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We study the structure of 9
�Be within the framework of the three-body α + α + � cluster model using the

YNG-NF interaction with the Gaussian expansion method. We obtain the energies of bound states as well as
energies and decay widths of the resonant states with the complex scaling method. By analyzing our wave
functions of bound states and resonant states, we confirm three analog states of 9

�Be pointed out by Bandō and
Motoba et al. [T. Motoba, H. Bandō, and K. Ikeda, Prog. Theor. Phys. 70, 189 (1983); T. Motoba, H. Bandō, K.
Ikeda, and T. Yamada, Prog. Theor. Phys. Suppl. 81, 42 (1985); H. Bandō, K. Ikeda, and T. Motoba, Prog. Theor.
Phys. 69, 918 (1983)], 8Be analog states, 9

�Be genuine states, and 9Be analog states. The new states of 9
�Be are

also obtained at a high energy region with broader decay widths.

DOI: 10.1103/PhysRevC.102.054303

I. INTRODUCTION

One of the main goals in hypernuclear physics is to explore
the new dynamical feature by an addition of a � particle.
Since there is no effect of the Pauli principle between nucleons
and a � particle, participation of � particle in nuclei gives rise
to more bound states. As a result, a significant contraction of
nuclear cores is caused. We call this phenomena as ‘glue-like’
role of a � particle. Such a study for the energy stability
in light hypernuclei has been investigated in Refs. [1–5] for
stable nucleus plus a � particle, and for neutron-rich nuclei
plus a � particle [6].

One of the typical examples is a combination of 6He
and 7

�He. The core nucleus 6He is known to be a halo nu-
cleus whose observed binding energy of the ground state
is −0.96 MeV, weakly binding with respect to the α + n +
n breakup threshold. In Ref. [6], it is predicted that the
ground state of 7

�He should become more bound due to the
glue-like role of a � particle and that the calculated �-
separation energy, B� was 5.44 MeV within the framework of
the 5

�He + N + N three-body model. (Afterwards, within the
framework of the α + � + N + N four-body model, it was
predicted that B� = 5.36 MeV [7].) In 2013, this neutron-rich
� hypernucleus was observed for the first time at JLab by
a 7Li(e, e′K+)7

�He reaction and it was reported that B� =
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5.58 ± 0.03 MeV [8], i.e., the energy gain of 5.58 MeV, due
to the participation of the � particle.

Also, dynamical contraction by the addition of a � particle
has been studied by many authors [1–3,6,9–12]. Historically,
in Refs. [1,2], they studied light p-shell � hypernuclei such
as 7

�Li, 8
�Li, 8

�Be, and 9
�Be with the microscopic α + x + �

three-body cluster model (x = d, t, 3He) together with the
α + x two-body cluster model for the nuclear core. They
pointed out that reduction of the B(E2) strength led to the
contraction of the hypernuclear size since the B(E2) was
proportional to the fourth power of the distance between the
α and x clusters and then they predicted that the α-x distances
in A = 7–9 � hypernuclei should be reduced by about 20%.
Afterwards, in Ref. [6], the experimentalists were proposed
to measure B(E2) of 5/2+ → 1/2+ in 7

�Li and predicted
B(E2) = 2.42 e2fm4 with the 5

�He + N + N three-body clus-
ter model. At KEK, the measurement of this hypernucleus
was done successfully and they reported B(E2) = 3.6 ±
0.5 e2fm4, where the shrinkage effect was confirmed by an
addition of the � particle [13].

Another interesting issue in hypernuclear physics is to find
new states due to the injection of � particle. For this study,
Bandō and Motoba et al. [1–3] investigated the level structure
of 9

�Be within an α + α + � three-body model and catego-
rized three types of states, ‘8Be analog states’, ‘9Be analog
states’, and ‘9

�Be genuine states’, according to the SU(3) shell
model classification. The 8Be analog state corresponds to the
SU(3) irreducible representation with [s5 p4](λ,μ) = (4, 0),
where the � particle occupies the (0s) orbit. Bandō and Mo-
toba et al. defined two 8Be +�(0p) configurations as ‘9Be
analog states’ and ‘9

�Be genuine states’, corresponding to the
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FIG. 1. Jacobian coordinates of 9
�Be with the α + α + � model.

[s4 p5](λ,μ) = (3, 1) and [s4 p5](λμ) = (5, 0) irreducible rep-
resentations, respectively. The latter is a new symmetry called
‘supersymmetric’ by Dalitz and Gal [14,15]. In view of weak
coupling, or of nuclear clustering, in these configurations the
� particle is supposed to orbit around a well developed α-α
core since the 8Be core has a well developed 2α cluster struc-
ture. In particular, in the 9Be-analog states and 9

�Be genuine
states, the � particle occupies two kinds of p orbit, which are
perpendicular and parallel to the deformation axis of the α-α
core, respectively.

Here, it should be noted that Bandō and Motoba et al. [1–3]
obtained three categorized states, almost all states of which
are resonant states above the lowest threshold 5

�He + α ob-
tained by using the bound state approximation with restricted
configuration, where they took only one Jacobian coordinate
of (αα) − � channel (see of C = 3 in Fig. 1) using a small
number of basis functions for α-α (r3 of Fig. 1) and (αα) − �

(R3 of Fig. 1) coordinates. It is considered that the bound state
approximation works for sharp resonant states, but it would be
difficult to obtain broader resonant states.

To obtain resonant states theoretically, there have been
many achievements (for instance, see Ref. [16]). One of the
successful methods is the complex scaling method (CSM)
[17–21].

For this purpose, recently, using CSM and the Gaussian
expansion method (GEM), we obtained all of the possible
resonant states of 9

�Be within the framework of the α + α + �

three-body model [22]. In Ref. [22], we found that energies
and ordering of some resonant states were consistent with
those by Motoba et al., and some were different from the
results of Bandō and Motoba et al. [1–3]. However, we have
not analyzed the category of these states proposed in Ref. [22]
in detail.

Therefore, in this work, we calculate the energy spectra of
bound states as well as of resonant states with the α + α +
� three-body model + CSM using the same α� interaction
as used in Ref. [22]. By comparing our wave functions with
those of the SU(3) shell-model wave functions, we confirm
that the 8Be analog states, 9Be analog states, and 9

�Be genuine
states appear, as discussed by Bandō and Motoba et al. [1–3].
We also find new states at around 10–20 MeV above the α +
α + � three-body breakup threshold, which have never been
pointed out by Bandō and Motoba et al.

Finally, we discuss our calculated states in comparison
with observed data [23,24].

This paper is organized as follows. In Sec. II, we introduce
the realistic NN and �N interaction and the unique adjust-
ments of the some parameters. After explaining the method

employed, we show the results and the discussion of 9
�Be.

Summary is given in Sec. IV.

II. METHOD AND HAMILTONIAN

Since we investigate the 9
�Be within the framework of the

α + α + � three-body cluster model, the Hamiltonian is then
defined as

H = T + Vα1α2 +
2∑

i=1

Vαi� + V Pauli
α1α2

, (1)

where T is the kinetic energy operator. Vα1α2 and Vα� represent
the α-α interaction and α-� interaction, respectively. The
V Pauli

α1α2
stands for the Pauli exclusion operator acting between

2αs, explained below.
In order to solve the Schrödinger equation, the Gaussian

Expansion method [25,26] enables us to use three sets of
Jacobian coordinates (C = 1–3) of Fig. 1 in our total trial
wave function:

�JM =
3∑

c=1

∑
I

∑
�,L

∑
n,N

C(c)
n�NLISα

{[
φα1φα2

]
×[

φ
(c)
n� (rc)ψ (c)

NL(Rc)
]

Iχ 1
2
(�)

}
JM, (2)

where Sα is the α-α symmetrization operator and φαi is
the intrinsic wave function of α with (0s)4 configuration.
χ 1

2
(�) is the spin function of �. Since the energy splitting

of 3/2+ − 5/2+ is almost negligible measured by the high-
resolution γ -ray experiment [27,28], we neglect the spin-orbit
force between α and � and simply regard I as J . And the
spatial part φn�m(r) and ψNLM (R) have the form

φn�m(r) = r�e−(r/rn )2
Y�m(r̂),

ψNLM (R) = RLe−(R/RN )2
YLM (R̂), (3)

where the Gaussian variational parameters are chosen to have
geometric progression:

rn = rminan−1, (n = 1 ∼ nmax),

RN = RminAN−1, (N = 1 ∼ Nmax). (4)

Both the eigenenergies and the coefficients C are obtained by
using the Rayleigh-Ritz variational method. In our calcula-
tion, we adopt l (L) to be up to 4 and n(N ) to be up to 15.
The �α interaction is obtained by folding the �N interaction
into the α cluster wave function. We use a so-called Y NG
interaction which simulated G-matrix �N interaction derived
from Nijmegen model f (NF ) by the three-range Gaussian
form as a function of kF . The Y NG interaction is given as

V�N (r, kF ) =
3∑

i=1

[(
vi

0,even + vi
σσ,evenσ�σN

)1 + Pr

2

+(vi
0,odd + vi

σσ,oddσ�σN )
1 − Pr

2

]
e−(r/βi )2

, (5)

where Pr is the space exchange operator. The strengths vi
0,even,

vi
σσ,even, vi

0,odd, and vi
σσ,odd are represented as functions of kF
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TABLE I. �N interaction depth vi
0,even and vi

0,odd of the modified
Y NG-NF model. Here, we take kF = 0.963 fm−1.

βi(fm) 1.50 0.90 0.50

vi
0,even −9.22 −187.63 795.43

vi
0,odd −5.67 −35.26 2141.79

in Eq. (2.7) of Ref. [29]. The parameters of the NF model
are fixed to reproduce the observed binding energy of 5

�He.
However, it is pointed out that the NF model causes an over-
bound problem for the ground state of 9

�Be, due to the strong
attraction of odd-state component of spin independent part of
the �N interaction [26]. In this case, we tune the odd state
part and kF to reproduce the observed binding energy of 5

�He
and 9

�Be. The new parameters of the modified NF model are
listed in Table I.

The Pauli principle between two α clusters is taken into
account with the orthogonality condition model (OCM). The
OCM projection operator is represented by

V Pauli
α1α2

= lim
λ→∞

λ
∑

f =0s,1s,0d

∣∣φ f
(
rα1α2

)〉〈
φ f

(
r′

α1α2

)∣∣. (6)

The Pauli forbidden states (0s, 1s, 0d ) are ruled out when λ

is an infinity number and practically the λ is given around
≈105 MeV, which is high enough to push the unphysical
states into a large energy region without affecting the physical
states.

We use the α-α interaction, which reproduces the observed
α-α scattering phase shift and the ground state of 8Be with
the α-α OCM. In this case, we fold the modified Hasegawa-
Nagata effective NN potential and pp Coulomb potential into
the α cluster wave function.

In this work, we calculate both the bound state and resonant
state with the use of the CSM [17–21], which enables us to
obtain the energy and decay width of the resonant state. The
CSM is considered to be almost a unique method to deal with
many-body resonances, more than two-body systems [30–33].
By solving the complex scaled Schrödinger equation with a
scaling angle θ :

[H (θ ) − E (θ )] �(θ ) = 0, (7)

where the scaling Hamiltonian is obtained by setting

rc → rceiθ , Rc → Rceiθ , (8)

the energy eigenvalue is obtained, independently of θ , as a
complex number, E = Er − i�/2, where the width and energy
of the resonance are Er and �, respectively. The bound state
will be stable in the negative real axis while the continuum
states are rotated downwards at an angle of 2θ with the real
axis. In Fig. 2, we present two typical examples in calculating
the resonant states of 9

�Be using the CSM. In these two figures,
the resonance remains stable when θ increases and the poles
become isolated from the continuum states. Moreover, we can
see three series of lines for continuum states in Fig. 2, cor-
responding to the 5

�He(0+)+α threshold, the α + α + � and
8Be(0+)+� thresholds, both of which are not distinguished
in these figures, and the 8Be(2+)+� threshold.

FIG. 2. Dependence of the energy distribution on the complex
scaling angle θ for 9

�Be. Two different cases are considered: (a) pres-
ence of a narrow resonance with Jπ = 4+ at Er = 3.2 MeV with
� = 0.78 MeV and (b) presence of a broad resonance with Jπ = 3−

at Er = 9.4 MeV with � = 7.1 MeV

III. RESULTS AND DISCUSSION

A. Energy spectra of 9
�Be

We show the energy spectra of 9
�Be obtained by the OCM

+ CSM in a)–d) of Fig. 3. We also show at the leftmost
column the 0+

1 , 2+
1 , and 4+

1 resonant states of 8Be, which are
obtained by the same framework. For later convenience, we
group them into a), b), c), and d). In all of the subsequent
calculations, the spin-orbit splitting of the � particle and core
is neglected since it is very small.

First, we discuss the spectra of positive parity states of
9
�Be, 0+

1 , 2+
1 , and 4+

1 states [a) of Fig. 3]. As we can see, the
0+

1 and 2+
1 states are the bound by 3.82 MeV and 6.65 MeV,

respectively, with respect to the α + α + � threshold. Thus,
the calculated B� for the ground state is equal to 6.74 MeV
and it is noted that we adjust the odd state of Y NG-NF
interaction so as to reproduce the experimental data, B� =
6.71 ± 0.04 MeV [34]. The excitation energy for the 2+

1 state,
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FIG. 3. Calculated energy spectra of 8Be and 9
�Be with respect to α + α + � three-body threshold. The values in parenthesis are decay

widths. The spectra are categorized as a) 8Be analog band, b) 9
�Be genuine states, c) 9Be analog states and d) new states. And the calculate

energy spectra of 9
�Be by Motoba et al. [2] are located in columns a′), b′), and c′): a′) 8Be analog band, b′) 9

�Be genuine states, c′) 9Be analog
states.

Eex = 2.83 MeV, is in good agreement with the observed
value, Eex = 3.079 ± 0.040 MeV [35]. The 4+

1 state is ob-
tained as a resonance, whose energy and width are calculated
to be Er = 3.2 MeV, above the α + α + � threshold with � =
0.78 MeV, respectively. In Refs. [1–3], the authors pointed out
that these states are 8Be analog states, in which the � particle
couples in an s wave to the 0+

1 , 2+
1 , and 4+

1 states of 8Be.
Next, we discuss the resonant states with CSM. Here, we

rotate θ to be up to 26 degrees which is the limitation of our
calculation. In column b) of Fig. 3, we show two resonant
states, 1−

1 and 5−
1 states at Er = 0.1 MeV with � = 2.5 MeV

and Er = 10.6 MeV with � = 14.6 MeV, respectively. These
states may correspond to the so-called 9

�Be genuine hypernu-
clear states pointed out in Refs. [1–3], in which the � particle
occupies a p orbit in a parallel direction to the α + α axis of
the 8Be core. This � particle motion is made possible because
of no active effect of the Pauli principle of the � particle to
nucleons in the 8Be core, unlike the case of 9Be.

In column c) of Fig. 3, we obtain the 3−
1 and 4−

1 res-
onant states at Er = 8.0 MeV with � = 6.1 MeV and Er =
10.0 MeV with � = 10.4 MeV, which can be categorized as
‘9Be analog states’. This means that in these states the �

particle occupies a p orbit around the 8Be core, which is
perpendicular to the α-α axis, like a neutron orbiting around
8Be core in 9Be nucleus.

In column d) of Fig. 3, we show several resonant states
such as 4+

2 , 1−
2 , 2−

1 , 2+
2 , 3−

2 , 4−
2 , and 4+

3 , which are located at

much higher energy regions above the α + α + � threshold.
These states are not obtained in Refs. [1–3] and more details
will be discussed later in Sec. III C.

For comparison, in columns a′), b′), and c′) of Fig. 3, we
show the energy spectra of 9

�Be obtained by Motoba et al. [2],
in which the Y NG-NF potential for the �-nucleon interaction
is adopted. Here, we can see that their binding energy of
the ground state is overbound compared with the observed
data. This overbinding behavior is caused by a strong at-
traction of the odd-state part of the Y NG-NF potential, as
mentioned in Sec. II (see also Ref. [26]). We should note
that their calculations are performed within the bound state
approximation, in spite of the fact that almost all states shown
here are located in an unbound region, with a finite decay
width.

As pointed out by Bandō and Motoba et al. [1–3], the
energy spectra of 9

�Be are categorized in 8Be analog states,
9
�Be genuine states, and 9Be analog states, which are shown
in columns a′), b′), and c′) of Fig. 3, respectively. In column
a′), their binding energies of 0+, 2+, and 4+ states are similar
to ours. As for the 9

�Be genuine states in column b′) of Fig. 3,
their energies of the 1−

1 and 5−
1 states are very close to the

1−
1 and 5−

1 states in our calculation shown in column b). We
have to emphasize that in our calculation, we have no 3−

1 state
corresponding to the 3− state in 9

�Be genuine states in column
b′) of Fig. 3. In column c′) of Fig. 3, which can be categorized
as the 9Be analog states, the binding energies of the 3−

2 and
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4−
1 states are slightly higher than those of our 3−

1 and 4−
1 states

shown in column c).
On the other hand, we cannot find any 1− and 2− resonant

states in the energy region of the 1−
2 and 2−

1 states shown in
column c′) of Fig. 3. The discrepancy of the energy spectra
obtained by the resonance treatment like the present CSM and
by the bound state approximation will be discussed in detail
in the next subsection.

B. 8Be analog, 9Be analog, and 9
�Be genuine states

In this subsection, we discuss the structure of the states in
columns a), b), and c) of Fig. 3, and also discuss the reason
why our spectra in columns b) and c) do not have one-to-one
correspondence to those obtained by Bandō and Motoba et al.
in Refs. [1–3].

First, we find that the 0+
1 , 2+

1 , and 4+
1 states in col-

umn a) have the analogous structure to the 0+
1 , 2+

1 , and 4+
1

states of 8Be, respectively, as is consistent with the results
in Refs. [1–3]. In fact, for these three states we calculate the
s-wave components of the � particle coupling to the 8Be core,
which are found to be very large, 96%, 95%, and 93%, for the
0+

1 , 2+
1 , and 4+

1 states, respectively. This is nothing but the
8Be analog structure, where the configurations 8Be(0+) + �,
8Be(2+) + �, and 8Be(4+) + �, are realized for the 0+

1 , 2+
1 ,

and 4+
1 states, respectively. Bandō and Motoba et al. also

obtained in Refs. [1–3] the similar values, around 95%, for
these states, and hence we can say that our spectra in column
a) reproduce those states in column a′) in Fig. 3 obtained in
Refs. [1–3].

As explained in Sec. I, the classification of the spectra
shown in columns a′)–c′) in Fig. 3 is, in a strong coupling
limit, better understood by the nuclear SU(3) model, where the
columns a′), b′), and c′) correspond to the SU(3) irreducible
representations, (λ,μ) = (4, 0), (5,0), and (3,1), respectively.
In order to investigate how much our spectra also keep this
strong coupling SU(3)-like nature, we compare our wave
functions with the corresponding relative wave functions be-
tween the two-α clusters and � particle described in terms of
the SU(3) shell model picture.

From this aspect, we next discuss the 1−
1 state in column

b) of Fig. 3. However, since this state is obtained by the
CSM, as having a very broad width, it is no more trivial
to physically interpret any physical quantities calculated by
using the resonant wave function. Thus we first construct an
approximate 1−

1 wave function in a bound state region, so as
to be smoothly connected to the resonant 1−

1 wave function
with the broad width. That can be done by introducing the
following attractive three-body force and artificially changing
the resonant wave function to a bound state wave function, to
analyze the wave function without any difficulty:

V = V0e−μ(r2
1 +r2

2 +r2
3 ), (9)

where μ is fixed to be 0.1 fm−2. When we choose V0 =
−110 MeV, the 1−

1 state becomes a weakly bound state, whose
binding energy is 0.28 MeV relative to the 5

�He + α threshold.
We hereafter denote this artificial 1− state as the 1−

I state.
On the other hand, according to the Bayman-Bohr theorem

[37], the SU(3) (λ,μ) = (5, 0) and (λ,μ) = (3, 1) irreducible

TABLE II. Squared overlap of the ‘artificial’ 1−
I and 1−

II states
with the relative wave functions of the SU(3) shell model defined in
Eq. (13). See text for the definition of the ‘artificial’ 1−

I and 1−
II states.

1−
λ (5, 0)1 (3, 1)1

1−
I 0.45 0.01

1−
II 0.01 + 0.001i 0.39 + 0.02i

representations can be expressed below, in terms of the α

cluster wave function

|(0s)4(0p)4(0p)1
�(5, 0)J = 1〉internal

∝
∑
l=0,2

C(5,0)
l A

∣∣ (4l, 11)J=1φα1φα2

〉
, (10)

|(0s)4(0p)4(0p)1
�(3, 1)J = 1〉internal

∝
∑
l=0,2

C(3,1)
l A

∣∣ (4l, 11)J=1φα1φα2

〉
, (11)

where C(λ,μ)
l = 〈(4, 0)l (1, 0)1||(λ,μ)1〉, which are the re-

duced Clebsch-Gordan coefficients of the SU(3) group for the
vector coupling (4, 0) ⊗ (1, 0) = (5, 0) ⊕ (3, 1) with C(5,0)

l=0 =
C(3,1)

l=2 = √
7/15 and C(5,0)

l=2 = −C(3,1)
l=0 = √

8/15. We use the
same coefficients as Eq. (3.4) in Ref. [3] which may be dif-
ferent from the standard SU(3) phase convention [38,39]. A
is the antisymmetrization operator acting on the nucleons, φαi

is the intrinsic wave function of the α particle, and (nl, NL)J is
the harmonic oscillator wave functions for the relative motions
between the two-α and � particles defined below:

|(nl, NL)J〉 = [Rnl (r3), RNL(R3)]J〉. (12)

Here, the r3(R3) are the Jacobian coordinate set of C = 3
channel defined in Fig. 1. We then define a normalized rel-
ative wave function between the α clusters and � particle,
corresponding to the SU(3) irreducible representations

| (5, 0)1〉 ≡
∑
l=0,2

C(5,0)
l | (4l, 11)J=1〉,

| (3, 1)1〉 ≡
∑
l=0,2

C(3,1)
l | (4l, 11)J=1〉, (13)

and calculate the squared overlap between our 1−
I state and the

relative wave functions defined above, i.e., | 〈(λ,μ)1|1−
I 〉|2.

We obtain 0.45 and 0.01 for the (5, 0)1 and (3, 1)1 states,
respectively, indicating that our 1−

I state is much closer to the
(5, 0)1 state than to the (3, 1)1 state (see Table II).

The reason why we obtain at most around 0.5 for the
squared overlap with the SU(3)-like configuration can be un-
derstood by comparing the SU(3) (λ,μ) = (4, 0) irreducible
representation and our 0+

1 , 2+
1 , and 4+

1 wave functions. In
the same way as the (λ,μ) = (3, 1), (5, 0) cases, the SU(3)
irreducible representation corresponding to the 8Be analog
states, (λ,μ) = (4, 0) can be given below, in terms of the α

cluster wave function,∣∣(0s)4(0s)1
�(0p)4(4, 0)J

〉
internal ∝ A | (4J, 00)Jφαφα〉. (14)
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TABLE III. Squared overlaps with the harmonic oscillator rela-
tive wave functions, of 0+

1 , 2+
1 , and 4+

1 .

J+
1 | 〈(4J, 00)J |J+

1 〉|2

0+
1 37%

2+
1 37%

4+
1 39%

We then calculate the squared overlap between our wave func-
tions for the 0+

1 , 2+
1 , and 4+

1 states and the harmonic oscillator
wave functions for the relative motions between the α clusters
and � particle, |〈(4J, 00)J |J+

1 〉|2. We show in Table III the
squared overlap values, which are about 40% for all the 0+

1 ,
2+

1 , and 4+
1 states. Since in these states the � particle couples

to the 8Be core in an s wave with almost 100%, these rather
small values indicate that the relative motion between the two-
α clusters is excited strongly from the lowest 4h̄ω harmonic
oscillator state, and the α clusters are loosely coupled to each
other.

Thus the squared overlap value 0.45 is comparable to the
values, around 0.40, for the 0+

1 , 2+
1 , and 4+

1 states shown in
Table III. We can therefore say that asymptotically the 1−

1
state has considerable components of the 9

�Be genuine hyper-
nuclear structure and corresponds to the 1−

1 state in column b′)
in Fig. 3.

Next let us compare in more detail our spectra with those
obtained in Ref. [2], shown in columns a′)–c′) of Fig. 3. As
mentioned in the previous section, we notice that in our spec-
tra the 3− state in column b), the 1− and 2− states in column c)
are missing, to have one-to-one corresponding relations with
the spectra in columns b′) and c′). One possibility is that these
‘missing’ states exist but we cannot find them because of the
limitation of the rotating angle θ in CSM, which is around 26
degrees as we mentioned in the previous subsection. If so, the
decay widths of these ‘missing’ states should be much broader
than what is estimated in Ref. [2]. It should, however, be
noted that the spectra in Ref. [2] are obtained with the bound
state approximation, while ours are obtained by taking into
account the correct boundary condition of resonances. Then
in order to understand how this discrepancy comes out, we try
to investigate how the energy poles of the missing resonances
disappear in the framework of CSM.

We first solve the present three-body problem in a restricted
model space, where only C = 1 and C = 2 channels in Fig. 1,
i.e., the 5

�He +α channel, are taken into account, to apply the
CSM. The complex energies of Jπ = 3− states for several
rotation angles θ are shown in Fig. 4. We can clearly see an
energy pole at Er = 3.6 MeV with � = 3.0 MeV, which is
similar to the energy of the 3−

1 state in column b′) of Fig. 3.
However, once we incorporate the C = 3 channel configura-
tions in our three-body model space, the energy pole cannot
be distinguished any more from the continuum states, and
disappears. Since the inclusion of configurations of channel
C = 3 makes it easier to incorporate 8Be -� configurations,
it is considered that the “missing” 3− state is dominated by
a large amount of continuum components in the 8Be +�

FIG. 4. Dependence of the energy distribution on the complex
scaling angle θ for 9

�Be in the case of C = 1 only. The 3− state shows
up at Er = 3.6 MeV with � = 3.0 MeV.

channel, and it can no longer survive as a resonance with a
reasonable width.

In the same way as the 3− state, we also calculated 1−
and 2− states in the restricted configurations with C = 1 and
C = 2 channels only, to apply the CSM. Then we found one
sharp resonant state for Jπ = 1− at Er = 4.6 MeV with � =
2.6 MeV and also one sharp resonant state for Jπ = 2− at
Er = 5.6 MeV with � = 2.9 MeV. [See the blue color levels
of 1− and 2− in column c) of Fig. 5].

In order to clarify the difference of the 1− state obtained
in this way from the 1−

1 state obtained at Er = 0.1 MeV, or
to elucidate the SU(3)-like nature of this 1− state, we calcu-
late the squared overlap with the harmonic oscillator wave
functions, defined by Eq. (13), corresponding to the SU(3)
(λ,μ) = (3, 1) irreducible representation. First as we have
done for the 1−

1 state at Er = 0.1 MeV, we introduce the at-
tractive three-body force of Eq. (9), with the same parameters
as the case of the 1−

1 state, i.e., μ = 0.1 fm−2 and V0 =
−110 MeV. With this three-body force, the 1− state gains
more binding energy and becomes a much sharper resonance,
with Er = 2.8 MeV and � = 0.5 MeV, which we denote the
1−

II state. We then calculate the squared overlap with the states
|(5, 0)1〉 and |(3, 1)1〉 defined in Eq. (13), corresponding to
the genuine state and 9Be analog in the SU(3) model interpre-
tation, respectively. We obtain complex values 0.01 + 0.001i
and 0.39 + 0.02i for the (5, 0)1 and (3, 1)1 states, respec-
tively. Here, in this case, the squared overlap is defined by
〈̃1−

II |(λ,μ)1〉〈(λ,μ)1|1−
II〉, where the complex conjugate is not

taken in the bra state. For both values, the imaginary parts are
much smaller than the real parts, due to the narrower width of
the state, so that we can safely discuss the physical quantity
as usual, by taking only the real parts (see Table II). The real
part of the squared overlap with (3, 1)1, 0.39, is much larger
than the one with (5, 0)1, 0.01, indicating that this state much
more resembles the (3, 1)1 state than the (5, 0)1 state, unlike
the case of the 1−

I state discussed above. This value 0.39 is
similar to 0.45, the value of squared overlap between the 1−

1
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FIG. 5. Calculated energy spectra of 8Be and 9
�Be with respect to α + α + � three-body threshold. The values in parenthesis are decay

widths. The spectra are categorized in a) 8Be analog states, b) 9
�Be genuine states, c) 9Be analog states, d) new states of positive parity, and

e) new states of negative parity. The states colored in black are calculated in all three channels (C = 1–3) while the blue ones are calculated
in only the C = 1 and C = 2 channels. The observed energies of 9

�Be in column Exp.(1) are taken from Refs. [34–36]. The observed energies
of 9

�Be in column Exp.(2) are taken from Refs. [23,24]. And in column Exp.(2)∗, we show the recalibration of the observed values in column
Exp.(2) according to Ref. [40].

state obtained with the same three-body force and the (3, 1)1

state in Eq. (13). Thus, we can conclude that this inherently
“missing” 1− state in our more precise calculations with the
correct resonance boundary condition, is of the 9Be analog
nature and corresponds to the 1−

2 state in column c′) of Fig. 3.
The overlaps between the calculated 1− states and SU(3)-

like configurations give clear structures of the two 1− states.
On the other hand, it is also interesting to give the amount of
8Be(0+) + � and 8Be(2+) + � components in these two 1−
states, where 8Be(0+) and 8Be(2+) are calculated within the
present model space. Accordingly, we calculate the spectro-
scopic S2 factor of the 8Be +� channel for these two artificial
1− states (1−

I and 1−
II ):

S =
∫

Y (R)2R2dR, (15)

where Y (R), the reduced width amplitudes (RWAs), are de-
fined by

Y (R) =
√

2!

2!1!

〈
1−

I (1−
II )

∣∣∣∣[δ(R′
3 − R)

R′2
3

Y1(R̂3
′
), ϕi(

8Be)

]
J=1

〉
.

(16)

In the above equation, ϕi(8Be) is the wave function of the
8Be(0+) state or the 8Be(2+) state and R′

3 is the relative
coordinate between 8Be and �. For the 1−

I state, the S2-factor
values are 0.45 for the 8Be(0+) + � channel and 0.30 for
the 8Be(2+) + � channel. And for the 1−

II state, it gives 0.30
for the 8Be(0+) + � channel and 0.40 for the 8Be(2+) + �

channel. Then, totally the p-wave � has large percentages in
these two 1− states, which are 0.75 and 0.7, respectively, for
the 1−

I state and the 1−
II state.

Despite the fact that the p-wave � has large percentages
in these two 1− states, the s-wave � component might not
be negligible. We then calculate the α spectroscopic S2 factor
with the reduced amplitude Y defined as

Y (R) =
√

2!

1!1!

〈
1−

I (1−
II )

∣∣∣∣[δ(R′
1 − R)

R′2
1

Y1(R̂1
′
), φ

(5

�
He

)]
J=1

〉
,

(17)

where φ(5
�He) is the wave function of the 5

�He(0+) state and
R′

1 is the relative coordinate between 5
�He and α. This gives

S2-factor values of about 0.2 and 0.07 for the 1−
I state and the

1−
II state, respectively, which are much smaller than the ones

with 8Be +� channels.
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These 3−, 1−, and 2− states are additionally shown in
Fig. 5, denoted in blue. Since it is difficult to analyze the
resonant wave functions with broad widths, such as the 3−

1 ,
4−

1 , and 5−
1 states, due to ill behavior of their asymptotic

behaviors, we just tentatively assign these states in column b)
and c), i.e., the 5−

1 state in b) and 3−
1 and 4−

1 states in c). This
assignment, however, seems to be reasonable since now we
find the “missing” 3−, 1−, and 2− states below the 3−

1 , 4−
1 , and

5−
1 states, which can compensate the missing spectra, to be

consistent with the Jπ = 1−, 3−, 5− given by (λ,μ) = (5, 0)
and Jπ = 1−, 2−, 3−, 4− given by (3,1) SU(3) irreducible
representations.

We should mention a possible reason why the states that
are “missing” in our calculations survive as resonances in
Ref. [2]. In the former cluster model calculations, all these
states have a � particle in a dominantly p state with respect
to the 8Be(2+) core, so that they can survive as resonances,
since they can be trapped inside their centrifugal barriers. On
the other hand, in our present calculations, the 8Be(0+) + �

component might be more mixed to make the widths of the
states broader, due to larger decay energies. The fact that the
calculation with the restricted rearrangement channels (C = 1
and C = 2 only) gives clear poles for the “missing” states,
however, indicates that their survivals as resonances are very
sensitive to their structures.

C. New states of 9
�Be

Besides the states displayed in column a)–c) of Fig. 3,
whose structures are studied by many authors, we newly find
another three positive parity states, 2+

2 , 4+
2 , and 4+

3 states,
and four negative parity states, 1−

2 , 2−
1 , 3−

2 , and 4−
2 states,

which are shown separately in columns d) and e) of Fig. 5.
They are located at more than 10 MeV above the α + α + �

threshold, with non-negligible widths as resonances, and have
never been pointed out by the other authors before. We should
note that these states could never be found without imposing
a correct boundary condition of resonances, like the CSM in
the present treatment of resonances.

As was mentioned in the previous subsection, these states
also have broad widths and it is difficult to practically deal
with the resonant wave functions. However, as was done in
the previous subsection, for further information about the
group of the new states, we solve the three-body problem
with a practically restricted model space, with only C = 1
and C = 2 rearrangement channels, and search for further
complex energy poles by the CSM. Then another three res-
onances show up, two 0+ and one 2+ states, at 3.0 MeV with
� = 2.8 MeV, 5.4 MeV with � = 3.0 MeV, and 15.0 MeV
with � = 5.2 MeV, respectively. They are shown in column
d) of Fig. 5 denoted by blue. The reason why the additional
resonances appear when solved in the practically restricted
model space may be similar to that of the case of the negative
parity states discussed in the previous subsection. The inclu-
sion of the channel C = 3 may increase the 8Be +� channel
components, and eventually its continuum-like components
as well, to make the states difficult to survive as resonances
with a 8Be +�-like structure. Thus, together with the artificial
three states, as shown in column d) of Fig. 5, two groups of

TABLE IV. Energy spectra of 9
�Be with respect to the α-α-�

threshold. We present our calculated energy together with the de-
cay width for resonant states. The KEK(E336) are the experimental
data obtained in 1998 by KEK [23,24]. The last column marked
as KEK(E336)∗ are the recalibration of the KEK(E336) (π+, K+)
values according to Ref. [40]. All energies are given in MeV.

Present work KEK(E336) KEK(E336)∗

9
�Be Er � E exp

r E exp∗
r

0+
1 −6.65 − −5.90 ± 0.07 −6.50 ± 0.07

2+
1 −3.82 − −2.97 ± 0.07 −3.57 ± 0.07

1−
1 0.1 2.5 −0.10 ± 0.13 −0.70 ± 0.13

3−
1 8.0 6.1 3.61 ± 0.13 3.01 ± 0.13

the 0+, 2+, and 4+ states may exist and each group seems to
form a rotational band, possibly of 8Be +� structure.

Finally, in Table IV, we compare our results with the
observed data obtained by KEK with the (π+, K+) reac-
tion in 1998 [23,24]. First, the observed binding energy of
KEK(E336) is B� = 5.99 ± 0.07 MeV, which is quite differ-
ent from our results even if we include the systematic error,
±0.36 MeV [23]. It should be noted that this observed value
is calibrated by the emulsion data of 12

� C. In Ref. [40], Gal
et al. suggested to add this B� by 0.6 MeV for recalibration.
As a result, we have B� = 6.59 ± 0.07 MeV, which is also
listed in the last column of Table IV. And for the first ex-
cited states, Eex = 2.93 ± 0.07 MeV, is similar to our results,
Eex = 2.83 MeV and another experimental data in Ref. [35],
Eex = 3.079 ± 0.07 MeV.

Second, for the resonances, our calculated 9
�Be genuine

state, 1−
1 state is consistent with the third experimental state.

The fifth observed data, 8.97 MeV, is close to our 3−
1 , 9Be

analog state. In addition, the observed sixth state, 11.2 MeV,
is close to our 4+

2 state, and the seventh state, 13.63 MeV,
corresponds to 1−

2 . And the eighth observed data, 17.49 MeV,
is close to our 2−

1 state or 3−
2 state.

Especially, the fourth experimental value, 3.61 MeV, is
considered to be the 3− state, according to Ref.[4]. The 6.4
MeV state in column Exp. (1) of Fig. 5, is considered to be
the 1− state, due to the enhancement of recoilless transition
(�L = 0) in the 9Be(K−, π−) 9

�Be reaction. We cannot find
these two states in our calculation within a rotated angle
θ ∼ 26 degrees. However, it should be noted that we do not
perform any (π+, K+) or (K−, π−) reaction calculations in
the present work. To compare our results with the experimen-
tal data, it is necessary to calculate the reaction cross section,
which is in our future work.

IV. SUMMARY

We have calculated energy spectra of 9
�Be within the

framework of the α + α + � three-body model. In this
work, we employed the α-α interaction which reproduces
the observed αα scattering data. The Pauli forbidden states
(0s, 1s, 0d ) between two αs are ruled out by orthogonality
condition model (OCM). We employed the α� potential by a
folding procedure of Y NG-NF �N with an α wave function.
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Here, we adjust even and odd states of the �N interaction so
as to reproduce the observed binding energies of ground states
in 5

�He and 9
�Be. For the resonant states of 9

�Be, we employed
the CSM which is one of the powerful methods to obtain the
energy pole and decay width.

As a result, we categorize the level structure obtained here
into (a) to (e) which are shown in Fig. 5: (a) is 8Be-analog
states, (b) is 9

�Be genuine states, (c) is 9Be analog states,
which are pointed out by Bandō and Motoba et al. [1–3], and
(d) and (e) are new states which have never been pointed out
by Bandō and Motoba et al. [1–3]. The points emphasized
here are as follows:

(1) The calculated binding energy of the 2+
1 state is

−3.82 MeV, which does not contradict the corresponding
data, −3.55 MeV. The calculated 4+

1 state is a resonant state
at 3.2 MeV with � = 0.78 MeV. Here, note that Motoba
et al. [2] obtain a resonant energy only within the bound state
approximation. Our calculated energies of 8Be analog states,
0+, 2+, 4+ states are the same as those by Motoba et al. [2]. To
confirm these three states are 8Be analog states, we calculate
s-wave components of the � particle coupling to the 8Be core
and find the component to be 96%, 95%, and 93%, which are
similar values by Motoba et al. [2].

(2) The calculated first 1− state is obtained by 0.1 MeV
above the α + α + � three-body model with � = 2.5 MeV.
To analyze the wave function of the 1− state, we introduce
a three-body force to make this state artificially bound, and
then calculate the squared overlap of the artificial bound state
wave function and relative wave function by (λ,μ) = (5, 0)
and (3,1) SU(3) representation. We find the squared overlap
value for the (5,0) representation is 45% and for the (3,1) rep-
resentation 1%. Then, we confirm the 1−

1 is the 9
�Be genuine

state.
(3) As shown in b) and c) of Fig. 5, the 3−, 1−, and 2−

states are missing which are different from those by Motoba
et al. [2]. To analyze it, we solve the three-body problem of
9
�Be with a restricted model space, that is, with only C = 1
and C = 2 channels in Fig. 1 and we find resonance states.
From the fact that the inclusion of the C = 3 channel causes

the disappearance of the resonant state, we find that due to the
large overlap of the 8Be +� structure, the three resonant states
are melted into continuum states. Also, by analyzing the wave
function of the ‘missing’ 1− state, we confirm that the states of
c) of Fig. 5 are categorized into the ‘9Be analog’ states, which
was pointed out by Bandō and Motoba et al. [1–3].

(4) We obtain new states of positive parities and negative
parities, which have never been pointed out by Bandō and
Motoba et al. [1–3], as shown in d) and e) of Fig. 5. These
states are located at around 10 MeV to 20 MeV above the
α + α + � three-body threshold with larger decay widths.

(5) Finally, we compare our results with the observed data
obtained so far. It is striking that our binding energy of the
1− state, 9

�Be genuine state, is consistent with the observed
energy, −0.1 MeV, The observed data of E = 8.97 MeV is
close to 8.0 MeV calculated for the 3− state. Our 5−

1 , 4−
1 , or 4+

2
states may correspond to the observed E = 11.22 MeV state.
The observed E = 13.67 MeV state is close to the 1−

2 state
and the observed E = 17.49 MeV state is close to our 2+

2 and
3−

2 states. At the peak, about 17.1 MeV [Exp.(1)], Yamada
et al. [4] pointed out that the state at this energy should be
an ‘s-hole’ substitutional state within the framework of α +
3N + N + � cluster model, which was not included in our
present work. To confirm the observed states theoretically, it
is necessary to calculate the (π+, K+) reaction cross section.
This is our future work.
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[3] H. Bandō, K. Ikeda, and T. Motoba, Prog. Theor. Phys. 69, 918
(1983).

[4] T. Yamada, K. Ikeda, H. Bandō, and T. Motoba, Phys. Rev. C
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