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Spinodal instabilities of spin-polarized asymmetric nuclear matter
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We analyze the spinodal instabilities of spin-polarized asymmetric nuclear matter at zero temperature for
several configurations of the neutron and proton spins. The calculations are performed with the Brueckner-
Hartree-Fock (BHF) approach using the Argonne V18 nucleon-nucleon potential plus a three-nucleon force of
Urbana type. An analytical parametrization of the energy density, which reproduces with good accuracy the
BHF results, is employed to determine the spinodal instability region. We find that, independently of the of the
orientation of the neutron and proton spins, the spinodal instability region shrinks when the system is polarized,
its size being smaller when neutron and proton spins are antiparallel than when they are oriented in a parallel
way. We find also that the spinodal instability is always dominated by total density fluctuation independently of
the degree of polarization of the system, and that restoration of the isospin symmetry in the liquid phase, i.e., the
so-called isospin distillation or fragmentation effect, becomes less efficient with the polarization of the system.
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I. INTRODUCTION

Phase transitions are related to the thermodynamical in-
stabilities that a physical system can present. Due to the
nature of the nucleon-nucleon interaction, which gives rise
to an equation of state of the Van der Waals type, a liquid-
gas phase transition is expected to occur in nuclear matter
[1]. Multifragmentation in heavy-ion collisions, where highly
excited composed nuclei are formed in a gas of evaporated
particles, can be used to study this transition. Results from
these experiments can be interpreted as the coexistence of a
liquid and a gas phase [2–6]. Since nucleons can be either
neutrons or protons, nuclear matter should be considered as
a two-component fluid. Therefore, it is expected that ther-
modynamical instabilities in nuclear matter give rise to a
quite rich phase diagram [7–11]. A lot of interest has been
devoted to define the nature of these instabilities. Usually,
it has been argued that asymmetric nuclear matter presents
two types of instabilities: a mechanical (or isoscalar) insta-
bility associated with density fluctuations which conserve
the proton fraction, and a chemical (or isovector) instability,
related to fluctuations in the proton fraction, occurring at con-
stant density. However, it was demonstrated [10,12,13] that
asymmetric nuclear matter presents in fact only one type of
instability, dominated by total density fluctuations which lead
to a liquid-gas phase separation with restoration of the isospin
symmetry in the liquid dense phase. This phenomenon, where
large droplets of high density symmetric matter are formed
in a background of a neutron gas with a small fraction of
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protons, is known as isospin distillation or fragmentation
effect [14].

The stability conditions of isospin asymmetric nuclear
matter against the liquid-gas phase transition have been
systematically analyzed by using different approaches that
include mean field calculations with effective forces of
Skyrme or Gogny type [12,15–17], relativistic mean field
calculations using constant and density-dependent couplings
parameters [18–22], or Dirac-Brueckner-Hartree-Fock [23]
and Brueckner-Hartree-Fock (BHF) [24] approaches with re-
alistic nucleon-nucleon interactions. In all these analyses it
has been always considered that both protons and neutrons
are spin saturated, i.e., nonpolarized. However, the presence of
strong magnetic fields, such as those estimated in neutron stars
[25,26], particularly in magnetars [27–30], or those predicted
in noncentral heavy-ion collisions [31–34], can induce the
polarization of the neutron and proton spins. It is, therefore,
interesting to extend the analysis of the stability conditions
of nuclear matter to the spin-polarized case. To the best of
our knowledge, this extended analysis has been only done
using RMF models in Refs. [35–37]. In these works, the effect
of strong magnetic fields on the spinodal instabilities, the
isospin distillation, and the crust-core transition in neutron
stars have been studied. The results of these studies show that
sufficiently strong magnetic fields can significantly modify
the extension of the unstable region. Multifragmentation ex-
periments using polarized targets and projectile beams could
potentially explore the modification of the unstable region
and allow the study of a more complex nuclear matter phase
diagram in which different phases with different spin and
isospin content could coexist.
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A general study of the stability conditions of spin-polarized
nuclear matter against a phase separation requires the analysis
of the convexity of its free-energy density with respect to the
partial densities of the four fluids that compose the system:
neutrons and protons both with spin up and down. However,
the degree of spin polarization of neutrons and protons in
systems like neutron stars or in experiments with polarized
targets and projectile beams is fixed by the magnetic field.
Therefore, it is of interest to analyze the spinodal instabilities
at different fixed values of neutron and proton spin polariza-
tions, and explore their effect on the nature of the instabilities.
In this work we perform this analysis at zero temperature
using the BHF approach with the realistic Argonne V18 [38]
nucleon-nucleon force supplemented with a three-nucleon
force of the Urbana type [39,40], which for the use in the BHF
calculation is reduced to a two-body density dependent force
by averaging over spatial, spin, and isospin coordinates of the
third nucleon.

The paper is organized in the following way. A brief review
of the BHF approach for spin-polarized asymmetric nuclear
matter is made in Sec. II. The stability criteria against phase
separation for spin-polarized matter are presented in Sec. III.
Results are shown and discussed in Sec. IV. Finally, a sum-
mary and the main conclusions of this work are given in
Sec. V.

II. BHF APPROACH OF SPIN-POLARIZED ASYMMETRIC
NUCLEAR MATTER

Spin-polarized asymmetric nuclear matter is an ideal in-
finite nuclear system composed of four different fermionic

components: neutrons with spin up and down having densities
ρn↑ and ρn↓ , respectively, and protons with spin up and down
with densities ρp↑ and ρp↓ . The total density of the system is

ρ = ρn↑ + ρn↓ + ρp↑ + ρp↓ ≡ ρn + ρp, (1)

where ρn (ρp) is the total density of neutrons (protons). The
isospin asymmetry of the system can be expressed by the
asymmetry parameter β = (ρn − ρp)/ρ, while its degree of
spin polarization can be characterized by the neutron and
proton spin polarizations Sn and Sp, defined as

Sn = ρn↑ − ρn↓

ρn
, Sp = ρp↑ − ρp↓

ρp
. (2)

Note that the values Sn = Sp = 0 correspond to nonpolar-
ized matter (i.e., ρn↑ = ρn↓ and ρp↑ = ρp↓), whereas Sn = ±1
(Sp = ±1) means that neutrons (protons) are totally polarized,
i.e., all neutron (proton) spins are aligned along the same
direction.

The single densities are related to the total one ρ and the
isospin and spin asymmetry parameters β, Sn, and Sp through
the equations

ρn↑ = (1 + Sn)(1 + β )

4
ρ, ρn↓ = (1 − Sn)(1 + β )

4
ρ, (3)

ρp↑ = (1 + Sp)(1 − β )

4
ρ, ρp↓ = (1 − Sp)(1 − β )

4
ρ. (4)

Our many-body scheme starts with the construction of all
the G matrices that describe the in-medium interaction of two
nucleons (nn, np, pn, and pp) for each one of the spin com-
binations (↑↑, ↑↓, ↓↑, and ↓↓). The G matrices are obtained
by solving the well known Bethe-Goldstone equation

〈�k1τ1σ1; �k2τ2σ2|G(ω)|�k3τ3σ3; �k4τ4σ4〉 = 〈�k1τ1σ1; �k2τ2σ2|V |�k3τ3σ3; �k4τ4σ4〉 +
∑

i j

〈�k1τ1σ1; �k2τ2σ2|V |�kiτiσi; �k jτ jσ j〉

× Qτiσi,τ jσ j (�ki, �k j )

ω − Eτiσi (�ki ) − Eτ jσ j (�k j ) + iη
〈�kiτiσi; �k jτ jσ j |G(ω)|�k3τ3σ3; �k4τ4σ4〉, (5)

where τ and σ indicate, respectively, the isospin (n, p) and spin (↑,↓) projections of the two nucleons in the initial, intermediate,
and final states, �k are their respective linear momenta, V is the bare nucleon-nucleon interaction (in our case the Argonne V18
plus the UIX three-body force reduced to a two-body density dependent one), Qτiσi,τ jσ j (�ki, �k j ) is the Pauli operator which allows
only intermediate states compatible with the Pauli principle, and ω is the sum of the nonrelativistic energies of the interacting
nucleons.

The single-particle energy of a nucleon (τ = n, p) with spin projection σ =↑,↓ and momentum �k is given by Eτσ (�k) =
h̄2k2

2mτ
+ Uτσ (�k), where the single-particle potential Uτσ (�k) represents the mean field “felt” by the nucleon due to its interaction

with the other nucleons of the system. In the BHF approach Uτσ (�k) is calculated through the “on-shell” G matrices

Uτσ (�k) =
∑
τ ′σ ′

∑
k′�kτσ

F

〈�kτσ ; �k′τ ′σ ′|G(ω = Eτσ (�k) + Eτ ′σ ′ (�k′))|�kτσ ; �k′τ ′σ ′〉A, (6)

where a sum over the Fermi seas of neutron and protons with
spin up and down is performed and the matrix elements are
properly antisymmetrized when required. We note that the
continuous prescription has been adopted when solving the
Bethe-Goldstone equation. Once a self-consistent solution of
Eqs. (5) and (6) is obtained, the total energy density can be

easily obtained as

ε =
∑
τσ

∫ k�kτσ
F

0

d3k

(2π )3

(
h̄2k2

2mτ

+ 1

2
Uτσ (�k)

)
. (7)
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TABLE I. Set of parameters a, γ , b, and δ characterizing the
density dependence of the coefficients vi. The parameters γ and δ

are dimensionless whereas the units of a and b are MeV fm3γ−3 and
MeV fm3δ−3, respectively.

Coefficient a γ b δ

v0 −118.92 1.60 484.31 3.99
v1 44.48 1.49 115.53 3.73
v2 30.86 1.69 159.35 4.13
v3 −38.16 1.83 −265.51 5.07

This quantity is obviously a function of the partial densities
ρn↑ , ρn↓ , ρp↑ , and ρp↓ or, equivalently, of the total density ρ,
the isospin asymmetry β, and the spin polarizations Sn and Sp.

BHF calculations are in general quite expensive in terms of
computational time. Therefore, from a practical point of view,
it is very useful to have an analytical parametrization of the
BHF energy density that allow us to determine the spinodal
instability region in a fast way and, in addition, facilitates
us the interpretation of the results. In this work we use the
following energy density functional, developed by one of the
authors in Ref. [41], that parametrizes the BHF results for
spin-polarized asymmetric nuclear matter,

ε(ρ, β, Sn, Sp) = t (ρ, β, Sn, Sp) + v0(ρ) + v1(ρ)β2

+ v2(ρ)(1 + β )2S2
n + v2(ρ)(1 − β )2S2

p

+ v3(ρ)(1 − β2)SnSp, (8)

where

t (ρ, β, Sn.Sp) = 3

5

h̄2k2
F

2m

ρ

4
[(1 + β )5/3(1 + Sn)5/3

+ (1 + β )5/3(1 − Sn)5/3

+ (1 − β )5/3(1 + Sp)5/3

+ (1 − β )5/3(1 − Sp)5/3] (9)

is the kinetic energy density with kF = (3π2ρ/2), and the
coefficients vi(ρ) (i = 0, . . . , 3) have been determined by
imposing the parametrization of Eq. (8) to reproduce the BHF
results corresponding to the following four sets of values of β,
Sn, and Sp: (β = 0, Sn = 0, Sp = 0), (β = 1, Sn = 0, Sp = 0),
(β = 0, Sn = 1, Sp = 0), and (β = 0, Sn = 1, Sp = 1). The
density dependence of the coefficients, assumed to be of the
form

vi(ρ) = aργ + bρδ, i = 0, . . . , 3, (10)

is shown in Fig. 1. The set of parameters a, γ , b, and δ is given
in Table I.

We note that the determination of these coefficients is not
unique and we could have imposed the parametrization to
reproduce the BHF results for a different set of values of
β, Sn, and Sp. However, by choosing them in this way, we
get a parametrization that reproduces with a good quality the
results of the BHF calculations in a wide range of values of
the isospin and spin asymmetry parameters, as can be seen
in Fig. 2. Symbols show the results obtained from the BHF
calculation whereas those obtained from the parametrization
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FIG. 1. Density dependence of the coefficients vi (i = 0, . . . , 3).

are reported by solid lines. As can be seen from the fig-
ure, the spin polarization and isospin asymmetry predicted
by the microscopic calculation are well reproduced by the
parametrization. The quality of the parametrization is quite
good, with deviations from the microscopic calculation of just
a few percent only for values of β, Sn, and Sp corresponding
to the most isospin and spin asymmetric cases. It is interesting
to observe that, for fixed values of β and Sn (with Sn 	= 0), the
minimum of the energy density occurs for a value of Sp 	= 0.
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FIG. 2. Energy density at ρ = 0.1 fm−3 as a function of Sp for
different values of β and Sn. Symbols show the result of the BHF
calculation whereas solid lines correspond to those obtained from
the parametrization of Eq. (8).
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FIG. 3. Energy density as a function of the total density of the
system for different values of β, Sn, and Sp.

However, we should note that this is not an indication of a
ferromagnetic instability signaling a phase transition from the
nonpolarized state to a polarized one of lower energy, because
the real ground state of the system is always the nonpolarized
one (Sn = 0, Sp = 0).

To finish this section, we show in Fig. 3 the energy density
ε as a function of the total density of the system for different
values of β and Sn and Sp. We note that the energy density
of spin-polarized matter is always larger than that of nonpo-
larized matter in the whole range of densities for any value
of the isospin asymmetry. Furthermore, it increases when
increasing the spin polarization of the system. Note also that
this increase is even larger when the neutron and proton spins
have an antiparallel orientation the system. A comprehensive
explanation of the behavior of the energy density with the spin
polarization was already given in Ref. [41], and we refer the
interested reader to this work for details.

III. STABILITY CRITERIA

The stability of a system against a phase separation is
guaranteed if the energy of a single phase is lower than the
energy of any multiple phase configurations. This condition
is fulfilled if the free-energy density (energy density at zero
temperature) is a convex function of the partial densities of
the components of the system, that is, if the curvature matrix
is positive definite. In the case of spin-polarized asymmetric
nuclear matter, which is a four-component system, the curva-
ture matrix has a 4 × 4 structure:

Ci j =
(

∂2ε

∂ρi∂ρ j

)
, i, j = n↑, n↓, p↑, p↓. (11)

However, as we said in the Introduction, in this work we
analyze the spinodal instabilities of polarized nuclear matter

at fixed values of the neutron and proton spin polarizations
Sn and Sp. In this case, the thermodynamical stability against
phase separation is guaranteed by requiring the convexity of
energy density on its dependence of the total neutron (ρn)
and proton (ρp) densities at given values of Sn and Sp. The
curvature matrix in this case is simply

C =
(

∂2ε
∂ρ2

n

∂2ε
∂ρn∂ρp

∂2ε
∂ρp∂ρn

∂2ε
∂ρ2

p

)
Sn,Sp

. (12)

The condition of being positive defined requires that both
the trace and the determinant of C should be positive, i.e.,

Tr(C) = λ+ + λ− � 0,

Det(C) = λ+λ− � 0, (13)

where

λ± = 1
2 (Tr(C) ±

√
[Tr(C)]2 − 4 Det(C)), (14)

are the two eigenvalues of the curvature matrix which have
two associated eigenvectors (δρ±

n , δρ±
p ) with

δρ±
i

δρ±
j

= λ± − Cj j

Cji
, i, j = p, n. (15)

Stability requires that both eigenvalues should be positive. It
turns out that, for any fixed values of the neutron and proton
spin polarizations Sn and Sp, λ+ is always positive and only
λ− can eventually become negative, signaling the beginning
of the instability and the phase separation. In addition, the
magnitude of λ+ exceeds always that of λ− (i.e., λ+ > |λ−|)
and, therefore, the trace of the curvature matrix appears to be
always positive. Consequently, the spinodal instability region
for fixed values of the spin polarizations will be just deter-
mined by the values of the total neutron and proton densities
which make the determinant of the curvature matrix negative
as in the nonpolarized case.

IV. RESULTS

We start this section by showing in Fig. 4 the spinodal
instability region for different combinations of the neutron
and proton spin polarizations. We show results for the case
in which the neutron and proton spins are aligned parallel to
a given direction [panel (a)], and that in which they have an
antiparallel orientation [panel (b)]. To simplify the discussion,
in all cases, we have considered that neutron and proton spin
polarizations are the same in absolute value (|Sn| = |Sp|). As
one can see, independently of the orientation of the spins,
the spinodal instability region shrinks when the system is
polarized. We note that the instability region disappears com-
pletely when matter is totally polarized (Sn = Sp = 1 and
Sn = −Sp = 1). We notice also that if the orientation of the
neutron and protons spins is parallel the spinodal instability
region is always larger than the one obtained when the spins
are aligned in an antiparallel way. Note, for instance, that for
Sn = −Sp = 0.75 the region is extremely small, being almost
completely suppressed, whereas for Sn = Sp = 0.75 it is much
larger, although its size is also clearly reduced with respect to
the nonpolarized case.
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FIG. 4. Spinodal instability region for different combinations of the neutron and proton spin polarizations. Results for cases in which
neutron and proton spins are oriented in a parallel and antiparallel way are shown in panels (a) and (b), respectively.

We can understand the reduction of the spinodal instability
region with the spin polarization by analyzing the behavior
of the pressure in the case of isospin symmetric nuclear mat-
ter, where the character of the spinodal instability is purely
mechanical. Results for spin polarizations Sn = Sp = 0.5 and
Sn = −Sp = 0.5 are shown as an example in panels (a) and
(b) of Fig. 5, respectively. The pressure of the nonpolarized
case is also shown for comparison. As one can see, when
the system is polarized its pressure increases with respect to
the nonpolarized case, and the (mechanical) instability region
(where the pressure derivative is negative) is reduced. This is
due, first, to the increase of the kinetic energy contribution to
the pressure, which is always larger in the polarized system
[see Eq. (9)], and second, to the potential energy contribution,
which in the polarized case varies faster with density due to
the spin-polarization terms in the energy density functional

of Eq. (8). Note, in particular, that the derivative with respect
to the density of the coefficient v2(ρ) is positive and larger,
in absolute value, than that of v3(ρ) (see Fig. 1). Therefore,
the contribution from the spin-polarization terms always in-
creases the pressure when the system is polarized. Note also
that the derivative of the coefficient v3(ρ) is negative. Hence,
if the neutron and proton spins are oriented in a parallel
(antiparallel) way the contribution to the pressure from the
neutron-proton spin-polarization term will be negative (posi-
tive). As a result, the instability region will be larger (smaller)
when neutron and proton spins are parallel (antiparallel) ori-
ented, as can be seen in the figure. For completeness, we show
also in the figure the sum of the contributions to the pressure
of the kinetic energy plus that of the terms v0(ρ), v1(ρ), and
v2(ρ). As expected these contributions are the same inde-
pendently of the orientation of the neutron and proton spins.
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FIG. 5. Pressure of spin-polarized isospin symmetric nuclear matter. Results for Sn = Sp = 0.5 are shown in panel (a), whereas those for
Sn = −Sp = 0.5 are plotted in panel (b). The separate contributions to the pressure of the kinetic energy density plus the terms multiplied by
the coefficients v0(ρ ), v1(ρ ), and v2(ρ ) as well as that of the term multiplied by v3(ρ ) of the parametrization of Eq. (8) are shown separately.
The pressure for the nonpolarized case is also shown for comparison.
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n as a function of the proton fraction for different combinations of neutron and protons spin polarizations
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spin polarizations at fixed proton fraction xp = 0.25. Results for the cases in which neutron and proton spins are oriented in a parallel
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Similar conclusions can be drawn from the more cumbersome
analysis of the curvature matrix.

As already pointed out in the Introduction, asymmetric
nuclear matter presents only one type of thermodynamical
instability [10,12,13] and not two independent ones [me-
chanical (or isoscalar) and chemical (or isovectorial)] as has
been usually argued. This instability appears, in fact, as a
mixture of density and proton fraction fluctuations, and its
direction is given by the ratio δρ−

p /δρ−
n of the two components

of the eigenvector (δρ−
n , δρ−

p ) associated with the negative
eigenvalue λ−. This ratio tells us which is the predominant
character of the instability (isoscalar or isovector). Further-
more, it measures also the efficiency in restoring the isospin
symmetry in the liquid phase: the larger its value, the greater
the efficiency. In general, the nature of the instability will
never be either purely mechanical or chemical, but it will
appear as a mixture of both, being predominantly of isoscalar
type (i.e., dominated by density fluctuations) if δρ−

p /δρ−
n > 0

or of isovector type (i.e., dominated by proton fraction fluc-
tuations) if δρ−

p /δρ−
n < 0. Only if δρ−

p /δρ−
n = ρp/ρn will the

instability preserve the ratio between protons and neutrons at

which the system was prepared, and its nature will be purely
mechanical, while if δρ−

p = −δρ−
n then the total density of the

system will remain constant and, therefore, the instability will
be purely chemical.

We show in Fig. 6 the ratio δρ−
p /δρ−

n as a function of
the proton fraction [panels (a) and (c)] for a fixed density
ρ = 0.05 fm−3, and as function of the density [panels (b) and
(d)] at a fixed proton fraction xp = 0.25. Results for the cases
in which neutron and proton spins are oriented in a parallel
or antiparallel way are shown in the upper and lower panels,
respectively, for the same values of Sn and Sp of Fig. 4. We
note that in all cases δρ−

p /δρ−
n is positive, indicating that,

independently of the spin polarization, the instability is always
dominated by total density fluctuations. Notice, however, that
when the system is polarized the ratio δρ−

p /δρ−
n decreases.

This decrease is quite small when the neutron and proton spins
are parallel and much larger if their orientation is antipar-
allel. Nevertheless, the reduction of δρ−

p /δρ−
n is not enough

to modify the dominant isoscalar nature of the instability,
which would be only signaled by a change in the sign of
the ratio. The decrease of δρ−

p /δρ−
n indicates also that isospin
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symmetry restoration is less efficient when nuclear matter is
polarized. We notice also that for symmetric matter (xp =
0.5) δρ−

p /δρ−
n = 1, indicating in this case that the instability

occurs, as expected, in the pure isoscalar direction and that
matter behaves as a one-component system. Finally, we ob-
serve that δρ−

p /δρ−
n is always larger than the ratio between

protons and neutrons ρp/ρn [see panels (a) and (c)]. This
is an indication that the instability drives the dense phase
(liquid) of the system towards a more symmetric region in
the ρn-ρp plane. As a consequence, due to the conservation of
the total number of particles, the light phase (gas) is enforced
to become more neutron rich, leading to the so-called isospin
distillation or fragmentation effect [14].

V. SUMMARY AND CONCLUSIONS

In this work we have analyzed spinodal instabilities of
spin-polarized asymmetric nuclear matter at zero temperature
within the microscopic BHF approach using the Argonne
V18 nucleon-nucleon potential plus a three-nucleon force of
Urbana type. We have considered several configurations of the
neutron and proton spins ranging from the nonpolarized case
to the totally polarized one. Since BHF calculations are quite
expensive in terms of computational time, to determine the
spinodal instability region in a fast way we have employed
an analytical parametrization of the energy density of spin-
polarized isospin asymmetric nuclear matter that reproduces

with good accuracy the microscopic BHF results. Our results
have shown that, independently of the orientation of neutron
and proton spins, the spinodal instability region shrinks when
the system is polarized, its size being smaller when neutron
and proton spins are in an antiparallel way than when they
are oriented parallel. Analyzing the pressure of spin-polarized
isospin symmetric nuclear matter, we have found that the
reduction of the instability region in the polarized case with
respect to the nonpolarized one is due to (i) the increase
of the kinetic energy contribution to the pressure, which is
always larger in the polarized system, and (ii) to the faster
variation with density of the contributions to the pressure
from the neutron-neutron, proton-proton, and neutron-proton
spin-polarization terms. We have found that it is in fact the
neutron-proton spin-polarization term the one that gives rise
to the largest reduction of instability region if the neutron and
proton spins are antiparallel. Finally, by analyzing the density
and proton fraction dependence of the ratio δρ−

p /δρ−
n we have

found that, independently of the spin polarization, the spin-
odal instability is always dominated by total density fluctua-
tions and that δρ−

p /δρ−
n decreases when the system is polar-

ized, although this reduction is not enough to change the dom-
inant isoscalar nature of the instability. We have also found
that the restoration of the isospin symmetry in the liquid phase
becomes less efficient with the polarization of the system.

Note added. While this manuscript was under review, one
of the co-authors, Artur Polls, passed away unexpectedly.
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[30] B. Paczyński, Acta Astron. 42, 145 (1992).
[31] D. E. Kharzeev, Phys. Lett. B 633, 2060 (2006).
[32] D. E. Kharzeev, L. D. McLerran, and H. J. Warringa, Nucl.

Phys. A 803, 227 (2008).
[33] V. V. Skokov, A. Yu. Illarionov, and V. D. Toneev, Int. J. Mod.

Phys. A 24, 5925 (2009).
[34] Y.-J. Mo, S.-Q. Feng, and Y.-F. Shi, Phys. Rev. C 88, 024901

(2013).
[35] A. Rabhi, C. Providência, and J. Da Providência, Phys. Rev. C

79, 015804 (2009).
[36] J. Fang, H. Pais, S. Pratapsi, S. Avancini, J. Li, and C.

Providência, Phys. Rev. C 95, 045802 (2017).

054004-7

https://doi.org/10.1016/0370-2693(83)90004-7
https://doi.org/10.1016/0370-1573(94)00097-M
https://doi.org/10.1016/j.nuclphysa.2004.01.092
https://doi.org/10.1051/anphys:2005005
https://doi.org/10.1016/j.nuclphysa.2004.12.010
https://doi.org/10.1016/j.nuclphysa.2005.02.117
https://doi.org/10.1103/PhysRevC.22.1729
https://doi.org/10.1103/PhysRevC.52.2072
https://doi.org/10.1016/S0375-9474(98)00006-2
https://doi.org/10.1103/PhysRevLett.86.4492
https://doi.org/10.1016/j.physrep.2004.12.004
https://doi.org/10.1103/PhysRevC.67.041602
https://doi.org/10.1016/j.physrep.2003.09.006
https://doi.org/10.1103/PhysRevLett.85.716
https://doi.org/10.1016/j.nuclphysa.2006.03.005
https://doi.org/10.1016/j.nuclphysa.2006.11.047
https://doi.org/10.1016/j.nuclphysa.2007.03.006
https://doi.org/10.1103/PhysRevC.65.045201
https://doi.org/10.1103/PhysRevC.70.015203
https://doi.org/10.1103/PhysRevC.73.025805
https://doi.org/10.1103/PhysRevC.74.024317
https://doi.org/10.1103/PhysRevC.77.045805
https://doi.org/10.1103/PhysRevC.76.034309
https://doi.org/10.1016/j.physletb.2008.07.066
https://doi.org/10.1038/216567a0
https://doi.org/10.1038/218731a0
https://doi.org/10.1086/186413
https://doi.org/10.1093/mnras/275.2.255
https://doi.org/10.1038/357472a0
https://doi.org/10.1016/j.physletb.2005.11.075
https://doi.org/10.1016/j.nuclphysa.2008.02.298
https://doi.org/10.1142/S0217751X09047570
https://doi.org/10.1103/PhysRevC.88.024901
https://doi.org/10.1103/PhysRevC.79.015804
https://doi.org/10.1103/PhysRevC.95.045802


ARTUR POLLS AND ISAAC VIDAÑA PHYSICAL REVIEW C 102, 054004 (2020)

[37] S. Avancini, B. P. Bertolino, A. Rabhi, J. Fang, H.
Pais, and C. Providência, Phys. Rev. C 98, 025805
(2018).

[38] R. B. Wiringa, V. G. J. Stoks, and R. Schiavilla, Phys. Rev. C
51, 38 (1995).

[39] B. S. Pudliner, V. R. Pandharipande, J. Carlson, and R. B.
Wiringa, Phys. Rev. Lett. 74, 4396 (1995).

[40] B. S. Pudliner, V. R. Pandharipande, J. Carlson, S. C. Pieper,
and R. B. Wiringa, Phys. Rev. C 56, 1720 (1997).

[41] I. Vidaña and I. Bombaci, Phys. Rev. C 66, 045801 (2002).

054004-8

https://doi.org/10.1103/PhysRevC.98.025805
https://doi.org/10.1103/PhysRevC.51.38
https://doi.org/10.1103/PhysRevLett.74.4396
https://doi.org/10.1103/PhysRevC.56.1720
https://doi.org/10.1103/PhysRevC.66.045801

