties) for the underlying microscopic calculations. We will thus
consistently use for the values of the effective mass in nuclear
matter, of the spherical rigid body moments of inertia (see
below) and of the above-defined corrective terms (ζl , ζs) what
is obtained when using this Skyrme force parametrization.

Notice that, in the semiclassical calculations yielding the
above expressions for the generalized moments A, B, and C,
one has ignored, as already mentioned, the spin degrees of
freedom. As a consequence, the reduction of their value at
sphericity by 1 − D

η
≈ 7.6% for, e.g., A = 240 and the SkM�

force, is spurious. We propose therefore to renormalize the
above-given expressions so as to have at sphericity the mo-
ment of inertia C (and consequently A and B as well) corrected
from their Thomas-Fermi values with the corrective terms of
Eqs. (10), and (11). This is achieved by multiplying in what
follows the generalized moments A, B, and C by a factor

F = 1 + 0.69A−2/3

1 − D
η

(12)

in such a way that one gets, for instance, for the generalized
moment A,

A = η�F

[
1 − D

η
�

]
, (13)

and similar expressions for B and C according to Eqs. (6).
From the semiclassical ETF study of Ref. [21] we know

that, when using the Skyrme SkM∗ effective interaction, a
fairly good estimate of the rigid-body moment of inertia J o

R is
given by

J o
R

h̄2 = A5/3

68.4
MeV−1. (14)

This result is close to what one would obtain for a sharp-edged
liquid drop (see, e.g., Ref. [24]). One would get from this
reference, with a radius parameter ro = 1.2049 fm [25], a
value for the rigid-body moment of inertia merely smaller by
2% with respect to our estimate.

Since for any reasonable value of the deformation parame-
ter q the function �(q) is not too different from unity, one may
conclude that the generalized moments of inertia A, B, and C
are about equal. One has found in the explicit microscopic
calculations of Ref. [15] that this is indeed the case (up to
≈10% in normally deformed and ≈15% in superdeformed
nuclei).

To carry out the calculation of the generalized moments
of inertia A, B, and C we need to know the deformation
parameter q. It can be determined from the mass quadrupole
moment which can be quite accurately approximated, for a
compact deformed nuclear shape, using an ellipsoidal shape
ansatz, by (see Ref. [24])

Q(q) = 2
5A5/3r2

oq−2/3(q2 − 1), (15)

where again ro = 1.2049 fm. Taking, when available, the
experimental intrinsic charge quadrupole moment Qch from
Ref. [26], deduced from B(E2) data, and using the approxi-
mate scaling relation

Q = A
Z

Qch, (16)

the deformation parameter q can then be fixed such that
Eq. (15) yields the experimental mass quadrupole moment.
Knowing q, the generalized moments of inertia A, B, and
C are determined through Eqs. (6) and (13), and the total
excitation energy E (�) is given through Eq. (5). Whenever no
data for Qch could be found in Ref. [26], we have deduced the
corresponding charge quadrupole moments from calculated
values of the usual axial quadrupole deformation parameter
β obtained in the theoretical systematic study of Ref. [27]. In
this case the charge quadrupole moment Qch is evaluated from
β according to the crude lowest-order expression

Qch = 3Zr2
0A2/3

√
5π

β ≈ 1.09ZA2/3β(fm2). (17)

III. DETERMINATION OF MODEL PARAMETERS

The generalized moments of inertia A, B, and C being
known, there are two parameters, a global scale parameter k
and a critical angular velocity �c, whose values should be
determined in order to compute the rotational energy as a
function of the given � values through Eq. (5).

A. Critical angular velocity

According to the model presented in Ref. [15], upon which
the present approach is based, we have at first related E rot

c to a
rough estimate of Eo according to

E rot
c = 1

2Jc�
2
c = 2Eo. (18)

This way to define the critical angular velocity �c is similar
to what is done in the theory of type-I superconductivity (to
define the critical magnetic field) [28,29]. One remark should
be made, however, about the factor of two appearing here
between the two energies E rot

c and Eo, which is at variance
with what is found in the magnetic-dipole case. It comes from
the fact (see the proof in Ref. [15]) that we do not have the
same dipole-dipole-type interaction energy as in magnetism
since in our case the stable configuration corresponds to an
anti-alignment.

As for the specific value of Eo we note that the correlation
energy, which is the gain in binding energy in going from
a noncorrelated solution to a correlated one, has been
roughly estimated in Ref. [30] to be equal to 2.3 MeV
on average over the whole nuclear chart. As it appears
from explicit calculations performed in Ref. [15] with the
SkM� interaction [22], the ratio of the pair condensation
energy to the corresponding correlation energy is found to
be approximately two. This estimate (see the discussion
in Appendix A of Ref. [15] and its Fig. 8 in particular)
has been deduced from explicit calculations conserving
exactly the particle numbers (within the so-called highly
truncated diagonalization approach of Ref. [31]). The rough
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constancy and particular value of the ratio of condensation
and correlation energies have been demonstrated for a very
wide range of residual interaction strengths and a sample of
realistic single-particle energy spectra of normal-deformed
and superdeformed states of heavy nuclei. On this basis we
will therefore take here a value of Eo = 4.6MeV.

To determine the critical angular velocity �c at which
pairing correlations are going to vanish, one can, following
Eq. (18), thus write

�2
c = 4Eo

JR
. (19)

As discussed in Appendix A, the results obtained using the
above definition of �c leave ample room for improvement.
Consequently, we have removed the too-crude ansatz of a con-
stant value for Eo and investigated a simple yet sufficiently ef-
ficient dependence of Eo on the numbers of neutrons and pro-
tons (N and Z). For that purpose, we have defined an energy
indicator reflecting the intensities of pairing correlations for
a given even-even nucleus. With a two-body |Tz| = 1 residual
interaction and limiting particle-hole excitations to pair trans-
fers, one knows [32] that the proton and neutron wave func-
tions are factorizable. Therefore, the strength of the pairing
regime is essentially reflecting the values of averaged single-
particle (s.p.) neutron and proton level densities at the Fermi
surface. Yet a difficulty arises from the fact that these level
densities are a priori different for neutrons and protons. It is
therefore necessary within our simple approach to combine
information on these level densities for both charge states.

To quantify the strength of the neutron and proton pair-
ing correlations for a given nucleus defined by its nucleon
numbers (N, Z ), we have chosen to consider the experimen-
tal three-point mass differences [33] for adjacent nuclei in
the isotopic (for neutrons) and isotonic (for proton) relevant
series. These differences �(3)

q (N, Z ) are defined, for instance
for neutrons, through the binding energies E or the neutron-
separation energies Sn by

�(3)
n (N, Z ) = (−)N

2
[E (N − 1, Z ) + E (N + 1, Z ) − 2E (N, Z )]

= (−)N

2
[Sn(N + 1, Z ) − Sn(N, Z )]. (20)

To avoid spurious (for our purpose) mean-field effects
due to the quantization of s.p. energies (see, e.g., Ref. [34])
we have not considered these differences for the even-even
(N, Z ) nuclei under study but the averaged differences for
the (N − 1, Z ) and (N + 1, Z ) nuclei in the neutron case and
for the (N, Z − 1) and (N, Z + 1) nuclei for protons. What
remains is essentially due to the breaking of one pair, upon
considering the ground state of odd-nuclei as seniority one
states and assuming a type of Koopmans approximation. It
is worth noting, as demonstrated in Ref. [35], that these three-
point mass differences are not free from some small errors due
to polarization effects, as compared with direct microscopic
calculations of masses. Yet, it is our contention that, for our
model approach, the quantities

�n = 1
2

[
�(3)

n (N − 1, Z ) + �(3)
n (N + 1, Z )

]
, (21)

�p = 1
2

[
�(3)

p (N, Z − 1) + �(3)
p (N, Z + 1)

]
, (22)

provide a sufficient knowledge of the pairing gaps for neutrons
and protons. This is all more so that, as we will see, we
will have to make a global (i.e., for all considered nuclei)
normalization of the retained pairing energy indicator so that
only their relative variations is of relevance for us.

The precise definition of the above-mentioned pairing en-
ergy indicator is as such

Ypair =
√

�2
n + �2

p, (23)

where �n and �p are defined for an (N, Z ) even-even nucleus
as given in Eqs. (21) and (22).

The gap dependence retained for Ypair comes from the pair
condensation energy in a crude seniority force model which
varies as the square of the gap assuming the same value for the
model pairing matrix element (the same holds for all nuclei
considered and the two charge states).

Then we reformulate Eq. (19) by defining the critical an-
gular velocity as

�2
c = α

4Eo

Jc
, (24)

introducing a factor α which will take care of the dependence
of the critical angular velocity �c on Ypair.

We have tested three different versions of our approach,
where the critical rotational energy defined through �c is not
dependent on the ground-state pairing correlations (version 1),
where this dependence is linear in the energy Ypair (version 2),
and where it is inversely proportional to Ypair (version 3), thus
defining

version 1 : α = 1, (25)

version 2 : α = Ypair

Y 0
pair

, (26)

version 3 : α = Y 0
pair

Ypair
, (27)

where Y 0
pair has been determined empirically, as discussed in

Appendix A.
From the study performed in Appendix A, one finds that

the third version, Eq. (27), is by far to be preferred with a
value of Y 0

pair equal to about 0.85 MeV (note that this specific
value is contingent upon the choice of Eo from the estimated
value of Ref. [30]). This is illustrated in Figs. 1 and 2 and
discussed in Appendix A.

In other words, it appears that the disappearance of pairing
due to the rotational mode seems to be all the more rapid given
that there are more correlations at zero spin. This somewhat
counterintuitive result is confirmed qualitatively by the results
of explicit microscopic calculations of the function ω(�) per-
formed in Ref. [15]. There, for the two well-deformed 154Sm
and 178Hf nuclei corresponding respectively to Ypair values of
1.108 and 0.893 MeV, one has found h̄�c values of about
0.3 and 0.4 MeV, respectively, confirming thus the above
discussed trend.

A tentative explanation for that could be proposed in terms
of the well-known phase opposition for the variation of the
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FIG. 1. Comparison between the experimental E (I ) (red solid line) and the theoretical curves obtained using two different ways to
determine the rotational angular velocity � that enters Eq. (5): (a) using �a, Eq. (A4) and (b) using �b, Eq. (A6). The three theoretical curves
shown in each of these plots are obtained with different �c values corresponding to version 1 (green dashed), version 2 (blue dashed-dotted),
and version 3 (black dotted line).

absolute values of the shell effect and pair condensation en-
ergies. A minimum of the former corresponds to a maximum
of the latter upon varying some continuous variable as nuclear
deformation, and vice versa. This is clear from the consid-
eration of s.p. level density at the Fermi surface. Now, as
analyzed for instance in Ref. [36], shell effects perturb the
patterns of current densities whose flows lose their smooth
character. They are thus likely to create a deficit of the Coriolis
antipairing effect with respect to an average behavior repre-
sented by the approach followed in version 1.

B. Determination of the scale factor k

The next crucial point is to build up a reliable determina-
tion of the constant k appearing in Eq. (3) and, consequently,
in Eq. (5).

To do so, we place ourselves in the adiabatic limit. Con-
sequently, we consider the state with the lowest nonvanishing
experimentally available collective velocity, namely, the first
member (2+) of the rotational band. Specifically, in what fol-
lows, we discuss two possible ways to obtain the k parameter
value.
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FIG. 2. Comparison between the experimental rotational energy E (I ) (red solid line) and the model prediction obtained through Eq. (5)
with the angular velocity �b of Eq. (A6) for the different α values determining the impact of the pairing correlations on the value of the critical
angular velocity �c as already applied in Fig. 1. The corresponding pairing-correlation indicators Ypair (in MeV2) are also reported.
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As a first approach one takes for mere input the energy
E (2+) of the 2+ state:

E (2+) = 1

2

6h̄2

J2

, (28)

defining a moment of inertia J2 for this 2+ state. Together
with using another expression for the E (2+) energy,

E (2+) = J2

2
�2

2, (29)

one gets the angular velocity �2 that enters Eq. (5).
Using Eq. (29) together with Eq. (5), one obtains for the

moment of inertia J2,

J2 = Ak2
(
1 − ξ 2

2

)2 − 2Bk
(
1 − ξ 2

2

) + C, (30)

where ξ2 has the value of ξ = �/�c corresponding to the 2+
rotational state, which appears, in fact, to be a small quantity.

As mentioned above, A ≈ B ≈ C, and therefore C − J2 <

B. Thus one obtains two distinct real solutions of Eq. (30).
Out of these two solutions, since for obvious physical reasons
k should be smaller than 1, we unambiguously retain the
solution

k = B

A
(
1 − ξ 2

2

)
[

1 −
√

1 − A(C − J2)

B2

]
. (31)

There is another possible version of the same approach (i.e.,
relying on the same input, namely, implying merely the energy
of the 2+ state) which consists in finding both the constant
k and the angular velocity �2 leading to the desired spin
(evaluated according to the method which will be described
in Sec. 4) and energy of the 2+ state by solving a system
of coupled linear equations. It is presented in some detail
in Appendix B. It yields, as it turns out, k values that are
identical to those obtained through Eq. (31) by a fraction of
a percent for all nuclei investigated in the present study. The
difference in the two k values is generally rather of the order
of 10−5 for a k value of about 0.3. This results in energy
differences of the order of a few keV in the worst case for
the highest angular-momentum values (E > 10 MeV), but is
most of the time much better [�E = 10 eV in 154Sm (I = 22)
and �E = 121 eV in 240Pu (I = 32)].

IV. DETERMINATION OF THE ANGULAR VELOCITY
ASSOCIATED WITH A GIVEN SPIN

We now use the dynamical model underlying our approach
to determine theoretically from our energy function the value
of the angular velocity �(I ) corresponding to a given state I+
of the rotational band.

The above theoretical developments based on classical-
physics concepts and leading to the polynomial expression of
E (�) in Eq. (5) involve the norm of the angular momentum.
It is given (in units of h̄), by Ĩ = √

I (I + 1) as defined in
Eq. (A1). Consequently we will use Ĩ instead of I in all
relevant equations.

As discussed above, in a semiquantal Routhian approach,
h̄� is the Lagrange parameter associated with a constraint on

the value of Ĩ , such that

dĨ = 1

h̄

dE

�
resulting in Ĩ (�) =

∫ �

0

1

h̄�′
dE

d�′ d�′ (32)

and using the derivative dE/d� given by

dE

d�
= {[C − 2Bk + Ak2] + 4[Bk − Ak2]ξ 2 + 3Ak2ξ 4}�,

(33)
one obtains

h̄Ĩ (�) = {
[C − 2Bk + Ak2] + 4

3 [Bk − Ak2]ξ 2+ 3
5 Ak2ξ 4

}
�.

(34)

With typical values for the parameter k (k ≈ 0.3) and remem-
bering that the generalized moments of inertia are all about
equal (with B � A � C) it turns out from

h̄
d Ĩ

d�
= [C − 2Bk + Ak2] + 4[Bk − Ak2]ξ 2 + 3Ak2ξ 4 (35)

that dĨ/d� is positive definite and thus Ĩ (�) is a monotoni-
cally increasing function. It can, therefore, be unambiguously
inverted to obtain � as a function of the angular-momentum
quantum number I of the state to be considered.

V. PRESENTATION AND DISCUSSION OF THE RESULTS

Calculations of the energies of the entire rotational band as
a function of the angular momentum h̄I have been performed
for a selection of 14 rare-earth and 10 actinide nuclei. They
have been compared with available experimental data [33].

To put in perspective the choice of nuclei which has been
made, let us mention that, in the region defined by 50 � Z �
82 and 82 � N � 126, there are 58 even-even experimentally
studied nuclei whose energy ratio R42 of the first two members
of the ground-state band are larger than three and, correspond-
ingly, there are 31 in the Z � 82 and 82 � N � 126 region.
Out of those we chose at least one isotope per element under
the following constraints:

(1) the existence of a sufficiently long known yrast line se-
quence (typically up to 20h̄ or possibly much higher);

(2) good rotor properties as measured by the ratio
R42 � 3.1;

(3) the possibility of determining with sufficient accuracy
the odd-even mass differences (a possibility thus ulti-
mately related with the accuracy of the relevant mass
measurements).

Moreover, we have included short isotopic series in the
middle of each of the regions considered (namely, seven er-
bium and four plutonium isotopes).

In addition to the pairing indicators �n and �p discussed
in Sec. III A, Eqs. (21) and (21), we have reported in Tables I
and II, for each of the 24 nuclei retained for the discussion,
the quantities which enter the definition of the polynomial
expression of E (�), namely, the experimental 2+ energies
[33] and the charge quadrupole moments (from Refs. [26] or
[27]) as specified in Sec. II B.

In Figs. 3 and 4 we compare the experimental en-
ergy curves as functions of the angular-momentum quantum
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TABLE I. Experimental charge quadrupole moments [26] Qch (in
fm2), energies of the first 2+ excited state (in keV), energy ratio of
second- to first-excited state of the rotational band, together with
averaged neutron gap �n and proton gap �p (in keV) obtained
from three-point odd-even mass differences for a series of rare-earth
nuclei. Charge quadrupole moments quoted with ∗ are taken from
the theoretical results of Ref. [27] (see text). All reported energies
are taken or deduced from the data of Ref. [33].

Nucleus Qch E2+ E4+/E2+ �n �p

152
60 Nd 649 72.4 3.267 816 677
154
62 Sm 662 82.3 3.242 885 666
156
64 Gd 683 89.2 3.239 919 692
164
66 Dy 750 73.4 3.300 679 538
160
68 Er 663 125.8 3.099 1061 979
162
68 Er 710 102.1 3.230 985 877
164
68 Er 740 91.4 3.277 943 762
166
68 Er 766 80.6 3.289 791 623
168
68 Er 763 79.8 3.309 648 554
170
68 Er 765 78.6 3.309 604 503
172
68 Er 768∗ 77.0 3.315 579 531
174
70 Yb 773 76.5 3.309 535 528
170
72 Hf 730 100.8 3.195 993 895
178
74 W 791∗ 105.9 3.236 776 791

number I with our theoretical predictions for our sample of
rare-earth (Fig. 3) and actinide (Fig. 4) nuclei. Reported exper-
imental energies correspond to the yrast bands. The theoretical
energies have been calculated through the polynomial expres-
sion E (�), where the angular velocity for a given value of I
is obtained as the solution of the implicit equation (34). The
agreement between the two energy curves is generally good
up to moderate spins (≈12h̄) and in many cases amazingly
good up to very high spins (e.g., in 154Sm, 164Dy, 230Th,
and 242Pu). There are also cases where a clear disagreement
appears, which will be discussed later, in particular in the
context of band crossings.

On these figures we have also reported, for all nuclei,
energy curves where the angular velocities entering Eq. (5)
have been deduced from the experimental spectra by averag-

TABLE II. Same as Table I but for a series of actinide nuclei.

Nucleus Qch E2+ E4+/2+ �n �p

230
90 Th 899 53.2 3.271 715 739
232
90 Th 966 49.4 3.284 682 737
234
92 U 1035 43.5 3.296 584 606
236
92 U 1080 45.2 3.304 570 663
236
94 Pu 1092∗ 44.6 3.304 559 460
238
94 Pu 1126 44.1 3.312 502 508
240
94 Pu 1144 42.8 3.309 489 534
242
94 Pu 1161 44.5 3.307 514 568
246
96 Cm 1226 42.9 3.314 500 625
248
96 Cm 1228 43.4 3.313 545 665

ing what is deduced from the two gamma transition energies
feeding and depopulating the considered band state according
to Eq. (A6), in the same way as done in Figs. 5 and 6.

It is significant to note that, even though one has incor-
porated much more data (energies at all spin values) in the
calculated (dash-dotted) curves using the so-called experi-
mental � value as defined by Eq. (A6), they fail to reproduce
the observed spectra in a better way than our theoretical ap-
proach (dotted curves), relying on the inversion of Eq. (34),
and which includes merely the energy of the first member
of the band. Clearly, the former set of experimental � val-
ues encompasses more dynamical effects than our model can
describe. It is therefore not too surprising that they are unfit
to reproduce within our model the observed trends whenever
physical effects other than those included in this model are at
work.

In particular, when a marked backbending is present (as,
e.g., in 160Er) after the crossing of the s and g bands, the
variation with I of the yrast band energies is clearly too fast.
Indeed, our model applies spuriously to s-band states the
variation which has been defined in the g band. The calculated
trend is thus easily explained since, due to the Pauli-pairing
blocking, all things being kept equal except the pairing cor-
relations, the moments of inertia of the s band are larger than
those of the g band.

A finer assessment of the behavior of energies within a
rotational spectrum is obtained when considering quantities
which are related to a first-order derivative of the energy
with respect to the angular momentum, namely, the so-called
kinematical moments of inertia J (1). This quantity divided by
h̄2 is defined microscopically as the polarizability associated,
in the Routhian approach, with the constraint on Ĩ where the
Lagrange multiplier is h̄�. One then has

J (1)

h̄2 = Ĩ

h̄�
. (36)

To determine J (1) one thus needs the values of � associated
with each considered state. Here we chose to extract them
from the spectra by using Eq. (A4). From this, one gets the
corresponding kinematical moment of inertia as

J (1)

h̄2 = Ĩav

h̄�
= 2I − 1

EI→I−2

. (37)

Incidentally, one notes that such a definition of the mo-
ments of inertia is consistent with the one used for I = 2
in Sec. III B to evaluate the values of the model parameter
k. We have seen above that a one-sided derivative to de-
fine the angular velocity (26) is not such an optimal choice.
Indeed, extracting the � values from the spectra upon us-
ing the double-sided derivative leading to Eq. (28) turns out
to be more appropriate, as demonstrated there. This is also
substantiated in Appendix C. We nevertheless keep this def-
inition (37) of J (1) to be consistent with what is done in
the experimental analysis, see, e.g., Ref. [37]. Indeed, for
the comparative numerical test between the experimental data
and the corresponding theoretical predictions of the series of
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FIG. 3. Comparison of experimental [33] and theoretical rotational energies as a function of the quantum number I for fourteen rare-earth
nuclei. The experimental energy curves (red solid) are reported alongside with those of our model (black dotted) and those (blue dashed) where
the � values are defined from the experimental spectra as discussed in the text. The ratios R42 of the energies of the first-excited members of
the band are also reported.
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FIG. 4. Same as Fig. 3 but for ten actinide nuclei.

rotational energies as functions of I , only the consistency of
both methods counts.

In Figs. 5 and 6 we present for the 24 considered nuclei
the variation of the kinematical moments of inertia J (1) as
functions of �2, comparing the experimental trends with our
model estimates.

Let us first discuss the results obtained for rare-earth nuclei
as displayed in Fig. 5. As is well known (see, e.g., Ref. [38]),
many nuclei of this region present a backbending pattern
due (at least for the first backbending) to an alignment of
deformed single-particle states stemming from the intruder
neutron 1i13/2 spherical orbital. This is clearly the case for

the 160,162,164Er and 178W nuclei and is only suggested in the
less clean-cut cases of 156Gd, 170Er, and 170Hf. It is clear that
our model cannot reproduce this highly noncollective phe-
nomenon. On the other hand, the behavior of the kinematical
moment of inertia of the g band is reasonably well reproduced
in our model for these nuclei. In some other nuclei (152Nd,
154Sm, and 164Dy) the model is in quite good agreement over
all of the experimentally known yrast bands. For three nuclei
(168Er, 172Er, and 174Yb), the almost linear behavior (in �2)
of the data is reproduced by our model, but not the slope.

The situation is much more satisfactory in actinide nuclei
(Fig. 6). As often remarked (see, e.g., Ref. [37]) deformed
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FIG. 5. Comparison between theoretical (black dotted) and experimental (red solid lines) values for the kinematical moment of inertia J (1)

as a function of the angular frequency squared �2 for fourteen rare-earth nuclei. The ratios R42 of the energies of the first-excited members of
the band are also reported.
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FIG. 6. Same as Fig. 5 but for ten actinide nuclei.

nuclei are better rotors than what is observed in the rare-earth
region. Here all calculated nuclei exhibit a ratio R42 � 3.30,
apart from the two thorium isotopes considered (230Th and
232Th) where this ratio is still rather high (3.27 and 3.28).
With only one exception (234U), all nuclei present a trend of
J (1)(�2) in good (and sometimes excellent) agreement with
the data. In some cases though, some new physics appears
at moderately high angular-momentum values (as in the clear
examples of 236U and 238,242Pu nuclei).

As it appears from all the theoretical curves of Figs. 5 and
6, one obtains an almost linear variation of J (1) as a function
of �2. As clearly seen from Eq. (34), the model kinematical

moment of inertia is a polynomial of degree two in �2. The
above-quoted results reflect eloquently that the terms in �4 in
the kind of Harris expansion resulting from our approach are
almost negligible. In other words, the Coriolis antipairing ef-
fect which is modeled here practically does not generate terms
of order higher than two in the expression of the kinematical
moment of inertia as a function of �.

As said in the introduction, a simple phenomenological
parametrization of both the dependence of the moment of
inertia and of the correlation energy on the pairing gap has
been proposed by the authors of Refs. [12,13]. An a priori
improved version has been later presented [14]. It makes use
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for each nucleus of similar data as made in our paper (calcu-
lated BCS gaps and rigid-body moments of inertia as well as
first 2+ excitation energies). Through a minimization of the
total (correlation plus collective rotational) energy for each
angular momentum, they produce rotational spectra. Upon
comparing our results with theirs as displayed in Ref. [14], it
turns out that our present approach reproduces, on average, the
experimental data better but only to a small extent. If our goal
would have been merely to reproduce experimental results,
one would certainly recommend the use of the very efficient
parametrizations of Refs. [12–14]. But what we here aim at is
not only that but also to validate a collective model of coupled
currents to assess some physical ideas at the core of the CAP
approach.

VI. CONCLUSIONS

As is well known [11], the collective quenching of pair-
ing correlations due to a global rotational motion may be
described as the appearance in the correlated solutions of
intrinsic vortical modes. It had been shown [15] that the
corresponding currents can be well described quantitatively
within the framework of Chandrasekhar’s S-ellipsoid linear
velocity fields [16]. We have presented a model based on
this conjecture leading, for even-even nuclei, to a Harris-type
expansion of the rotational energy E (�) (up to cubic terms in
�2), where � is the angular velocity of global rotation.

The coefficients of such an expansion do not result from
a trivial fit of E (�) but are deduced from three pieces of
experimental data pertaining to the properties of the first two
states (0+ and 2+) of each rotational band (pairing correla-
tions content in neighboring nuclei from mass measurements,
intrinsic charge quadrupole moment from B(E2, 2+ → 0+)
data and the excitation energy of the first 2+ state).

In spite of the fact that the input data used in our approach
are exclusively pertaining to the ground state and the energy
of the first-excited state of the rotational band, the resulting
agreement with measured rotational band energies is found to
be excellent up to very high spins (≈30h̄) in many deformed
rare-earth and actinide nuclei. Taking into account the model
assumptions, such an agreement, when obtained, provides
a reasonable ground for describing the collective behavior
merely in terms of the collective coupling of rotation and
pairing correlations.

Clearly, the model presented here does not replace cur-
rently available fast and realistic microscopic Routhian
calculations within the Hartree-Fock-Bogoliubov approxima-
tion or a relativistic mean field plus pairing approach (for a
brief survey, see, e.g., the Sec. VI F.1 in Ref. [39]). Our aim, as
already stated, is merely to provide a quantitative assessment
of the S-ellipsoid model coupling intrinsic and global collec-
tive rotational currents yielding the CAP quenching of pairing
correlations. As is well known, other physical effects either
of a collective nature (such as, e.g., centrifugal stretching) or
pertaining to single (quasi-)particle degrees of freedom (such
as, e.g., particle alignment) are to be considered. It is our
contention that our model, beyond its successful illustration
of the CAP hypothesis, provides a useful baseline to visualize,

upon increasing the angular velocity, where and how much
these other modes are playing a significant role.
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APPENDIX A: DEPENDENCE OF THE CRITICAL
ANGULAR MOMENTUM �c ON THE LEVEL

OF PAIRING CORRELATIONS

To determine which version of the Ypair dependence of
�c, defined in Eqs. (25–27), gives a better account of the
experimental data, we have performed indicative calculations
for a sample of nuclei taken from the two regions of inter-
est (well-deformed rare-earth and actinide nuclei). For these
nuclei we have calculated the values of the polynomial ex-
pression of E (�), Eq. (5), in the above three versions with a
parameter k determined according to the method detailed in
the next section. In these preliminary calculations the angular
velocities � have been determined for each state of the band
from the experimental transition energies.

There are, as a matter of fact, several different ways to
extract the angular velocities � from the rotational band en-
ergies. All of them are grounded, however, on the fact that,
in a Routhian-type variational calculation, one searches to de-
termine the energy of the nuclear system under the constraint
of a given value of the modulus of the angular-momentum
operator Î (divided by h̄), which is defined as

Ĩ =
√

〈Î2〉
h̄

=
√

I (I + 1). (A1)

The Lagrange multiplier associated with this constraint on Ĩ is
h̄� and is obtained, as is well known, as the derivative of the
quantity to be varied (the energy E ) with respect to the value
of the quantity which is constrained, namely Ĩ:

h̄� = dE

dĨ
. (A2)

To deduce � in practice from a discrete spectrum (exper-
imental or theoretical), one has thus to evaluate the above
derivative in some approximative way, consisting all in some
discretization procedure. Here we consider two possibilities.

(a) One proceeds as currently done in the experimental
analysis (see, e.g., Ref. [37]) by considering only the
transition depopulating the considered state labeled by
the quantum number I (namely, EI→I−2). This defines
an angular velocity denoted as �↓. The angular mo-
mentum where the above derivative is evaluated is
taken at the median energy between the states defined
by I and I − 2, corresponding thus to

Ĩ = Ĩav =
√

I2 − I + 1.

The resulting variation is thus given in general by

�Ĩ = 2I − 1
˜Iav

�I

2
, (A3)
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and since �I = 2 in this case, one obtains

h̄�a = h̄�↓ =
√

I2 − I + 1

2I − 1
EI→I−2. (A4)

This procedure has the advantage that a value for � can
be associated with every rotational state (even without
knowing the energy of the populating state).

(b) Such a one-sided derivative could be quite inaccurate
in the case of a fast variation of the rotational en-
ergy E (I ) with respect to the angular velocity. One
could then think of using instead a combination of the
� values obtained from derivatives corresponding to
transitions depopulating and populating a given state.
The value �↑ of � obtained as in Eq. (A4) but for the
populating state defined by I + 2 is

h̄�↑ =
√

I2 + 3I + 3

2I + 3
EI+2→I . (A5)

Thus, combining now the � values coming from the
transition from above and the transition to below, one
can define an angular velocity �b as the mean value
between �↑ and �↓, yielding

h̄�b = 1

2

[√
I2 + 3I + 3

2I + 3
EI+2→I

+
√

I2 − I + 1

2I − 1
EI→I−2

]
. (A6)

We present the results of such a preliminary study in two
steps: First, we compare the experimental rotational energies
[33] with the calculated energies for the three versions re-
tained for the dependence of �c on the pairing correlation
content, through the definition of the α parameter, for a single
nucleus, namely, 154Sm, upon taking separately the experi-
mental � values from Eqs. (A4) and (A6), respectively. From
the results displayed in Fig. 1, one concludes first that version
3 of Eq. (27) to define the α parameter is to be preferred
however � values are extracted. Furthermore, as could be
expected, the definition of the experimental angular velocities
upon using the information from both populating and depopu-
lating transitions is far better than considering merely the data
from the single depopulating transitions.

In a second step, we extend the above conclusion concern-
ing the Ypair dependence of �c by considering a sample of six
deformed nuclei taken from the rare-earth and actinide regions
(154Sm, 156Dy, 174Yb, 232Th, 236U, and 240Pu). Here, we ex-
tract experimental � values by using merely the two-transition
formula of Eq. (A6). As seen in Fig. 2, the conclusion drawn
from the single case of 154Sm is fully confirmed: the critical
rotational energy should be preferably taken as inversely pro-
portional to Ypair.

Let us mention sketchily now how we came to the retained
value of Y 0

pair. At first we have made calculations with α = 1

(version 1). We noted that, in two cases, 156Dy and 236U corre-
sponding to values of Ypair close to a specific value Y 0

pair = 0.85
MeV, namely, Ypair = 0.866 and 0.874 MeV, respectively, the
theoretical and experimental energies coincide rather well, at
least up to angular momenta I � 12h̄. For nuclei whose Ypair

values are found far off these values, we remarked a rather
systematic trend. For Ypair > Y 0

pair, the calculated curves were
found below the experimental curve, which is the case for
154Sm and 232Th (with Ypair = 1.060 and Ypair = 1.003 MeV2,
respectively). For Ypair < Y 0

pair, the inverse trend is found, as
seen for 174Yb and 240Pu (with Ypair = 0.751 and Ypair = 0.723
MeV, respectively). This has indeed led us to infer that the
prescription of version 3 with the retained value of Y 0

pair should
be best suited to take into account the impact of pairing corre-
lations on the value of the critical angular velocity �c.

APPENDIX B: RESOLUTION OF A SYSTEM OF COUPLED
EQUATIONS TO DETERMINE THE CONSTANTS k AND �2

One could propose the following procedure to adjust the
constant k and the angular velocity �, which are the two
quantities determining the rotational energy E (�), see Eq. (5),
and the angular momentum I (�), see Eq. (34), in such a
way that, for the 2+ rotational state, the energy as well as
the angular momentum are perfectly reproduced. This would
mean that the constant k is no longer given by Eq. (31) but
has to be iterated together with � so as to obtain the desired
experimental values E+

2 and Ĩ = √
6.

Let us therefore start from Eqs. (5) which we rewrite now
in the form

E (k,�) = �2
c

2
[Cξ 2 − 2Bkξ 2(1 − ξ 2) + Ak2ξ 2(1 − ξ 2)2]

(B1)

and from the expression of Ĩ (k,�) given by Eq. (34).
Their partial derivatives with respect to k and � are

∂E

∂k
= [Ak(1 − ξ 2)2 − B(1 − ξ 2)]�2, (B2)

∂E

∂�
= [C − 2Bk(1 − 2ξ 2) + Ak2(1 − 4ξ 2 + 3ξ 4)]�, (B3)

and

h̄
∂ Ĩ

∂k
=

{
2[Ak − B] + 4

3
[B − 2Ak]ξ 2 + 6

5
Akξ 4

}
�, (B4)

h̄
∂ Ĩ

∂�
= [C − 2Bk + Ak2] + 4[Bk − Ak2]ξ 2 + 3Ak2ξ 4. (B5)

To find iteratively the values of the two variables k and � that
reproduce the experimental values for E+

2 and Ĩ , we define the
following dimensionless functions:

f (k,�) = E (k,�)

E+
2

− 1 and g(k,�) = Ĩ (k,�)√
6

− 1. (B6)

One then attempts to minimize the function

S(k,�) = f 2(k,�) + g2(k,�) (B7)

by the steepest descent method. The gradient of S(k,�) is

�∇S(k,�) =
(

2
[

f (k,�) ∂ f
∂k + g(k,�) ∂g

∂k

]
2
[

f (k,�) ∂ f
∂�

+ g(k,�) ∂g
∂�

]
)

. (B8)
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FIG. 7. Comparison between the values of the angular velocity � as function of the angular-momentum quantum number I . � values
extracted from the experimental energy spectrum are in red, with a solid line when using Eq. (A4) and a dashed line when Eq. (A6) has been
used. Results of our model calculation are shown in blue and the same convention as far as solid and dashed lines are concerned. The result of
the inversion procedure of Eq. (34) is shown with a light-blue solid line.

Starting from an initial guess(
ko
�o

)
,

the next two-dimensional (2-D) point in the iterative proce-
dure is given by(

k1
�1

)
=

(
ko
�o

)
− α �∇S|ko,�o

=
(

ko

�o

)
− α

(
∂S
∂k |ko,�o

∂S
∂�

|ko,�o

)
, (B9)

where the parameter α has to be chosen so as to minimize the
function S(k,�) at the given values (k1,�1).

This procedure does, indeed, converge well, as determined
by testing on several nuclei of the rare-earth and the actinide
regions, yielding rotational energies that differ from those
generated by the method presented in Sec. III B only very
marginally, as discussed there.

APPENDIX C: DETERMINATION OF THE ANGULAR
VELOCITY AS A FUNCTION OF SPIN

In our model we are able to define an “exact” angular
velocity � (i.e., without recourse to a derivative approximated
by discretization) as the solution of the implicit equation (34).
In Fig. 7 we compare the values �

(inv)
theor obtained by the in-

version of Eq. (34) with those, noted �
(sp)
theor, deduced either

from the experimental or theoretical energy spectra through a
derivative approximation, be it by Eq. (A4) or by Eq. (A6). Let
us note that, in the latter case this energy spectrum is resulting,
through Eq. (5), from the � values determined by Eq. (34).
This comparison is made for the 154Sm and 242Pu nuclei,
taken as relevant examples, since they are not affected by band
crossings up to large angular-momentum values. The two
theoretical angular velocities, �(sp)

theor on one hand and �
(inv)
theor on

the other, stem from the same energy model and thus merely
differ by the discretization in the variable (I or �) for the
former while these variables are considered to be continuous
for the latter. It turns out that, for both nuclei investigated here,
the agreement between theoretical and experimental angular
velocities is very good, irrespective of the choice made to
extract the � values from the spectra [namely, upon using
Eq. (A4) or Eq. (A6)]. It is significant that the � values (in
units of h̄) obtained by the inversion of Eq. (34) coincide
almost perfectly with those deduced from their consideration
as Lagrange multipliers when calculating h̄� through the
derivative dE/dĨ according to Eq. (A6). Since they should be
formally identical, this agreement simply represents an assess-
ment of the quality of the discretization made when evaluating
the double-sided approximate derivative through Eq. (A6).
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