
PHYSICAL REVIEW C 102, 054003 (2020)

Extended-soft-core baryon-baryon model ESC16.
III. S = −2 hyperon-hyperon/nucleon interactions

M. M. Nagels
Institute of Mathematics, Astrophysics, and Particle Physics University of Nijmegen, Nijmegen, The Netherlands

Th. A. Rijken*

Institute of Mathematics, Astrophysics, and Particle Physics; University of Nijmegen, Nijmegen, The Netherlands
and Nishina Center for Accelerator-Based Science, Institute for Physical and Chemical Research (RIKEN),

Wako, Saitama, 351-0198, Japan

Y. Yamamoto †

Nishina Center for Accelerator-Based Science, Institute for Physical and Chemical Research (RIKEN), Wako, Saitama, 351-0198, Japan

(Received 18 April 2020; revised 29 August 2020; accepted 30 October 2020; published 23 November 2020)

Background: This is the third of a series of papers on baryon-baryon (BB) interactions, where the baryons
are the lowest lying baryon states with spin and parity JP = (1/2)+. The paper presents the extended-soft-core
(ESC) model ESC16 for BB channels with strangeness S = −2.
Purpose: The aim is to describe the ingredients of the S = −2 ESC16 potentials, to apply these two-body
interactions to BB scattering and via G-matrix calculations to hypernuclear systems, and to compare with the
presently available experimental information.
Methods:The potentials for S = −2 are based on the SU(3) extension of the ESC potentials for the strangeness
S = 0 and S = −1 sectors, which are fitted to experimental nucleon-nucleon (NN), hyperon-nucleon (Y N), and
hyperon-hyperon (YY ) data. Flavor SU(3) symmetry is broken only ‘kinematically’ by the masses of the baryons
and the mesons. For the S = −2 channels almost no experimental scattering data exist, and the information
from hypernuclei is also rather limited. Nevertheless, in the fit to the S = 0 and S = −1 sectors information
from the Nagara event and the scarce experimental results on the �N cross sections have been used as (mild)
constraints to determine the free parameters in the simultaneous fit of the deuteron and the NN ⊕ Y N scattering
data. Therefore, the potentials for the S = −2 sectors are almost completely determined by the fits to the NN ,
Y N data, and SU(3) symmetry.
Results: Various properties of the S = −2 potentials are illustrated by giving results for scattering lengths,
bound states, phase parameters, and total cross sections. The well-depth U� is calculated and �N G-matrix
interactions are derived and applied to �−-capture reactions. Here, a phenomenological �N interaction is
added to describe the experiments. Furthermore, the ESC16 model supplemented with phenomenological SU(3)
symmetric gaussian interactions is analyzed, and attractive �N interactions are obtained. Combined with
three-body forces derived from the ESC meson-pair vertices and the Fujita-Miyazawa interaction, yields good
baryon well depths.
Conclusions: The ESC16 S = −2 potentials, with kinematically broken SU(3) symmetry, provide a basis for
realistic calculations in nuclear and hypernuclear physics. For a successful description of the well depth’s
UN ,U�,U� , and U� and hypernuclear S = −2 reactions phenomenological additions are needed.

DOI: 10.1103/PhysRevC.102.054003

I. INTRODUCTION

This paper, the third in a series of papers following
Refs. [1,2], henceforth referred to as I and II respectively,
presents the results and predictions of the extended-soft-core
ESC16 model for low energy baryon-baryon interactions. It
constitutes the next phase in the development of the ESC

*t.rijken@science.ru.nl
†ys_yamamoto@riken.jp

models and is the follow up of the ESC04 models [3–5]
and the ESC08a,b models [6] for S = 0,−1,−2. In Ref. [7]
the Nijmegen soft-core one-boson-exchange (OBE) interac-
tions NSC97a–f for baryon-baryon (BB) systems with S =
−2,−3,−4 were presented.

For the S = −2 hyperon-hyperon (YY ) and hyperon-
nucleon (Y N) channels hardly any experimental scattering
information is available, and also the information from hy-
pernuclei is very limited. Recently the experimental data on
double �� hypernuclei have very much improved by the
observation of the Nagara [8], Hida [9], and Kiso [10] events.
These events indicate that the �� interaction is rather weak,
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in contrast to the estimates based on the older experimental
observations [11,12].

Apart from the experimental activity there is also much
interest in the �N interaction from the theoretical side, e.g.,
(i) chiral field theory [13,14], and (ii) lattice QCD [15].

In the virtual absence of experimental S = −2 scattering
information, we assume that the potentials obey (broken)
flavor SU(3) symmetry, which appears to work very well in
the extension from the nucleon-nucleon (NN) to the S = −1
hyperon-nucleon (Y N) channels. As in I and II, the poten-
tials are parametrized in terms of meson-baryon-baryon, and
meson-pair-baryon-baryon couplings and gaussian form fac-
tors as well as diffractive couplings and Pauli blocking. This
enables us to include in the interaction one-boson exchange
(OBE), two-pseudoscalar exchange (TME), and meson-pair
exchange (MPE), and diffractive contributions without any
new parameters. All parameters have been fixed by a simulta-
neous fit to the NN and Y N data, with the constraints imposed
(i) for ��(1S0) from the Nagara event, (ii) the repulsive
well-depth U� , and (iii) the attractive well-depth U�. For the
procedure see the descriptions in I and II. This way, each
NN ⊕ Y N model leads to a YY,Y N model in a well-defined
way, and the predictions for the ��,�N, ��, and �� chan-
nels contain no additional free parameters. We have chosen
for ESC16 the options: SU(3) symmetry for the coupling
constants, and pseudovector coupling for the pseudoscalar
mesons. (In ESC04 also alternative options were investigated,
but it appeared that there is no reason to choose any of
these.) Then, SU(3) symmetry allows us to define all coupling
constants needed to describe the multistrange interactions in
the baryon-baryon channels occurring in {8} ⊗ {8}. Quantum
chromodynamics (QCD) is, as is generally accepted now, the
physical basis of the strong interactions. Since in QCD the
gluons are flavor blind, SU(3) symmetry is a basic symmetry,
which is broken by the chiral-symmetry breaking at low ener-
gies. This picture supports our assumptions, stated already, on
SU(3) symmetry. As is shown in [3,4] the coupling constants
and the F/(F + D) ratios used in the ESC04 models follow
the predictions of the 3P0-pair creation model (QPC) [16]
rather closely. The same is the case for the ESC08 models,
see paper I and Ref. [17] for details. Now, it has been shown
that in the strong-coupling Hamiltonian lattice formulation of
QCD, the flux-tube model, that this is indeed the dominant
picture in flux-tube breaking [18]. Therefore, since the ESC
models are very much in line with the quark model and QCD,
and SU(3) is a good symmetry, the predictions for the S = −2
channels can be expected to be realistic.

It is important to study �� and � hypernuclei, for un-
derstanding of the BB interactions, giving feedback to the
construction of these interactions. This all the more so in
view of the at present meager scattering data. An experimental
analysis of the �-nucleus interaction indicates an attractive
nuclear well-depth U� ≈ −14 MeV [19], which is not really
small. Therefore, it is very interesting to study the ESC BB
interactions in relation to the hypernuclei, using the G-matrix
Y NG approach, see, e.g., [20].

Since the G-matrix studies with ESC potentials extend
over quite a period of time, it is appropriate to give here a
brief overview for the ESC08 and ESC16 models. In ESC08

models (ESC08a/b/a” [21] and ESC08c [22], ‘effective’ �N
interactions Veff , working mainly in I = 1 3S1 states, have
been added in the G-matrix calculations such as to give
an attractive well-depth U� as indicated in [19]. Then, the
(3S1, I = 1) contributions for ESC08a/b are extremely at-
tractive, and those for ESC08a”/c are moderate. Even in
the latter case, however, they had the notable feature of a
(artificial) “deuteron-like” bound state in the �N (3S1, I =
1) channel, accessible in K− − K+-transition �-production
experiments at JPARC. (This, provided the “effective” in-
teractions are interpreted as genuine two-body interactions.)
Also in ESC16, ‘effective’ �N interactions Veff are added:
the several ESC16⊕Veff models are referred to as ESC16A1,
ESC16A2, ESC16B1, and ESC16B2. In ESC16A1/A2, Veff

works mainly in the I = 1 3S1 state as is also the case in
ESC08a”/c. In ESCB16B1/B2, Veff works in (3S1, I = 1)
and (1S0, I = 0) states, in which there is no occurrence of a
“deuteron-like bound” state.

The ESC two-body potentials, although very successful
for NN and Y N (S = −1), appear to be inadequate for the
strangeness S = −2 hypernuclei. The nature of Veff , men-
tioned before, from the viewpoint of SU(3) symmetry is
unsatisfactory. In particular the separation of genuine two-
body and three-body contributions is unclear. Therefore,
extensions of ESC16, called ESC16�, are studied where phe-
nomenological SU3-symmetric two-body gaussian contact
potentials are introduced. These yield good results for NN ,
Y N , YY , and BB well depths.

The material in this paper is organized by the following
considerations. Most of the details of the SU(3) description
are well known. In particular for baryon-baryon scattering the
details can be found in papers I, II, and in Refs. [7,23,24].
Here, we restrict ourselves to a minimal exposition of
these matters that is necessary for the readability of this
paper. Therefore, in Sec. II we first review for S = −2
the baryon-baryon multichannel description, and present the
SU(3)-symmetric interaction Hamiltonian describing the in-
teraction vertices between mesons and members of the JP =
(1/2)+ baryon octet, and define their coupling constants.
We then identify the various channels which occur in the
S = −2 baryon-baryon systems. In Appendix C the potentials
on the isospin basis are given in terms of the SU(3) irreps.
In most cases, the interaction is a multichannel interaction,
characterized by transition potentials and thresholds. Details
are given in Refs. [7,23]. For the details on the pair interac-
tions, we refer to papers I and II [1,2]. In Sec. III we give a
general treatment of the problem of flavor-exchange forces,
which is very helpful to understand the proper treatment of
exchange forces and the treatment of baryon-baryon channels
with identical particles. Section IV reviews the short-range
phenomenology of ESC16 and its implementation in the S =
−2 channels. In Sec. V we describe briefly the treatment of
the multichannel thresholds in the potentials. In Sec. VI we
present the results of the ESC16 potentials for all the sectors
with total strangeness S = −2. We give the couplings and
F/(F + D) ratios for OBE exchanges of ESC16. Similarly,
tables with the pair couplings are shown in Appendix D. We
give the S-wave scattering lengths, discuss the possibility of
bound states in these partial waves. Also, we give the S-matrix
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information for the elastic channels in terms of the Bryan-
Klarsfeld-Sprung (BKS) phase parameters [25–27], or in the
Kabir-Kermode (KK) [28] format. Tables with the BKS-phase
parameters are displayed in Appendix E. Such information is
very useful for example for the construction of the �-, �-, and
�-nucleus potentials. We also give results for the total cross
sections for all leading channels. The scattering cross sections
[29–31] indicate that the two-body �N interactions are rather
weak, which is also found with the ESC16 model presented
in this paper. Therefore, it is expected that there are no �N
bound states, in agreement with experimental evidence [32].

In Sec. VII, we present the results of the �N G-matrix
interactions derived from ESC16 as density-dependent local
potentials. Here, structure calculations for � hypernuclei are
performed with use of �-nucleus folding potentials obtained
from the G-matrix interactions. In Sec. VIII an SU(3)-
symmetric phenomenological addition to ESC16, henceforth
referred to as the ESC16� model, is described and results for
the NN ⊕ Y N fit and the BB well depths are given. We con-
clude the paper with a summary and final remarks in Sec. IX.

II. CHANNELS, POTENTIALS, AND SU(3) SYMMETRY

A. Multichannel formalism

In this paper we consider the baryon-baryon reactions with
S = −2:

A1(pa, sa) + B1(pb, sb) → A2(p′
a, s′

a) + B2(p′
b, s′

b). (2.1)

Like in papers I, II, and Refs. [23,24] we will for the Y N
channels also refer to A1 and A2 as particles 1 and 3, and to
B1 and B2 as particles 2 and 4. For the kinematics and the
definition of the amplitudes, we refer to paper I [3] of this
series. Similar material can be found in Refs. [7,24]. Also, in
paper I the derivation of the Lippmann-Schwinger equation in
the context of the relativistic two-body equation is described.

The S = −2 the BB channels on the particle basis has five
systems with different charge. They are, see Refs. [6,7],

q = +2 : �+�+ → �+�+,

q = +1 : (�0 p, �+�,�0�+) → (�0 p, �+�,�0�+),

q = 0 : (��,�0n, �− p, �0�,�0�0, �−�+)

→ (��,�0n, �− p, �0�,�0�0, �−�+),

q = −1 : (�−n, �−�,�−�0) → (�−n, �−�,�−�0),

q = −2 : �−�− → �−�−. (2.2)

Like in Refs. [23,24], the potentials are calculated on the
isospin basis. For S = −2 hyperon-nucleon systems there are
three isospin channels:

I = 0 : (��,�N, �� → ��,�N, ��),

I = 1 : (�N, ��,�� → �N, ��,��),

I = 2 : �� → ��.

(2.3)

The potential on the particle basis for the q = 2 and q = −2
channels are given by the I = 2�� potential on the isospin
basis. For q = 0 and q = ±1, the potentials are related to the
potentials on the isospin basis by an isospin rotation. The
connection of the potentials on the particle and the isospin

bases are explicitly given in [6] and given in Appendix A for
completeness.

For the kinematics of the reactions and the various thresh-
olds, see Ref. [23], and Sec. V. In this work we do not
solve the Lippmann-Schwinger equation, but the multichannel
Schrödinger equation in configuration space, completely anal-
ogous to [24]. The multichannel Schrödinger equation for the
configuration-space potential is derived from the Lippmann-
Schwinger equation through the standard Fourier transform,
and the equation for the radial wave function is found to be of
the form in paper II and Ref. [24]:

u′′
l, j + (

p2
i δi, j − Ai, j

)
ul, j − Bi, ju

′
l, j = 0, (2.4)

where Ai, j contains the potential, nonlocal contributions, and
the centrifugal barrier, while Bi, j is only present when nonlo-
cal contributions are included. The solution in the presence of
open and closed channels is given, for example, in Ref. [33].
The inclusion of the Coulomb interaction in the configuration-
space equation is well known and included in the evaluation
of the scattering matrix.

The momentum space and configuration space potentials
for the ESC model have been described in Ref. [3] for baryon-
baryon in general. Therefore, they apply also to the S = −2
hyperon-hyperon/nucleon channels and we can refer for that
part of the potential to papers I and II. Also in the ESC
model, the potentials are of such a form that they are exactly
equivalent in both momentum space and configuration space.
The treatment of the mass differences among the baryons are
handled exactly similar as is done in [23,24]. Also, exchange
potentials related to strange meson exchanges K, K∗, etc., are
given in paper II [2].

The baryon mass differences in the intermediate states for
TME and MPE potentials have been neglected, just like in
S = −1 Y N scattering. This, although possible in principle,
becomes rather laborious and is not expected to change the
characteristics of the baryon-baryon potentials.

B. Potentials and SU(3) symmetry

Like in all Nijmegen BB-interaction models we consider
all BB channels, where the baryons are the members of the
JP = 1

2
+

baryon octet

B =

⎛
⎜⎜⎜⎝

�0√
2

+ �√
6

�+ p

�− − �0√
2

+ �√
6

n

−�− �0 − 2�√
6

⎞
⎟⎟⎟⎠. (2.5)

The baryon masses, used in this paper, are given in Table V.
Similar to Eq. (2.5) the nonets M(9) for the pseudoscalar,

vector, scalar, and axial-vector mesons can be represented by
(i) the traceless matrices M(8) = ∑8

i=1 Miλi/
√

2, and (ii) the
unitary singlet mesons M(0) are included via the definition

Mα
β (9) = Mα

β (8) + δα
β M(0)/

√
3. (2.6)

For the assignment of the meson fields Mi and the Gell-Mann
matrices λi see Refs. [34,35]. Taking the pseudoscalar mesons
with JP = 0− as a specific example, the nonet is written
as P(9) = P(8) + P(0), where the singlet matrix P(0) has
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η0/
√

3 on the diagonal, and the octet matrix P(8) is given
explicitly by

P(8) =

⎛
⎜⎜⎜⎝

π0√
2

+ η8√
6

π+ K+

π− − π0√
2

+ η8√
6

K0

K− K0 − 2η8√
6

⎞
⎟⎟⎟⎠. (2.7)

Here, η8 and η0 are the ‘bare’ SU(3) octet and singlet state,
respectively, and the physical η(448), η′(958) are mixtures of
the bare ones.

Using the isodoublets,

N =
(

p
n

)
, � =

(
�0

�−

)
, (2.8a)

K =
(

K+

K0

)
, Kc =

(
K0

−K−

)
, (2.8b)

the SU(3) invariant interaction Hamiltonian for pseudoscalar
mesons, omitting the Lorentz structure, reads, given by the
interaction Hamiltonian [34,35],

Hoct
pv = { fNNπ (NτN )π − i f��π (� × �)π + f��π (�� + ��)π + f��π (�τ�)π + f�NK [(NK )� + �(KN )]

+ f��K [(�Kc)� + �(Kc�)] + f�NK [�(KτN ) + (NτK )�] + f��K [�(Kcτ�) + (�τKc)�]

+ fNNη8 (NN )η8 + f��η8 (��)η8 + f��η8 (��)η8 + f��η8 (��)η8

+ fNNη0 (NN )η0 + f��η0 (��)η0 + f��η0 (��)η0 + f��η0 (��)η0}/mπ . (2.9)

For the other mesons the octet matrix is obtained by the
following substitutions: (i) vector mesons π → ρ, η8 → φ8,
K → K∗, (ii) scalar π → a0, η8 → f0,8, K → κ , (iii) axial-
vector π → A1, η8 → e8, K → K1A, (iv) axial-vector π →
B1, η8 → h8, K → K1B.

All coupling constants for the physical mesons can be
expressed in terms of three SU(3) parameters: (i) singlet and
octet couplings ( f1, f8), respectively, and (ii) the F/(F + D)
ratio αP. For details see, e.g., Refs. [23,34]. The same applies
to the nonets of the vector-, scalar-, and axial-vector mesons.
The Pomeron is treated as an SU(3) singlet.

In Appendix C, Tables XXVI and XXVII, we give the rela-
tion between the potentials on the isospin basis, see Eqs. (A1)
and (A2), and the SU(3) irreps.

Given the interaction Hamiltonian (2.9) and a theoretical
scheme for deriving the potential representing a particular
Feynman diagram, it is now straightforward to derive the
one-meson-exchange baryon-baryon potentials. We follow the
Thompson approach [36–40] and expressions for the potential
in momentum space can be found in paper I, as well as config-
uration space potentials. Since the nucleons have strangeness
S = 0, the hyperons S = −1, and the cascades S = −2, the
possible baryon-baryon interaction channels can be classified
according to their total strangeness, ranging from S = 0 for
NN to S = −4 for ��. Apart from the wealth of accurate NN
scattering data for the total strangeness S = 0 sector, there
are only a few, and not very accurate, Y N scattering data
for the S = −1 sector, while there are no data at all for the
S < −1 sectors. We therefore believe that at this stage it is
not yet worthwhile to explicitly account for the small mass
differences between the specific charge states of the baryons
and mesons; i.e., we use average masses, isospin is a good
quantum number, and the potentials are calculated on the
isospin basis. The possible channels on the isospin basis are
given in Eq. (2.3).

However, the Lippmann-Schwinger or Schrödinger equa-
tion is solved for the physical particle channels, and so

scattering observables are calculated using the proper phys-
ical baryon masses. The possible channels on the physical
particle basis can be classified according to the total charge
Q; these are given in Eq. (2.2). The corresponding potentials
are obtained from the potential on the isospin basis by making
the appropriate isospin rotations. The matrix elements of the
isospin rotation matrices are nothing else but the Clebsch-
Gordan coefficients for the two baryon isospins making up the
total isospin. (Note that this is the reason why the potential on
the particle basis, obtained from applying an isospin rotation
to the potential on the isospin basis, will have the correct sign
for any coupling constant on a vertex which involves a �+.)

In order to construct the potentials on the isospin ba-
sis, we need first the matrix elements of the various OBE
exchanges between particular isospin states. Using the iso-
multiplets (2.7) and the Hamiltonian (2.9) the isospin factors
can be calculated. The results are given in Table I, where
we use the pseudoscalar mesons as a specific example. The
entries contain the flavor-exchange operator Pf , which is +1
for a flavor symmetric and −1 for a flavor antisymmetric
two-baryon state. Since two-baryon states are totally anti-
symmetric, one has Pf = −PxPσ . Therefore, the exchange
operator Pf has the value Pf = +1 for even-L singlet and
odd-L triplet partial waves, and Pf = −1 for odd-L singlet
and even-L triplet partial waves. In order to understand Table I
fully, we have given in Sec. III a general treatment of exchange
forces. This treatment shows also how to deal with the case
where the initial/final state involves identical particles and the
final/initial state does not.

Secondly, we need to evaluate the TME and the MPE
exchanges. The method we used for these is the same as for
hyperon-nucleon, and is described in Ref. [4], Sec. II D.

III. EXCHANGE FORCES

The proper treatment of the flavor-exchange forces for
the S = −2 channels is a little more subtle than for the
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TABLE I. Meson-exchange isospin factors for the Y N and YY
elastic and inelastic channels with strangeness S = −2 and isospin
I . Pf is the flavor-exchange operator. The I = 2 occurs only in
the S = −2 �� channels, where the isospin factors are given by
(��|η, η′, π |��) = 1

2 (1 + Pf ).

S = −2 I = 0 I = 1

(��|η, η′|��) 1
2 (1 + Pf ) –

(�N |η, η′|�N ) 1 1

(��|η, η′|��) 1
2 (1 + Pf ) 1

2 (1 − Pf )

(��|η, η′|��) – 1

(�N |π |�N ) −3 1

(��|π |��) −(1 + Pf ) − 1
2 (1 − Pf )

(��|π |��) − 1
2

√
3(1 + Pf ) –

(��|π |��) – Pf

(��|π |��) – (1 − Pf )

(��|K|�N ) 1 + Pf –

(��|K|�N )
√

3(1 + Pf )
√

2(1 − Pf )

(�N |K|��) –
√

2; −Pf

√
2

S = 0,−1,−3,−4 channels. The extra complication is the
occurrence of couplings between channels with identical and
channels with nonidentical particles. In order to understand
the several

√
2 factors, mentioned in Ref. [7] and treated in

a concise form in Ref. [6], we give a systematic treatment of
the flavor-exchange potentials. The method followed is using
a multichannel framework, which starts by ordering the two-
particle states by assigning Ai and Bi for the channel labeled
with the index i, like in Eq. (2.1). The particles Ai and Bi have
the center-of-mass (c.m.) momenta pi and −pi, spin compo-
nents sA,i and sB,i. The two-baryon states |AiBi〉 and |BiAi〉
are considered to be distinct, leading to distinct two-baryon
channels. The ‘direct’ and the ‘exchange’ T amplitudes are
given by the T -matrix elements

〈AjBj |Td |AiBi〉, 〈BjAj |Te|AiBi〉, (3.1)

and similarly for the direct and flavor-exchange potentials Vd

and Ve. It is obvious from rotation invariance that

〈AjBj |Td |AiBi〉 = 〈BjAj |Td |BiAi〉,
〈BjAj |Te|AiBi〉 = 〈AjBj |Te|BiAi〉. (3.2)

A similar definition (3.1) and relation (3.2) apply for the
direct and flavor-exchange potentials Vd and Ve. We notice that
in interchanging A and B there is no exchange of momenta or
spin components, see Fig. 1. This is necessary for the applica-
tion of Lippmann-Schwinger type of integral equations, which
can produce only one type of the Mandelstam double spectral
functions [41], e.g., ρ(s, t ) or ρ(s, u). [The third double spec-
tral function ρ(t, u) can only be included approximately in
potential scattering.] So, the momentum transfer for Vd and
for Ve is the same. Viewed from the coupled-channel scheme
this is the standard situation.

FIG. 1. Vd (a) and Ve (b) in the c.m. system.

The integral equations with two-baryon unitarity, e.g., the
Thompson, Lippmann-Schwinger equation, etc., read for the
Td and Te operators

〈AjBj |Td |AiBi〉 = 〈AjBj |Vd |AiBi〉
+

∑
k

[〈AjBj |Vd |AkBk〉 Gk 〈AkBk|Td |AiBi〉

+〈AjBj |Ve|BkAk〉 Gk 〈BkAk|Te|AiBi〉 ],

(3.3a)

〈BjAj |Te|AiBi〉 = 〈BjAj |Ve|AiBi〉
+

∑
k

[〈BjAj |Vd |BkAk〉 Gk 〈BkAk|Te|AiBi〉

+〈BjAj |Ve|AkBk〉 Gk 〈AkBk|Td |AiBi〉 ].

(3.3b)

These coupled equations can be diagonalized by introduc-
ing the T ± and V ± operators

T ± = Td ± Te, V ± = Vd ± Ve, (3.4)

which, as follows from Eq. (3.3), satisfy separate integral
equations

〈AjBj |T ±|AiBi〉 = 〈AjBj |V ±|AiBi〉 +
∑

k

〈AjBj |V ±|AkBk〉

× Gk 〈AkBk|T ±|AiBi〉. (3.5)
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Notice that on the basis of states with definite flavor symmetry

|AiBi〉± = 1√
2

[|AiBi〉 ± |BiAi〉], (3.6)

the T ± and V ± matrix elements are also given by

T ±
i j =± 〈AiBi|T |AjBj〉±, V ±

i j =± 〈AiBi|V |AjBj〉±. (3.7)

A. Identical particles

So far, we considered the general case where Ai �= Bi for
all channels. In the case that Ai = Bi for some i, one has
〈BiAi|Ve|AiBi〉 = 0, because there is no distinct physical state
corresponding to the ‘flavor exchange-state’. For example for
a flavor single channel like pp one deduces from Eq. (3.3) that
then also Te = 0, and one has in this case the integral equation

〈AjBj |Td |AiBi〉 = 〈AjBj |Vd |AiBi〉 +
∑

k

〈AjBj |Vd |AkBk〉

× Gk 〈AkBk|Td |AiBi〉, (3.8)

where the labels i and j now denote, e.g., the spin components.

B. Coupled �� and �N system

This multichannel system represents the case where there
is mixture of channels with identical and with nonidentical
particles. The three states we distinguish are |��〉, |�N〉, and
|N�〉. Choosing the same ordering, the potential written as a
3 × 3 matrix reads

V =
⎛
⎝〈��|V |��〉 〈��|V |�N〉 〈��|V |N�〉

〈�N |V |��〉 〈�N |V |�N〉 〈�N |V |N�〉
〈N�|V |��〉 〈N�|V |�N〉 〈N�|V |N�〉

⎞
⎠.

(3.9)
With a similar notation for the T matrix, the Lippmann-
Schwinger equation can be written compactly as a 3 ×
3-matrix equation:

T = V + V G T with Gi j = Gi δi j . (3.10)

Next, we make a transformation to states, which are either
symmetric or antisymmetric for particle interchange. Then,
according to Eq. (3.7), we can separate them in the Lippmann-
Schwinger equation. This is achieved by the transformation⎛

⎝��

�N

N�

⎞
⎠ ⇒

⎛
⎜⎝

��

(�N + N�)/
√

2

(�N − N�)/
√

2

⎞
⎟⎠, (3.11)

where a standard multichannel notation is used for the states.
This yields in the transformed basis the potential

UVU −1 =

⎛
⎜⎝

V��;�� (V��;�N + V��;N�)/
√

2 (V��;�N − V��;N�)/
√

2

(V�N ;�� + VN�;��)/
√

2 (V�N ;�N + V�N ;N�) 0

(V�N ;�� − VN�;��)/
√

2 0 (V�N ;�N − V�N ;N�)

⎞
⎟⎠, (3.12)

and of course, a similar form is obtained for the T matrix on
the transformed basis. Now, obviously we have that V��;�N =
V��;N� and V�N ;�� = VN�;��. Therefore, one sees that the
even and odd states under particle exchange are decoupled in
Eq. (3.12). Also (V�N ;�� + VN�;��)/

√
2 = √

2V�N ;��, etc.,
showing the appearance of the

√
2 factors, mentioned before.

Indeed, they appear in a systematic way using the multichan-
nel framework. In Ref. [6] the details are worked out for
K-, η-, and π -exchange potentials for the ��,�N, ��, etc.,
channels. The results are summarized in Table I.

IV. SHORT-RANGE PHENOMENOLOGY

For a detailed discussion and description of the short-range
region we refer to paper II, Sec. V [2]. Here, the meson and
diffractive exchanges and the quark core in the ESC16 model-
ing have been described. In this section we give the quark-core
phenomenology for the S = −2 baryon-baryon channels.

A. Relation S = −2 Y N,YY states and SU f s(6) irreps

The relation between the SU f (3) irreps and SU f s(6) irreps,
where f and s denote flavor and spin, respectively, has been
derived in paper II [2]. In Appendix C the S = −2 BB poten-
tials are given in terms of the SU(3) f irreps. Combining these

two things gives the representation of the S = −2 potentials
in terms of the SU f s(6) irreps as displayed in Tables II and
III.

B. Parametrization quark-core effects

As introduced in paper II, the repulsive short-range
Pomeron-like Y N,YY potential is split linearly in a diffractive
(Pomeron) and a quark-core component by writing

VPBB = VBB(POM) + VBB(PB), (4.1)

TABLE II. SU(6) f s contents spin-space odd 1S0,
3P,1D2, . . . po-

tentials on the spin-isospin basis.

(S, I ) V = aV[51] + bV[33]

�� → �� (0, 0) V��,�� = 1
2V[51] + 1

2V[33]

�N → �N (0, 0) V�N,�N = 1
3V[51] + 2

3V[33]

�� → �� (0, 0) V��,�� = 11
18V[51] + 7

18V[33]

�N → �N (0, 1) V�N,�N = 7
9V[51] + 2

9V[33]

�� → �� (0, 1) V��,�� = 2
3V[51] + 1

3V[33]

�� → �� (0, 2) V��,�� = 4
9V[51] + 5

9V[33]
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TABLE III. SU(6) f s-contents of the spin-space even
3S1,

1P1,
3D, ... potentials on the spin-isospin basis.

(S, I ) V = aV[51] + bV[33]

�N → �N (1, 0) V�N,�N = 5
9V[51] + 4

9V[33]

�N → �N (1, 1) V�N,�N = 17
27V[51] + 10

27V[33]

�� → �� (1, 1) V��,�� = 2
3V[51] + 1

3V[33]

�� → �� (1, 1) V��,�� = 16
27V[51] + 11

27V[33]

where VBB(POM) represents the genuine Pomeron and
VBB(PB) the structural effects of the quark-core forbidden
[51] configuration, i.e., a Pauli-blocking (PB) effect. Since the
Pomeron is a unitary singlet its contribution is the same for
all BB channels (apart from some small baryon mass break-
ing effects), i.e., VBB(POM) = VNN (POM). Furthermore the
PB−effect for the BB channels is assumed to be proportional
to the relative weight of the forbidden [51] configuration com-
pared to its weight in NN

VBB(PB) = aPB (wBB[51]/wNN [51])VNN (PB), (4.2)

where aPB denotes the quark-core fraction with respect to
the Pomeron potential for the NN channel, i.e., VNN (PB) =
aPB VPNN . Then we have

VPBB = (1 − aPB)VPNN + aPB

(
wBB[51]

wNN [51]

)
VPNN . (4.3)

A subtle treatment of all BB channels according to this
linear scheme is characteristic for the ESC16 model. The
value of the PB factor aPB is searched in the fit to the NN and
Y N data. The parameter aPB turns out to be about 39%. This
means that the quark-core repulsion is roughly 64% of the
genuine Pomeron repulsion. Then, the PB effects in the S =
−2 channels are entirely determined. From Eq. (4.3) the ratio
VPBB/VPNN is given by the weights of the [51] irrep and aPB. In
Table IV we give this ratio for the various S = −2 BB chan-
nels in the ESC16 model, With only one exception, the effec-
tive Pomeron repulsion is stronger than in the NN channels.

TABLE IV. Effective Pomeron+PB contribution on the spin,
isospin basis.

(S, I ) VPBB/VPNN ESC16

NN → NN (0, 1) 1 1.000

NN → NN (1, 0) 1 1.000

�� → �� (0,0) 1 + 1
8 aPB 1.049

�N → �N (0,0) 1 − 1
4 aPB 0.903

�� → �� (0,0) 1 + 3
8 aPB 1.146

�N → �N (0,1) 1 + 3
4 aPB 1.293

�� → �� (0,1) 1 + 1
2 aPB 1.195

�� → �� (0,2) 1 1.000

�N → �N (1,0) 1 + 1
4 aPB 1.098

�N → �N (1,1) 1 + 5
12 aPB 1.163

�� → �� (1,1) 1 + 1
2 aPB 1.195

�� → �� (1,1) 1 + 1
3 aPB 1.130

FIG. 2. Thresholds in Y N and YY channels for S = −2.
√

s is
the total energy in the c.m.

V. MULTICHANNEL THRESHOLDS AND POTENTIALS

A. Thresholds

Clearly, the S = −2 two-baryon channels represent a num-
ber of separate coupled-channel systems, separated by the
charge, see Eq. (2.2). A further subdivision is according to
the total isospin. The different thresholds have been discussed
in detail in Ref. [7], and we show these thresholds here in
Fig. 2 for the purpose of general orientation. Their presence
turns the Lippmann-Schwinger and Schrödinger equation into
a coupled-channel matrix equation, where the different chan-
nels open up at different energies. In general one has a
combination of ‘open’ and ‘closed’ channels. For a discussion
of the solution of such a mixed system, we refer to Ref. [42].

B. Threshold- and meson-mass corrections in potentials

As discussed in Refs. [42,43], the one-meson-exchange
Feynman graph consists actually of two three-dimensional
time-ordered graphs. This has consequences for the range of
the energy-independent meson exchange potentials.

This effect results in “effective” meson masses and ob-
viously depends on the baryon masses. For more details on
these effective meson masses for the S = −2 channels, we
refer to Ref. [7]. The baryon masses used in this paper are
about the same as in [7], and are given in Table V. In our
potentials we have included the decrease in the physical pion
mass of 138.041 MeV/c2 to 132.58 MeV/c2 in �B → �B,
where B can be N , �, or �, and the much more significant
decrease to 114.62 MeV/c2 in �� → ��; in all other cases,
we retain the physical value of 138.041 MeV/c2. The K and
K∗ masses need to be reduced in all cases, where the drop in
mass squared ranges from (125.56 MeV/c2)2 in �� → ��

to (253.63 MeV/c2)2 in �N → N�.
The used nonstrange meson masses are the same as in pa-

per II [2], as well as the cut-off masses. The effective masses
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TABLE V. Baryon masses in MeV/c2.

Baryon Mass

Nucleon p 938.2796
n 939.5731

Hyperon � 1115.60
�+ 1189.37
�0 1192.46
�− 1197.436

Cascade �0 1314.90
�− 1321.32

of the strangeness carrying mesons are mK = 457.0, mK∗ =
872.464(I = 0), mK∗ = 872.890(I = 1), mκ = 816.0, and for
the axial mesons mK1A = mK1B = 1321.0.

VI. RESULTS

The main purpose of this paper is to present the properties
of the ESC16 potentials for the S = −2 sector. As described
already, the free parameters in this model are fitted entirely
to the NN and Y N scattering data for the S = 0 and S = −1
sectors, respectively, with additional information from hyper-
nuclei and hyperonic matter. Given the expressions for the
coupling constants in terms of the octet, singlet couplings,
and F/(F + D) ratios and their values of papers I and II, it is
straightforward to evaluate all possible baryon-baryon-meson
coupling constants needed for the S � −2 potentials. A com-
plete set of coupling constants for model ESC16 is given in
Table VI.

In Figs. 3–7 we display the elastic channel S-wave poten-
tials for the individual pseudoscalar (PS), vector (V), scalar
(S), and axial (A) mesons in the case of model ESC16.
Here, the mesons with strangeness K , K∗, κ , and K1 do not

FIG. 3. ESC16: OBE contributions to the ��(1S0, I = 0) poten-
tials for the PS, V, S, and A meson nonets.

TABLE VI. Coupling constants for model ESC16, divided by
√

4π . M refers to the meson. The coupling constants are listed in the order
pseudoscalar, vector (g and f ), axial vector A (g and f ), scalar, axial vector B, and diffractive.

M NNM ��M ��M ��M M �NM ��M �NM ��M

f π 0.2684 0.1959 0.1968 –0.0725 K –0.2681 0.0713 0.0725 –0.2684
g ρ 0.5793 1.1586 0.0000 0.5793 K∗ –1.0034 1.0034 –0.5793 –0.5793
f 3.7791 3.5185 2.3323 –0.2606 –4.2132 1.8810 0.2606 –3.7791
g a1 –0.8172 –0.6260 –0.5822 0.1912 K1A 0.8333 –0.2511 –0.1912 0.8172
f –1.6521 –1.2656 –1.1770 0.3865 1.6846 –0.5076 –0.3865 1.6521
g a0 0.5393 1.0786 0.0000 0.5393 κ –0.9341 0.9341 –0.5393 –0.5393
f b1 –2.2598 –1.8078 –1.5656 0.4520 K1B 2.3484 –0.7828 –0.4520 2.2598

M NNM ��M ��M ��M M NNM ��M ��M ��M

f η 0.1368 –0.1259 0.2599 –0.1958 η′ 0.3181 0.3711 0.2933 0.3852
g ω 3.1148 2.4820 2.4820 1.8492 φ –1.2384 –2.0171 –2.0171 –2.7958
f –0.5710 –3.2282 –0.2863 –4.4144 2.8878 –0.3819 3.2380 –1.8416
g f ′

1 –0.7596 –0.1213 –1.0133 0.0710 f1 0.5147 1.0503 0.3019 1.2117
f –4.4179 –3.1274 –4.9303 –2.7386 4.4754 5.5582 4.0450 5.8844
g ε 2.9773 2.3284 2.3284 1.6795 f0 –1.5766 –2.2485 –2.2485 –2.9205
f h′

1 –1.2386 0.1171 –1.6905 0.5690 h1 –0.0830 1.8346 –0.7222 2.4738
g P 2.7191 2.7191 2.7191 2.7191
g O 4.1637 4.1637 4.1637 4.1637
f –3.8859 –3.8859 –3.8859 –3.8859
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FIG. 4. ESC16: OBE contributions to the �N (1S0, I = 0) poten-
tials for the PS, V, S, and A meson nonets.

contribute. In the captions of these figures and elsewhere T
denotes the total isospin I .

In Figs. 8–12 we display the global features of the S-wave
elastic channel OBE, TPS, PAIR, and total potentials. In each
case the total potentials show a large inner repulsion and a
little or no attraction. In the �� case the medium range attrac-
tion is due to the TPS contribution. The TPS potentials give
also attraction in the other channels. The OBE potentials give
repulsion in all these channels, and the PAIR potentials give
a short range attraction in the ��(1S0) and �N (1S0, I = 0)
channel.

In the following we will present the model predictions for
scattering lengths, bound states, and cross sections.

A. Effective-range parameters

For ESC16 the I = 0 low-energy parameters are

a��(1S0) = −0.439 [fm], r��(1S0) = 9.533 [fm].

a�N (3S1) = −0.269 [fm], r�N (3S1) = −10.250 [fm].

For I = 1 we have for ESC16

a�N (1S0) = 0.556 [fm], r�N (1S0) = −3.043 [fm],

FIG. 5. �N (1S0, I = 1) potentials.

a�N (3S1) = 0.144 [fm], r�N (3S1) = 41.005 [fm],

and for ��(1S0, I = 2) we have for ESC16

a�0�0 = +0.495 [fm], r�0�0 = +11.943 [fm],

a�±�± = −0.432 [fm], r�±�± = −594.51 [fm],

a�±�∓ = +9.983 [fm], r�±�∓ = −44.578 [fm].

We note that the ��(I = 2) channels are purely {27} irrep,
like the pp and �+ p(1S0, I = 3/2). This implies that the
nuclear interaction is rather attractive and rather close to a
bound-state. In contrast to pp and �+ p in the channels �±�∓
the Coulomb is attractive.

The results at the �N threshold and at the �� threshold are
given in Tables VII and VIII. The ��(1S0) scattering lengths
are found to be larger in absolute value than in the NSC97
models [7], indicating a more attractive �� interaction.

The old experimental information 6
��He seemed to indi-

cate a separation energy of �B�� = 4–5 MeV, corresponding
to a rather strong attractive �� interaction. As a matter of
fact, an estimate for the ��1S0 scattering length, based on
such a value for �B��, gives a��(1S0) ≈ −2.0 fm [44,45].
However, in recent years the experimental information and
interpretation of the ground state levels of 6

��He, 10
��Be, and

13
��B [46], has been changed drastically. This because of the
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FIG. 6. �N (3S1, I = 0) potentials.

Nagara event, identified uniquely as 6
��He [8], which estab-

lished that the �� interaction is weaker (�B�� ≈ 0.7 MeV).
Furthermore, in �� correlation studies of heavy-ion colli-
sions [47] a small negative a��(1S0) is favored.

In NSC97 [23] it was only possible to increase the attrac-
tion in the �� channel by modifying the scalar-exchange
potential. If the scalar mesons are viewed as being mainly qq̄
states, one finds that the (attractive) scalar-exchange part of

TABLE VII. ESC16: Inverse-scattering-length and effective-
range matrices at (i) the �N threshold for I = 0, and (ii) the
�� threshold for I = 1. The order of the states (1-2) reads
��(1S0), �N (1S0), and �N (1S0 ),��(1S0) for, respectively, I = 0
and I = 1. The dimensions of the matrix elements are in [fm]−1(A−1)
and [fm] (R).

�N threshold �� threshold

A−1 R A−1 R

11 0.234 13.557 –0.085 8.987
12 1.607 –0.377 –1.423 6.458
22 0.569 2.610 –0.485 6.012

FIG. 7. �N (3S1, I = 1) potentials.

the interaction in the various channels satisfies

|V��| < |V�N | < |VNN |, (6.1)

suggesting indeed a rather weak �� potential. The NSC97
fits to the Y N scattering data [23] give values for the
scalar-meson mixing angle which seem to point to almost
ideal mixing for the scalars as qq̄ states. We found that an
increased attraction in the �� channel would give rise to
(experimentally unobserved) deeply bound states in the �N

TABLE VIII. I = 1: Inverse-scattering-length and effective-
range matrices at the �� threshold. The order of the states (1-2)
reads �N (3S1), �N (3D1),��(3S1). The dimension of the matrix
elements are in [fm]−1−l−l ′ (A−1) and [fm]1−l−l ′ (R).

ESC16

A−1 R

11 4.637 37.197
12 –21.474 –94.878
13 2.050 18.181
22 115.960 506.653
23 5.839 –88.231
33 0.954 8.645
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FIG. 8. ��(1S0, I = 0) potentials.

channel. On the other hand, in the ESC models there are in
principle more possibilities because of the presence of meson-
pair potentials. As one sees from the values of the a��(1S0) in
the ESC16 model of this paper, we can produce the apparently
required attraction in the �� interaction without giving rise to
�N bound states. Notice that also in ESC08 we have almost
ideal scalar mixings, akin to NSC97.

B. No deuteron state in �N(3S1 −3 D1, I = 1)

A discussion of the possible bound states, using the SU(3)
content of the different S = 0,−1,−2 channels is given in
Ref. [7]. As in Ref. [7], for a general orientation, we list in
Table IX all the irreps to which the various baryon-baryon
channels belong.

In ESC16 there is no bound-state with isospin I = 1 or
I = 0 and strangeness S = −2. Apparently, the tensor con-
tribution in the spin triplet-coupled states is not large enough
to give a bound state. (The �N → YY tensor potentials for
isospin I = T = 1 are exhibited in Fig. 13.) In ESC08c a
“phenomenological” deuteron-like D� was produced belong-
ing to the {10∗} SU(3) irrep, which is a �N bound state in
the 3S1-3D1 coupled partial wave. In model ESC04d [5], there
occurs a �N bound state in the �N (3S1-3D1, (I = 0) partial

FIG. 9. �N (1S0, I = 0) potentials.

TABLE IX. SU(3) content of the different interaction channels.
S is the total strangeness and I is the isospin. The upper half refers to
the space-spin symmetric states 3S1, 1P1, 3D, ..., while the lower half
refers to the space-spin antisymmetric states 1S0, 3P, 1D2, ....

Space-spin symmetric

S I Channels SU(3) irreps

0 0 NN {10∗}
–1 1/2 �N , �N {10∗}, {8}a

3/2 �N {10}
–2 0 �N {8}a

1 �N , �� {10}, {10∗}, {8}a

�� {10}, {10∗}
Space-spin antisymmetric

S I Channels SU(3) irreps

0 1 NN {27}
–1 1/2 �N , �N {27}, {8}s

3/2 �N {27}
–2 0 ��, �N , �� {27}, {8}s, {1}

1 �N , �� {27}, {8}s

2 �� {27}
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FIG. 10. �N (1S0, I = 1) potentials.

wave. From Table IX one sees that this is a {8a} state, which
was a little bit surprising, because the OBE-potential one
expects to be rather repulsive in the irrep {8a}, see Ref. [24].
In the ESC04 models this occurrence was ascribed to the
inclusion of the potentials of the axial-vector mesons, and the
meson pairs. Since the ESC04a–c versions did not show such
a bound state it is considered to be accidental.

C. Partial wave phase parameters

For the BB channels below the inelastic threshold we
use for the parametrization of the amplitudes the standard
nuclear-bar phase shifts [48]. The information on the elastic
amplitudes above thresholds is most conveniently given using
the BKS phases [25–27]. For uncoupled partial waves, the
elastic BB S-matrix element is parametrized as

S = ηe2iδ, η = cos(2ρ). (6.2)

For coupled partial waves the elastic BB amplitudes are 2 × 2
matrices. The BKS S-matrix parametrization, which is of the
type-S variety, is given by

S = eiδeiεN eiεeiδ, (6.3)

FIG. 11. �N (3S1, I = 0) potentials.

where

δ =
(

δα 0
0 δβ

)
, ε =

(
0 ε

ε 0

)
, (6.4)

and N is a real, symmetric matrix parametrized as

N =
(

η11 η12

η12 η22

)
. (6.5)

From the various parametrizations of the N matrix, we choose
the Kabir-Kermode parametrization [28] to represent the N
matrix in the figures. Then, the N matrix is given by the inelas-
ticity parameters (α, β, ϕ), called ρ parameters, as follows:

N =
(

cos(2α) sin(ϕ + ξ )
sin(ϕ + ξ ) cos(2β )

)
, (6.6)

where

α = ± 1
2 cos−1(η11), β = ± 1

2 cos−1(η22),

ϕ = sin−1(η12) − sgn(η12) sin−1 Q, (6.7)

ξ = sgn(η12) sin−1 Q.

Here,

Q2 = 1 − |η11 + η22| + η11η22. (6.8)
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FIG. 12. �N (3S1, I = 1) potentials.

In Tables XXIX–XXXV, we give for ESC16 the phases and
inelasticity parameters ρ and η11, η12, η22, which enable the
reader to construct the N matrix most directly.

D. Total cross sections

We next present the predictions for the total cross section
for several channels. We suppose always that the beam as
well as the target are unpolarized. Therefore, we included the
statistical factors, which are 1/4 for the spin-singlet and 3/4
for the spin-triplet case.

For those cases where both baryons are charged, we do
not include the purely Coulomb contribution to the total cross
section, nor do we include the Coulomb interference to the
nuclear amplitude. The cross section is calculated by sum-
ming the contributions from partial waves with orbital angular
momentum up to and including L = 2. We find this to be
sufficient for all the S �= 0 sectors; inclusion of any higher
partial waves has no significant effect. Inclusion of higher
partial waves will shift the total cross section to slightly higher
values without changing the overall shape. Of course, their
inclusion would be necessary if a detailed comparison with
real accurate experimental data were to be made.

FIG. 13. �N (3S1, T = 1) tensor potentials.

TABLE X. ESC16 (I = 0, L � 2) total cross sections in (mb)
as a function of the beam particle laboratory momentum p� in
(MeV/c).

�� → ��, �N �N → �N,��

pLab �� �N �N ��

10 3.38 – 450.94 8.21
50 3.14 – 83.62 8.16
100 2.51 – 37.06 8.93
150 1.77 – 21.83 10.69
200 1.12 – 14.63 12.66
250 0.66 – 10.63 14.33
300 0.41 – 8.19 15.67
350 0.64 1.65 6.60 16.80
400 0.38 2.84 5.52 17.82
500 0.73 2.59 4.21 19.74
600 1.43 2.35 3.50 21.44
700 2.25 2.24 3.11 22.90
800 3.09 2.30 2.96 24.17
900 3.92 2.61 3.02 25.32
1000 4.84 2.92 3.36 26.40
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TABLE XI. ESC16 (I = 1, L � 2) total cross sections �N →
�N, �� in (mb) as a function of the beam particle laboratory beam
particle momentum pLab in (MeV/c).

�N → �N, �� �� → ��, �N, ��

plab �N �� �� �N ��

10 14.12 – 697.14 458.50 –
50 13.05 – 215.80 11.93 –
100 12.95 – 94.94 8.23 –
200 13.22 – 38.34 6.39 –
300 13.78 – 22.85 7.50 –
400 14.07 – 16.53 9.45 –
500 13.74 – 13.25 11.36 –
600 10.13 3.62 11.35 12.91 –
650 12.05 4.64 10.94 14.25 2.74
700 13.28 6.18 9.52 14.80 6.26
800 15.01 6.58 7.85 16.08 7.99
900 16.37 6.65 6.64 17.04 7.81
950 17.06 6.74 6.15 17.43 7.47
1000 17.67 6.49 5.71 17.77 7.06

TABLE XII. ESC16 total cross sections �− p →
��, �0n, �− p, �0�, �0�0, �−�+ in (mb) as a function of
the beam particle laboratory beam particle momentum plab in
(MeV/c).

p�− �� �0n �− p �0� �0�0 �−�+

10 928.53 1049.99 744.15 – – –
50 52.54 45.94 12.29 – – –
100 19.27 19.97 7.93 – – –
200 7.25 12.12 7.39 – – –
300 4.04 10.27 8.19 – – –
400 2.71 9.29 9.23 – – –
500 2.04 8.57 10.10 – – –
550 1.83 8.28 10.10 – – –
600 1.66 7.89 9.95 2.17 – –
700 1.45 7.39 12.17 2.91 – –
800 1.35 6.87 13.91 3.06 – –
900 1.35 6.33 15.48 3.07 – –
950 1.39 6.07 16.26 3.07 – –
1000 1.46 5.74 17.05 2.97 0.04 0.30

FIG. 14. Potentials in the symmetric SU(3)-irrep base. The red and green lines denote potentials with and without SU(3)-symmetry
breaking respectively. The units of the vertical axes are (GeV).
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TABLE XIII. ESC16 L = 0,1,2 partial-wave total cross sections
�− p → ��, �0n, �− p, �0� in (mb) as a function of the beam
particle laboratory beam particle momentum plab = 500 MeV/c. σs

and σt are the spin-singlet and spin-triplet cross sections.

�− p → �� �− p → �0n �− p → �− p

L σs σt σT σs σt σT σs σt σT

0 1.58 – 1.58 0.11 5.64 5.75 5.63 3.47 9.10
1 – 0.41 0.41 0.04 2.31 2.35 0.20 0.72 0.92
2 0.05 – 0.05 0.06 0.41 0.47 0.01 0.07 0.08
Tot 1.63 0.41 2.04 0.21 8.36 8.57 5.84 4.26 10.10
Exp 4.3+6.3

−2.7 �10 �24

In Table X the I = 0 total cross sections for �� →
��,�N are shown as a function of the beam laboratory
momentum plab = p�. Being dominantly S wave, there is in
principle a (sharp) cusp at the �N threshold, i.e., p� = 344.4
MeV/c, which indeed is visible in the table. In Table X
we also show the �N → �N,�� total cross sections as a

function of the laboratory momentum p�. In Table XI the
I = 1 total cross sections for the �N → �N, �� and the
I = 1, L = 0 �� → ��,�N, �� reactions are given as a
function of the laboratory momentum pLab = p�. Similarly
for �− p in Table XII. In the KEK-224 experiment for p� =
500 MeV/c the upper limit for the total elastic cross section
σel (�− p) = 24 mb at 90% confidence level [29]. Because the
�− p is a combination of the isospin states with factors 1/

√
2

the total cross sections in Tables X and XI are divided by 4.
In Table XIII the �− p cross sections are shown for the

ESC16-model parameter set. In the measurements at p� =
500 MeV/c [30] for the �− p → �� it was found to be
4.3+6.3

−2.7 mb, which compares reasonably well with the value
2.01 mb in the table. For the elastic �− p cross section we
have 9.34 which is clearly consistent with the upper limit of 24
mb. Also, the cross section 8.37 mb for the inelastic reaction
�− p → �0n is compatible with the estimate of 10 mb in [30].
We note that the total cross sections are rather constant in the
range 400 � p�− � 1000 MeV/c. Table XIII gives for model
ESC16 the contributions from the partial waves for L = 0,1,2
and the total cross sections.

FIG. 15. Potentials in the antisymmetric SU(3)-irrep base. The red and green lines denote potentials with and without SU(3)-symmetry
breaking, respectively. The units of the vertical axes are (GeV).
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E. Flavor SU(3)-irrep potentials

In Figs. 14 and 15 the potentials in the SU(3)-irrep based
states are displayed. In the upper and lower panels the
diagonal and the nondiagonal potentials are shown, respec-
tively. Notice that the nondiagonal potentials are considerably
smaller than the diagonal ones, which shows the approximate
SU(3) symmetry. The red/solid lines show averages of the
SU(3)-irrep potentials using the potentials on the particle ba-
sis. The green/dashed lines are the irrep potentials in an SU(3)
limit, where MN = M� = M� = M� = 1115.6 MeV, mπ =
mK = mη = mη′ = 400 MeV, mρ = mK∗ = mω = mφ = 800
MeV, and ma0 = mκ = mσ = m f ′

0
= 880 MeV. These values

for the masses are close to the GMO [49] octet and singlet
masses 410 and 885 MeV for the pseudoscalar and vector
mesons respectively. The cut-off masses for pseudoscalar,
vector, and axial vector have been set equal to the octet ones,
i.e., �P

1 = �P
8 etc. But, for the scalar nonet �S

8 = �S
1.

Comparison with the results from LQCD [50,51] shows
qualitatively very similar results. The exception is the SU(3)-
singlet {1} irrep. Here, LQCD potential is attractive for 0 <

r < ∞, whereas in ESC16 there is an attractive pocket for
r � 0.5 fm and is repulsive for r > 0.5 fm. This shape is due
to the behavior of the spin-spin potentials from pseudoscalar
and vector exchange, which have zero volume integrals. In the
{1} irrep for the SU(3)-broken potential (solid line) there is no
bound state, i.e., no H particle [52]. This is in agreement with
the recent experimental result studying ϒ(1S, 2S) decay [53].

VII. �N G-MATRIX INTERACTION
AND �-NUCLEUS STATES

A. G-matrix interaction

We calculate � potential energies U� and derive �N
G-matrix interactions G�N (r) in nuclear matter with use
of ESC16.1 For comparison, G-matrix calculations are per-
formed for the HAL-QCD �N potential based on the lattice
QCD [15]. Since the HAL-QCD potential was not determined
uniquely and the three versions (t11, t12, t13) were proposed,
we use here the t13 version giving the reasonable attraction in
comparison with experimental data.

G-matrix calculations are performed with the continu-
ous (CON) choice, where off-shell potentials are taken into
account continuously from on-shell ones in intermediate prop-
agations of correlated pairs. A two-body (2T +1)(2S+1)LJ state
is specified by spin S, isospin T , orbital, and total angular
momenta L and J , respectively. Imaginary parts of G matrices
appear due to energy-conserving transitions from �N to ��

channels in 11S0 and 13PJ states. A conversion width �c
� is

obtained from an imaginary part of U� by multiplying −2.
The BNL-E885 experiment [19] suggests that a �− single

particle potential in 12
�−Be is given by the attractive Woods-

Saxon (WS) potential with the depth ≈ −14 MeV. Recently,
in the E05 12C(K−, K+) experiment at JPARC [54], some
enhancement of cross sections has been observed in the �−

1In this section we denote isospin by T , the nuclear physics nota-
tion.

TABLE XIV. U�(ρ0) and partial wave contributions in
(2T +1)(2S+1)LJ states for ESC16 and ESC16+Veff (A1, A2, B1, B2)
calculated with the CON choice. �c

� denotes �N-�� conversion
width. Also the calculated values are given for the HAL-QCD
potential [15]. All entries are in MeV.

ESC16 A1 A2 B1 B2 HAL-QCD

X2 0.0 2.85 2.55 1.65 1.07
X3 0.0 0.0 1.6 0.0 3.0
Xs 0.0 0.0 0.0 10. 10.
11S0 2.1 1.4 1.4 −4.0 −4.0 −4.9
13S1 −0.4 −2.2 −2.2 −2.8 −2.8 −2.2
11P1 −0.2 −0.3 −0.3 −0.3 −0.3
13P0 −5.3 −3.5 −3.5 −2.0 −2.0
13P1 1.5 1.3 1.3 1.7 1.7
13P2 −1.2 −1.2 −1.2 −2.3 −2.3
31S0 9.2 9.9 9.9 6.8 6.8 1.8
33S1 7.6 −13.5 −13.9 −4.7 −4.9 −5.4
31P1 1.0 1.3 1.3 1.0 1.0
33P0 0.8 1.0 1.0 0.8 0.7
33P1 −2.0 −2.8 −2.8 −3.0 −3.0
33P2 0.5 0.1 0.1 −1.0 −1.0
U� +13.7 −8.5 −9.0 −10.1 −10.4 −10.6
�c

� 5.1 5.7 5.7 0.5 0.5 0.2

bound-state region, suggesting possible existing of a 1S bound
state. Furthermore, as discussed later, the emulsion events of
� hypernuclei give clear evidences for attractive �-nucleus
potentials. Here, it should be noted that the depth of the above
WS potential is related to the potential energy U�(ρ0) in
normal-density matter, when a �-nucleus potential is modeled
simply as a local-density potential U�(ρ(r)). Though such a
potential is not adopted here and their relation is only indirect,
it is clear that the repulsive value of U�(ρ0) for ESC16 in
Table XIV is in contradiction with the above-mentioned ex-
perimental indications of attractive �-nucleus interactions.

In order to realize an attractive �-nucleus interaction, an
effective �N interaction Veff composed of two terms, a (πω)-
pair exchange interaction Vπω and a SU(3)-singlet interaction
Vsinglet , is added phenomenologically to the ESC16 interac-
tion. The Vπω spin-spin and tensor potential functions are
given in Ref. [40], Eq. (C17). The effective interaction is given
as

Veff (r; ρ) = (X2 + X3 f (ρ̃))Vπω(r) + Xs Vsinglet (r),

f (ρ̃) = ρ̃ exp(−ηρ̃) (7.1)

with ρ̃ = ρ/ρ0. Here, the first term is assumed to have
density-dependent strength, where f (ρ̃) is modeled so that
it dominates at low density and is negligible at higher
densities. X2 and X3 are strengths of density-independent
two-body part and density-dependent one. This term brings
about a large attraction especially in (T SP) = (11+) state,
P denoting parity. Xs is the strength of the SU(3)-singlet
interaction, which works in (T SP) = (00+) and (01−) states.
The form of the singlet potential is chosen as Vsinglet =
−ms exp(−m2

s r2/4), ms = 760 MeV and for the different BB
channels the weights are the coefficients of V1 in Table XXVI.
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Parameters X2, X3, η, and Xs are determined so that the
derived G-matrix interaction derived from ESC16+Veff repro-
duces the experimental value of �− binding energies B�−

in the �−+14N system [10,55]. We give here the four pa-
rameter sets A1, A2, B1, and B2 specified by (X2, X3, Xs) =
(2.85, 0.0, 0.0), (2.55, 1.60, 0.0), (1.65, 0.0, 10.0), and (1.07,
3.00, 10.0), respectively, η being taken as 1.6. In the case of
B1 and B2, the Pauli-blocking effect for [51] configuration is
not taken into account in the ESC16 construction. As shown
later, these four sets for Veff give reasonable values of B�− (1S)
and B�− (2P) in the �−+14N system.

Table XIV shows the potential energies U� and their
partial-wave contributions in (2T +1)(2S+1)LJ states at normal
density ρ0 for ESC16, A1, A2, B1, and B2. The U� value for
ESC16 turns out to be repulsive. Comparing the partial-wave
contributions for ESC16 with those for A1 or A2, one find
that the main difference is in 33S1-state contributions, being
repulsive in the former and strongly attractive in the latter.
The negative value of U� in the case of A1 or A2 is owing
to the large 33S1 attractive contribution of the �N-��-��

tensor-coupling term in the (πω)-pair exchange interaction
in Eq. (7.1). In the case of B1 or B2, the 33S1 contributions
are not so attractive, but instead the SU(3)-singlet interaction
in the 11S0 state contributes attractively to give the negative
value of U�. The calculated values of �c

�(ρ0) are given in the
Table XIV, the dominant contributions of which come from
the ��-�N-�� coupling interaction in the 11S0 state. Here,
it should be noted that the �c

� values for B1 and B2 are far
smaller than those for A1 and A2.

The calculated values for the HAL-QCD potential (t13) are
also given in Table XIV. Here, P-state values are lacking be-
cause only the S-state potentials are given in Ref. [15]. There
appear the two distinct features in the HAL-QCD result: One
is the strongly attractive value of partial-wave contribution in
11S0 state. It should be noted that the value in this state is
given genuinely by the interaction because of the statistical
weight factor (2T + 1)(2J + 1) = 1. The other is the small
value of �c

�. Concerning these features, B1/B2 are more
similar to HAL-QCD than A1/A2 owing to the SU(3)-singlet
interactions. For reference, let us show the calculated values
of U�(ρ0) for the t12 and t11 versions of the HAL-QCD po-
tential, being −14.1 MeV and −16.2 MeV, respectively. Thus,
these versions lead to overbinding values of B� in comparison
with the experimental data.

It is interesting to compare the present results with those by
the chiral NLO interactions. Their G-matrix results are given
in Ref. [56], where their calculated values of U�(ρ0) and their
partial-wave contributions can be found in Figs. 3 and 2 (the
values at k = 0 fm−1 in the figures), respectively. Then, their
U�(ρ0) value is rather close to those for A1/A2 and B1/B2.
The 11S0 and 13S1 (31S0 and 33S1) contributions are similar to
those for B1/B2 (A1/A2).

Let us compare the features of A1, A2, B1, and B2 by
showing the partial-wave contributions to U� as a function of
kF . In Fig. 16, S- and P-wave contributions, U�(S) and U�(P),
are drawn by thick (thin) solid and short-dashed curves are for
A1 and A2 (B1 and B2), respectively. For U�(S), the curves
for A1 and B1 (A2 and B2) are found to be similar with each

FIG. 16. U�(S) and U�(P), being S- and P-wave contributions to
U�, respectively, are drawn as a function of kF . Thick (thin) solid and
short-dashed curves are for A1 and A2 (B1 and B2), respectively.

other. For U�(P), the curves for A1 and A2 (B1 and B2) are
almost superposed.

In Fig. 17, partial-wave contributions of (2T +1)(2S+1)LJ

states are drawn as a function of kF . Here, 11S0, 13S1, 31S0,
and 33S1 contributions for A1 (B1) are given by thick (thin)
solid, dashed, short-dashed, and dot-dashed curves, respec-
tively. The similar figure can be obtained for A2 and B2. In
the figure the 33S1 curve for A1 is found to be far below that
for B1, the reason why is because the value of X2 in A1 is
larger than that in B1. On the other hand, the 11S0 and 31S0

curves for B1 are below those for A1, the reason of which is
as follows: In the 11S0 curve, the SU(3)-singlet interaction is
included in B1. In the 31S0 curve, the Pauli-blocking effect for
the [51] configuration is not taken into account in B1.

FIG. 17. Contributions of (2T +1)(2S+1)LJ components to U� are
drawn as a function of kF . 11S0, 13S1, 31S0, and 33S1 contributions
are given by thick (thin) solid, dashed, short-dashed, and dot-dashed
curves for A1 (B1).
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TABLE XV. G(r; kF ) = (a1 + b1kF + c1k2
F ) exp[−(r/β1)2] +

a2 exp[−(r/β2)2] in (2T +1)(2S+1)E and (2T +1)(2S+1)O states with
β1 = 0.9 fm and β2 = 2.0 fm.

a1 b1 c1 a2

A1 11E 82.68 −33.36 19.73 −5.448
13E −55.49 −1.213 19.13 0.364
11O 79.81 2.711 5.132 −5.442
13O −1272. 1289. −379.7 0.356
31E 49.99 1.493 19.08 0.514
33E −99.34 62.12 −8.145 −1.603
31O 57.51 −2.260 8.346 0.509
33O −10.92 6.496 4.247 −1.598

A2 11E 80.46 −29.38 17.95 −5.448
13E −55.49 −1.213 19.13 0.364
11O 79.81 2.711 5.132 −5.442
13O −1411. 1538. −488.2 0.356
31E 53.83 −5.501 22.11 0.514
33E 1.000 −120.7 71.50 −1.603
31O 56.82 −.9798 7.783 0.509
33O 9.756 −31.25 20.66 −1.598

B1 11E −466.5 490.8 −148.5 −5.394
13E −65.87 4.220 17.41 0.373
11O 65.56 4.362 4.760 −5.395
13O −529.4 298.5 −23.77 0.373
31E 30.54 −4.355 18.45 0.517
33E −30.45 8.704 8.253 −1.583
31O 34.15 −1.376 7.630 0.517
33O −48.81 7.115 5.125 −1.583

B2 11E −409.8 389.1 −104.4 −5.394
13E −65.87 4.220 17.41 0.373
11O 65.56 4.362 4.760 −5.395
13O −604.4 432.9 −82.03 0.373
31E 36.17 −14.55 22.89 0.517
33E 46.33 −130.5 68.80 −1.583
31O 31.33 3.750 5.405 0.517
33O −21.27 −42.81 26.84 −1.583

For applications to finite � systems, �N-�N central parts
of complex G-matrix interactions are represented in two-range
Gaussian forms, whose coefficients are given as a function of
kF :

G(r; kF ) = (
a1 + b1kF + c1k2

F

)
exp[−(r/0.9)2]

+ a2 exp[−(r/2.0)2] (7.2)

in (2T +1)(2S+1)E and (2T +1)(2S+1)O states. The determined pa-
rameters for A1, A2, B1, and B2 are given in Table XV.
Imaginary parts are represented as Gim(r; kF ) = (a1 + b1kF +
c1k2

F ) exp[−(r/0.9)2] in 11E and 13O states, whose parameters
are in Table XVI.

Also the G-matrix interactions derived from the HAL-QCD
potential are represented similarly in two-range Gaussian
forms for applications to finite � systems.

B. Experimental information

Experimentally, the most important information for �N
interactions has been obtained from emulsion events of simul-

TABLE XVI. Imaginary parts: Gim(r; kF ) = (a1 + b1kF +
c1k2

F ) exp[−(r/0.9)2] in 11E and 13O states.

a1 b1 c1

A1 11E −87.66 17.11 −.3357
13O −579.4 746.0 −251.7

A2 11E −69.75 −15.57 13.88
13O −696.1 953.9 −341.9

B1 11E 1.284 −3.106 −.3416
13O −48.48 26.17 .6170

B2 11E 5.001 −9.872 2.601
13O −66.19 57.90 −13.16

taneous emission of two � hypernuclei (twin � hypernuclei)
from a �− absorption point: The �− hyperon produced by the
(K−, K+) reaction is absorbed into a nucleus (12C, 14N, or 16O
in emulsion) from some atomic orbit, and two � hypernuclei
are produced by the secondary �− p → �� process. Then,
the energy difference between the initial �− state and the final
twin � state gives rise to the binding energy B�− between �−
and the nucleus. It is well known that capture probabilities of
�− from 2P states are far smaller than those from 3D states. In
spite of this fact, twin � hypernuclei are produced dominantly
after 2P-�− captures. As discussed in Ref. [57], the reason is
because sticking probabilities of two �’s produced after 2P-
�− captures are substantially larger than those after 3D-�−
captures.

Two events of twin � hypernuclei (I) [58] and (II) [59]
were observed in the KEK E-176 experiment, and the event
(III) [10] was in the KEK E373 experiment. In the cases of
(I) and (II), each event has no unique interpretation for its
reaction process. However, it is possible to find a consistent
understanding for these two events as follows: The events (I)
and (II) were interpreted to be reactions of �− captured by
12C. Assuming that the �− is absorbed from the 2P orbit in
each case, we have consistently the following reactions:

(I) �− +12 C →9
� Be +4

� H (B�− = 0.82 ± 0.17 MeV),

(II) �− +12 C →9
� Be∗ +4

� H(B�− = 0.82 ± 0.14 MeV).

(7.3)

The event (III) is uniquely identified as

�− +14 N →10
� Be +5

� He, (7.4)

being the clear evidence of a �− +14 N bound state. The
B� value of 10

�Be in the ground state was determined as
8.60 ± 0.07 MeV by the (e, e′K+) experiment JLab E05-115
[60]. Then, we have B�− = 3.87 ± 0.13 MeV using this value
of B�(10

�Be). It is possible very much, however, that the 10
�Be

produced in the event (III) is in some excited state. The
experimental spectra of 10

�Be [60] shows that only the first
excited state leads to a positive value. In this case, we have
B�− = 1.11 ± 0.25 MeV.

Recently, the J-PARC E07 experiment has been performed
and the analysis is now in progress, where many events of
twin-� hypernuclei in emulsion have been observed. In the
cases of �− +14 N events, they have found not only the 2P-
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�− states (B� = 1.0–1.5 MeV) but also the 1S-�− states
(B� = 6.27 ± 0.32 MeV) [55].

C. Results for finite � systems

As demonstrated in Ref. [21,61], the observed spectra of
�,� hypernuclei are described successfully with the �N- and
�N-nucleus folding potentials derived from the �N and �N
G-matrix interactions. Here, the same method is applied to
�−-nucleus systems. A �-nucleus folding potential in a finite
system is obtained from GT S

(±)(r; kF ) as follows:

U�(r, r′) = Udr + Uex,

Udr = δ(r − r′)
∫

dr′′ρ(r′′)Vdr (|r − r′′|; kF ),

Uex = ρ(r, r′)Vex(|r − r′|; kF ), (7.5)(
Vdr

Vex

)
= 1

2(2tY + 1)(2sY + 1)

∑
T S

(2T + 1)(2S + 1) ·

× [GT S
(±) ± GT S

(∓)], (7.6)

where (±) denote parity quantum numbers. Here, it is as-
sumed that a core nucleus is spherical and its spin and
isospin are zero. Densities ρ(r) and mixed densities ρ(r, r′)
are obtained from Skyrme-HF wave functions. Using a local
approximation for Uex, we have the local �-nucleus potential
U�(r; kF ) for a spherical core. The isospin-dependence of
GT S

(±)(r; kF ) leads to the Lane term. In this work, only the
diagonal parts of the t�Tc term are taken into account. The T S
dependences of GT S

(±)(r; kF ) are considerably different between
A1 and B1 (A2 and B2). These differences do not appear in
the following cases of core nuclei.

For kF included in G(r; kF ), we use the averaged-density
approximation (ADA), where kF values are obtained from av-
eraged values of ρ(r): ρ̄ = 〈φY (r)|ρ(r)|φY (r)〉 with a hyperon
wave function φY (r). In the case of � hypernuclei, the ADA
gives rise to good fitting to the experimental spectra.

Table XVII shows the results for 1S and 2P (1S, 2P,
and 3D) bound states in �−+12C, �−+14N, and �−+16O
(�−+27Al) systems in the cases of using A1, A2, B1, and B2,
where Coulomb interactions between �− and nuclear cores
are taken into account. B�− and

√
〈r2〉 are binding energy

and rms radius of �−, respectively. Conversion widths �c
�−

come from the imaginary potentials in 11S1 and 13P states.
2P-�− states in 12C, 14N, and 16O, and 3D-�− states in 27Al,
marked by (∗) in the table, are so-called Coulomb-assisted
bound states (CABS), which means that they cannot be bound
without attractive Coulomb interactions. The values of

√
〈r2〉

for CABS are far smaller than those for pure Coulomb bound
states.

The calculated values of B�− (2P) in �− +12 C system
are 0.7–1.1 MeV for A1, A2, B1, and B2, being consistent
with the experimental value 0.82 ± 0.14 MeV. In �− +14 N
system, the calculated values of B�− (1S) and B�− (2P) are
5.1–5.7 MeV and 1.2–1.4 MeV, respectively, for A1, A2, B1,
and B2. These values are consistent with the recent observa-
tions that B�− (2P) = 1–1.5 MeV and B�− (1S) = 5–7 MeV
[55]. Let us remark here the difference B�− (1S) − B�− (2P) in
the �− +14 N case: The calculated values are 3.7 (3.8) MeV

for A1 (B1) and 4.5 (4.4) MeV for A2 (B2), respectively.
The reason why the latter values are larger than the former
values is because the density-dependent term X3 f (ρ̃)Vπω(r)
in Eq. (7.1) strengthen the kF dependence of the G-matrix
interaction Eq. (7.2).

In Table XVII, it is noted that the results for A1 and
B1 (A2 and B2) are similar with each other. This is be-
cause the different (T S) dependence of A1 and B1 (A2 and
B2) are not revealed in the present systems that spin and
isospin of nuclear cores are zero. The differences between
A1 (B1) and A2 (B2) come from the density-dependent term
X3 f (ρ̃)Vπω(r) in Eq. (7.1). The most striking difference be-
tween A1 and B1 (A2 and B2) can be seen in the conversion
widths: The calculated values of �c

�− for B1 (B2) are far
smaller than those for A1 (A2), because the 11S0�N-��

coupling interaction in the former is far weaker than that in the
latter.

The results for the HAL-QCD potential also are included in
Table XVII. The calculated values of B�(1S) are more or less
similar to those for the ESC models A1/A2 and B1/B2. On
the other hand, the values of B�(2P, 3D) are systematically
smaller than those for the ESC models, for which there are two
possible reasons: The one is that the density (kF ) dependence
of the G-matrix interaction is weak, because in the HAL-QCD
potential �N-��-�� coupling interactions are renormalized
into the �N-�N single-channel potentials. The other is that
p-state interaction (possibly attractive) is missing in the HAL-
QCD potential for the present.

�− bound states in 12C, 14N, and 16O are expected to be
observed soon as emulsion events in J-PARC E07 experi-
ment. �−+27Al bound states are expected to be observed in
28Si(K−, K+) reactions.

Recapitulating the results for the various Veff we remark:
(1) the A1 version (X3 = 0, Xs = 0) is similar to ESC08c;
(2) the B1 version (X3 = 0, Xs �= 0) is similar to the HAL-
QCD potential [15]. Its �N (3S1, T = 1) attraction gives no
‘deuteron-like’ bound state; (3) A2 and B2 include three-
body terms (X3 �= 0), giving larger separations of the 1S
and 2P states. If Veff has only a three-body term (X2 =
Xs = 0) the 1S-2P splittings are too large. Thus, we can
consider ESC16⊕Veff as an improved versions of ESC08c,
where the former models can reproduce the data more nicely
than the latter. (In Sec. I for future reference, the models
A1, etc., are called ESC16A1, ESC16A2, ESC16B1, and
ESC16B2.)

As mentioned already, the G-matrix calculations show that
the �−nucleus interactions the ESC08 and ESC16 models
have shortcomings in the S = −2 sector, and need to be
supplemented by phenomenological interactions. In Sec. VIII
an SU(3)-symmetric generalization is given with good re-
sults for NN ⊕ Y N scattering and well-depths UN ,U�,U� ,
and U�.

VIII. ESC16�: ESC16 ⊕ NEW TWO-BODY FORCES

As noted in the previous section the observation of the
twin � hypernuclei [58,59] and the recent KISO event [55]
are strong indications that the �-nucleus interaction is not
repulsive, but (moderately) attractive. Two events with “twin”
� hypernuclei (I) [58] and (II) [59] were observed in the KEK
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TABLE XVII. Calculated quantities in �−+12C, �−+14N, �−+16O, �−+27Al systems for A1, A2, B1, and B2. Binding energies B�−

and conversion width �c
�− are in MeV. rms radii

√
〈r2〉 are in fm. Averaged Fermi momentum k̄F is in fm−1. Coulomb-assisted bound states

are marked by (∗). The experimental values B�− (exp) are in MeV.

�−+12C A1 A2 B1 B2 HAL-QCD B�− (exp)

1S B�− 4.8 5.2 4.9 5.2 4.4

�c
�− 2.8 2.9 0.20 0.21 0.13√
〈r2〉 2.9 2.8 2.9 2.8 3.0

k̄F 1.06 1.07 1.06 1.08 1.04

2P (∗) B�− 1.1 0.8 1.0 0.7 0.4 0.82 ± 0.14 [58,59]

�c
�− 1.6 1.3 0.12 0.09 0.01√
〈r2〉 5.5 6.7 5.8 7.3 15.0

k̄F 0.76 0.68 0.74 0.65 0.35

�−+14N A1 A2 B1 B2 HAL-QCD B�− (exp)

1S B�− 5.1 5.7 5.2 5.6 5.5 5–7 [55]

�c
�− 3.3 3.4 0.24 0.26 0.16√
〈r2〉 2.9 2.8 2.9 2.8 2.9

k̄F 1.08 1.09 1.08 1.09 1.08

2P (∗) B�− 1.4 1.2 1.4 1.2 0.7 1.11 ± 0.25 [10]

�c
�− 2.0 1.7 0.16 0.14 0.05√
〈r2〉 5.1 5.8 5.1 5.8 8.5

k̄F 0.80 0.74 0.79 0.74 0.60

�−+16O A1 A2 B1 B2 HAL-QCD

1S B�− 6.1 6.8 6.3 6.8 6.0

�c
�− 3.1 3.3 0.24 0.25 0.14√
〈r2〉 2.8 2.7 2.8 2.7 2.9

k̄F 1.11 1.12 1.11 1.12 1.10

2P (∗) B�− 2.2 2.2 2.2 2.1 1.1

�c
�− 2.1 2.1 0.17 0.17 0.06√
〈r2〉 4.4 4.4 4.4 4.5 6.7

k̄F 0.88 0.87 0.87 0.86 0.69

�−+27Al A1 A2 B1 B2 HAL-QCD

1S B�− 9.0 9.8 9.2 9.9 9.6

�c
�− 2.9 2.9 0.22 0.23 0.12√
〈r2〉 2.7 2.7 2.7 2.6 2.8

k̄F 1.20 1.21 1.21 1.21 1.19

2P B�− 5.0 5.4 5.0 5.3 3.9

�c
�− 2.0 2.0 0.17 0.18 0.08√
〈r2〉 3.8 3.6 3.8 3.7 4.1

k̄F 1.05 1.06 1.05 1.06 0.99

3D (∗) B�− 1.4 1.3 1.3 1.1 0.7

�c
�− 1.3 1.2 0.12 0.10 0.01√
〈r2〉 6.0 6.6 6.3 7.3 16.0

k̄F 0.82 0.78 0.80 0.74 0.33

E-176 experiment, and recently a new event (III) [55] has been
observed in the KEK E373 experiment. This is in line with the
result of the BNL-E885 experiment [19] yielding U� ≈ −14
MeV. From the results shown in this paper it is clear this

can not be accommodated by the two-body forces of the
present ESC16 model. Moreover, ESC16 fails to describe the
�− p correlations found in the ALICE-experiment at CERN
[62]. This situation is also not altered by the inclusion of the
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TABLE XVIII. The st- and su-crossing matrix X (±) = [Xst ±
Xsu]/2. Here, (±) refers to the symmetric (27, 8s, 1) and the asym-
metric (8s, 10, 10∗) irreps, respectively.

μ′
β ′γ ′ (t, u)

27 8s 1 8a 10∗ 10

27 7/40 1/5 1/8 – – –
μβγ (s) 8s 27/40 –3/10 1/8 – – –

1 27/8 1 1/8 – – –
8a – – – 1/2 0 0

μβγ (s) 10 – – – 0 1/4 1/4
10∗ – – – 0 1/4 1/4

three-body forces produced by the meson-pair interactions.
Therefore, there are indications that the two-body forces of
the ESC models, although very successful for the NN and
Y N (S = −1) interactions, are inadequate for the �N interac-
tion showing its “incompleteness”. It is not difficult to suggest
possible sources of “incompleteness”. For example, in the
two-meson exchange potentials only the PS-PS are included,
but not PS-VC, PS-SC, VC-VC, VC-SC, etc. Also, the SU(3)
structure of the 33 resonances, like the Fujita-Miyazawa in-
teraction, cannot be covered completely by the meson-pair
exchanges.

In this section we extend ESC16 to ESC16� by introduc-
ing new SU3-symmetric (s-wave) two-body exchange forces:
gaussian central, spin-spin-, and tensor potentials. This in the
t and u channels [41] SU(3) irreps {μ′}: {27}, {8s}, {8a},
{10∗}, {10}. Henceforth, these new potentials, indicated by the
subscript X , in the t and u channels are denoted as W̃c,W̃σ ,
and W̃t for, respectively, the central, spin-spin-, and tensor
potentials, and taken of the form

W̃μ′,c(r) = C{μ′} fW (r),

W̃μ′,σ (r) = S{μ′} fW (r), (8.1)

W̃μ′,t (r) = −(4/3)T{μ′} (mW r)2 fW (r),

where C, S, T are the t- and u-channel coefficients for the cen-
tral (C), spin-spin (S), and tensor (T) potentials, and fW (r) =
exp(−m2

W r2), mW = 300 MeV. For simplicity a universal
profile is assumed, which is similar to that of the Pomeron. No
specific space-time structure is imposed leaving the central,
spin-spin, and tensor unrelated.

In general, the potentials in the s-channel irreps are related
to those in the t and u channel by the crossing matri-
ces Xst , Xsu. For the so-called signatured potentials V (±) =
[V (t ) ± V (u)]/2 these can be combined. In Table XVIII the
SU(3) crossing matrices X (±), derived from Ref. [63], for the
signatured potentials are given. The SU(3)-singlet exchange
gives no distinction for the s-channel irreps and therefore is
not included in the new SU(3)-symmetric potentials.

The s-channel potentials in the {μ}-irrep corresponding to
Eq. (8.1) are

W (±)
μ,c (r) =

∑
μ′

X (±)(μ,μ′) C{μ′} fW (r), (8.2)

TABLE XIX. ESC16�(A): Coupling constants SU(3)-symmetric
gaussian potentials.

{μ} {27} {8s} {8a} {10∗} {10}
C{μ} –0.41 –0.19 –6.64 +0.12 –2.66
S{μ} –0.13 +0.90 +7.19 +0.49 0.0
T{μ} – – – – –

and similarly for the spin-spin and tensor potentials. Finally,
the two-particle s-channel potentials are obtained using the
transformations given in Appendix C.

Below we present results of NN ⊕ Y N fits having the
same quality as for ESC16, with these new SU(3)-symmetric
phenomenological potentials for two choices of the extra pa-
rameters. In both cases, the meson coupling constants are
about equal to those obtained with ESC16, which is also the
case for the MPE couplings. It appears that the QPC pattern
of the baryon-baryon-meson gBBM couplings is preserved.

The well-depths UNN ,U�,U�,U� are calculated with the
inclusion of the three-body forces. The latter in the form
of effective two-body forces from: (a) meson-pair interac-
tions (MPE3), (b) multi-Pomeron (MPP3) with the triple-
and quartic-Pomeron couplings g3P = 2.0, g4P = 20.0, and
(c) Fuji-Miyazawa three-body force (FM3). The gaussian
cut-off’s employed for the meson-pair vertices are �pr and
�FM for MPP3 and FM3, respectively. We found that �pr =
450 MeV gives good results, and used �FM to tune the nuclear
well depth to its experimental value. In Appendix B a list of
the used TBF potentials is given. For ESC16� the NN ⊕ Y N
fit has χ2

NN (pd p) = 1.09, χ2
Y N (pd p) = 0.95, which is of the

same quality as that of ESC16. The meson coupling constants
of ESC16� are about equal to those obtained with ESC16,
which is also the case for the MPE couplings.

At present, experimentally it is not clear from which states
the major attractive contribution to U� comes. Therefore, we
present two possible solutions: ESC16�(A) and ESC16�(B). In
these applications we exploit only central and spin-spin extra
gaussian potentials.

ESC16�(A): In this case we put S{10} = 0. The central and
spin-spin parameters of the new potentials in ESC16� from
the fit are listed in Table XIX. No new tensor potentials were
included. A comparison of Tables XX and XIII shows that the

TABLE XX. ESC16�(A): L = 0,1,2 partial-wave total cross
sections �− p → ��, �0n, �− p, �0� in (mb) as a function of
the beam particle laboratory beam particle momentum plab = 500
MeV/c. σs and σt are the spin-singlet and spin-triplet cross sections.

�− p → �� �− p → �0n �− p → �− p

L σs σt σT σs σt σT σs σt σT

0 1.99 – 1.99 3.32 2.56 5.88 8.13 1.14 9.27
1 – 0.55 0.55 0.27 1.72 1.99 1.22 0.78 2.00
2 0.04 – 0.04 0.08 0.38 0.46 0.05 0.10 0.15
Tot 1.93 0.55 2.58 3.67 4.66 8.33 9.40 2.02 11.22
Exp 4.3+6.3

−2.7 �10 �24
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TABLE XXI. ESC16�(A): The nuclear saturation energy EN =
B/A, the well depths U�,U� , and U� with SU(3)-symmetric inter-
actions and three-body forces (TBF) at kF = 1.35 fm, and �FM =
2500 MeV. EN = TN + UN with TN = 22.626 MeV.

EN U� U� U�

“exp” −16.3 −37.9 +9.9 −14.0
ESC16� −19.9 −48.9 −26.1 −36.5
& TBF −16.4 −36.7 +8.0 −17.8

cross sections are for plab = 500 MeV/c not much different.
As can be seen in Table XXI the well depths for ESC16� are
much improved compared to ESC16. In this table the “exp”
values are the experimental nuclear saturation point EN , the
U� and U� well depth’s from paper II [2], and for U� the [19]
datum. The partial wave contributions to the U� well depth
are displayed in Table XXII. Here, ESC16�+ = ESC16� and
TBF. The attraction for U� comes from the T = 0 states, in
particular the �N (1S0, T = 0) and the �N (3S1, T = 0) state.
The T = 1 states give repulsion which comes mainly from
the �N (1S0, T = 1) state. (With also a tensor W (±)

μ,t �= 0 more
attraction in T = 1 can be generated.)

In the ESC16� model there is enough flexibility to tune U�

to a smaller value by refitting, eventually with an extended
combined fit including next to the NN ⊕ Y N data also the well
depth’s treated as pseudodata.

ESC16�(B): In this case we have imposed R-conjugation
symmetry [64], which implies that C10 = C10∗ , S10 = S10∗ ,
and T10 = T10∗ . [R conjugation is not an SU(3)-symmetry,
but an approximate symmetry of the ESC-model. It forbids,
e.g., the 3P1 ↔1 P1 transition, which is allowed under SU(3).]
The results for this model are presented in Tables XXIII,
XXIV, and XXV. A comparison of Tables XXII and
XXV shows that the major attractive contribution comes
from the (1S0, T = 0) and (3S1, T = 0) partial wave for
ESC16�(A) and ESC16�(B), respectively. These results show
that the extra freedom generated by the introduction of
the SU(3)-symmetric new gaussian potentials W (±)

μ,v (r), (v =
c, s, t ) leads to a BB interaction which is useful in providing
a good basis for calculations in nuclear and hypernuclear
physics.

TABLE XXII. ESC16�(A): Partial wave contributions to U�(ρ0)
at normal density.

model 1S0
3S1

1P1
3P0

3P1
3P2 U� �c

�

ESC16 T = 0 2.1 –0.4 –0.2 −5.3 1.5 –1.2
T = 1 9.2 7.6 1.0 0.8 –2.0 –0.5 +13.7 5.1

ESC16� T = 0 –23.5 –5.7 0.9 −2.6 1.3 –1.6
T = 1 7.0 –9.0 1.3 0.3 –3.2 –1.6 −36.5 9.0

ESC16�+ T = 0 –16.0 –4.7 0.8 −3.2 2.1 –1.5
T = 1 10.3 –6.4 2.0 1.4 –3.2 0.7 −17.8 4.7

TABLE XXIII. ESC16�(B): Coupling constants SU(3)-
symmetric gaussian potentials.

{μ} {27} {8s} {8a} {10∗} {10}
C{μ} –0.11 –0.49 –6.01 –3.27 –3.27
S{μ} –0.49 +1.74 +6.54 –0.60 –0.60
T{μ} – – – – –

IX. SUMMARY AND CONCLUSION

The strangeness S = −2 ESC16 potentials and results pre-
sented in this paper are an important step in completing the
baryon-baryon interactions for scattering and hypernuclei in
the context of broken SU(3)-symmetry using. Apart from
the gaussian repulsion from the Pomeron and inclusion of a
systematic quark-core effects for all baryon-baryon channels,
the major part of the BB interactions are generalized Yukawa
potentials from single and double meson exchange. These po-
tentials contain (i) one-boson exchanges, where the coupling
constants at the baryon-baryon-meson vertices are restricted
by the broken SU(3) symmetry, (ii) two-pseudoscalar ex-
changes, (iii) meson-pair exchanges. Each type of meson
exchange (pseudoscalar, vector, axial-vector, scalar) contains
five free parameters: a singlet coupling constant, an octet
coupling constant, the F/(F + D) ratio α, a meson-mixing
angle. The potentials are regularized with gaussian cut-off
parameters, which provide a few additional free parameters.
As shown in papers I and II the F/(F + D) parameters could
be restricted, both for OBE and MPE, by the quark-model
predictions in the form of the 3P0 quark-antiquark creation
mechanism.

Although we performed truly simultaneous fits to the NN
and Y N scattering data, effectively most of these parameters
are determined in fitting the rich and accurate NN scattering
data, while the remaining ones are fixed by fitting also the
(few) Y N scattering data. This still leaves enough flexibility
to accommodate the imposition of a few extra constraints. the
assumption of SU(3) symmetry for the couplings then allows
us to extend these models to the higher strangeness channels
(i.e., YY with S = −3,−4, without the need to introduce
additional free parameters. Like the NSC97 models, the
ESC04, ESC08, and ESC16 models are very power-
ful models of this kind, and the very first realistic
ones.

Although the different ESC models ESC04, ESC08, and
ESC16 produce the NN and Y N data well, there are con-

TABLE XXIV. ESC16�(B): The nuclear saturation energy EN =
B/A, the well depths U�,U� , and U� with SU(3)-symmetric inter-
actions and three-body forces (TBF) at kF = 1.35 fm, and �FM =
1750 MeV. EN = TN + UN , with TN = 22.626 MeV.

EN U� U� U�

“exp” −16.3 −37.9 +9.9 −14.0
ESC16� −20.2 −51.5 −27.3 −25.2
& TBF −14.4 −32.8 +17.6 −9.1
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TABLE XXV. ESC16�(B): Partial wave contributions to U�(ρ0) at normal density.

model 1S0
3S1

1P1
3P0

3P1
3P2 U� �c

�

ESC16 T = 0 2.1 –0.4 –0.2 −5.3 1.5 –1.2
T = 1 9.2 7.6 1.0 0.8 –2.0 –0.5 +13.7 5.1

ESC16� T = 0 –1.0 –8.6 0.7 −3.0 1.1 –1.8
T = 1 4.0 –11.7 0.9 0.2 –3.6 –2.3 −25.2 2.5

ESC16�+ T = 0 0.4 –9.6 0.4 −4.9 2.9 –2.2
T = 1 7.9 –4.3 1.9 1.8 –3.9 0.6 −9.1 3.1

siderable differences. In the NN sector the quality of the
fit to the NN data of the ESC08/ESC16 models is su-
perior to that for the ESC04 models. Also, they lead to
notable differences in the hypernuclear structures, especially
in S = −2 systems. It is important that at least some of the
ESC04d, ESC08a,b,c, and ESC16 solutions predict the well
depths, consistently with the indication given by the BNL-
E885 experiment, and the existence of recently observed �

hypernuclei. The �-nucleus attraction in ESC08 leads, ow-
ing to the extra (phenomenological) contributions from the
(ππ )- and (πω)-pair �N interaction, to a substantially at-
traction in the 3S1 (33S1) state, with a tensor-potential giving
a strong Lane term. This gives a satisfactory value for U�,
however, also a not observed deuteron-like D∗ bound state
when the extra (ππ ), (πω) pair potentials are interpreted as
genuine two-body interactions. (The experimental search for
baryon-baryon bound states by the Rome-Saclay-Vanderbilt
collaboration [32] in the mass range 2.1–2.5 GeV/c2 was
negative.)

Recently, most important is the 1S-bound states (5–7
MeV) and 2P-bound states (1.0–1.5 MeV) of the �∓-14N
system found in emulsions. These data severely select the
�N interaction models. The ESC-models, ESC04a-d [5],
ESC08ab [6], except ESC08c, seem not good. ESC16 has
U� > 0 and is clearly unsuitable. Then, the only solution
in the case ESC16 for the �N interaction is to add a phe-
nomenological (attractive) interaction Veff . Two versions of
this additional interaction are worked out: (1) Veff = (π,ω)-
pair ⊕ SU(3)-singlet potentials, for S = −2 only, (2) Veff =
SU(3)-symmetric two-body interactions for all channels, de-
scribed in Sec. VIII.

Experimentally, the �N interaction seems rather weak as
is illustrated by the indication of the �− p-scattering data
[29–31]. The �-nucleus attraction is as indicated by ex-
periments, U� ≈ −14 MeV, see Ref. [19] and the recent
emulsion-experiments results [10]. These experimental prop-
erties are not explained by the ESC16 �N interaction. A
possibility is that the three-body force contributes to the well
depth, but this is not expected to be large.

To improve the ESC16 model for the �N interaction,
while keeping its good features for the NN and Y N , and
having a sizable �N attraction without a bound state, an
extension of the ESC approach is introduced, which is mo-

tivated by mentioning possible sources that can lead to a
more complete BB interaction. The extension of ESC16 with
SU(3)-symmetric phenomenological two-body contact po-
tentials is investigated, and found to be promising for the
description of both the NN , Y N scattering as well as the
nuclear/hypernuclear well depths. This line can be explored
further, both in comparison with other models and applica-
tions.

Finally, the conclusion is that the ESC16 potentials are
in principle an excellent starting point for calculations and
predictions of multistrange systems, but at present need some
additional phenomenological potentials in the application to,
e.g., �-nucleus systems. The nature of these potentials might
be two-body as well as three-body. The extension of this
work to the S = −3, 4 systems, i.e., comprising all {8} ⊗ {8}
baryon-baryon states, will be the topic of the last paper (IV)
in this series.
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APPENDIX A: CONNECTION PARTICLE
AND ISOSPIN BASIS

The five S = −2 channel systems with different charge q =
−2,−1, 0,+1,+2 are listed in Eq. (2.2). The three isospin
channels are listed in Eq. (2.3). Using the indices a, b, c, d for

FIG. 18. Three-body graphs from meson-pair vertices.
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��,�N, ��, and ��, respectively, we have [65]

V (q = 0) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Vaa

√
1
2Vba −

√
1
2Vba 0 −

√
1
3Vad

√
1
3Vad

· 1
2 [Vbb(1) + Vbb(0)] 1

2 [Vbb(1) − Vbb(0)]
√

1
2Vbc −

√
1
6Vbd (0)

√
1
6Vbd (0) − 1

2Vbd (1)

· · 1
2 [Vbb(1) + Vbb(0)]

√
1
2Vbc

√
1
6Vbd (0) −

√
1
6Vbd (0) − 1

2Vbd (1)

· · · Vcc 0 −
√

1
2Vcd

· · · · 1
3 [2Vdd (2) + Vdd (0)] 1

3 [Vdd (2) − Vdd (0)]

· · · · · 1
6 [Vdd (2) + 3Vdd (1) + 2Vdd (0)]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(A1)
and for q = +1 we have

V (q = +1) =

⎛
⎜⎜⎜⎜⎝

Vbb(1) Vbc −
√

1
2Vbd

Vbc Vcc −
√

1
2Vcd

−
√

1
2Vbd (1) −

√
1
2Vcd

1
2 [Vdd (1) + Vdd (2)]

⎞
⎟⎟⎟⎟⎠. (A2)

Here, when necessary an isospin label is added in parentheses.

APPENDIX B: THREE-BODY FORCES AND EFFECTIVE TWO-BODY POTENTIALS

The included three-body forces in this paper come from (i) meson-pair vertices, (ii) multi-Pomeron vertices, and (iii) decuplet
resonances. This is illustrated in Fig. 18. The three-body forces are used in the form of so-called “effective two-body potentials”.
which are obtained from the full three-body potentials by the application of the LNR approximation [66], which leads to a
substantial reduction of the number of contributions from the two-meson-pair vertices. For example, the (ππ )1 and (πρ)1

potentials vanish completely. In this Appendix we give the reduced form of these MPE potentials after applying the Tr operation:
Trτ3 = Trσ3 = 0. In the LNR-procedure the third particle in Fig. 18 is integrated over.

Below the configuration-space effective NN potentials are listed, including only the dominating terms, i.e., we neglect the
terms proportional to 1/M2.

1. Meson-pair effective two-body potentials

JPC = 0++ : V(ππ )0 (r) = − (4πρNM )

m3
π

g(ππ )0

4π

f 2

4π
(τ1τ2)

(
mπ

mπ+

)2

mπ

[
1

3
ψ1

C

(
mπ ,

�π√
2
, r

)
(σ1σ2) + ψ0

T

(
mπ ,

�π√
2
, r

)
S12

]
,

(B1a)

JPC = 1++ : V (1)
(πσ )1

(r) = −2
(4πρNM )

m3
π

g(πσ )1

4π

fPgS

4π
(τ1τ2)

(
m3

π

m2
σ

)[
1

3
φ1

C (mπ ,�π, r)(σ1σ2) + φ0
T (mπ ,�π, r) S12

]
, (B1b)

V (2)
(πσ )1

(r) = −1

2

(4πρNM )

m3
π

g(πσ )1

4π

fPgS

4π

m2
π

M2
(τ1τ2)

(
m3

π

m2
σ

)[
1

3
φ2

C (mπ ,�π, r)(σ1σ2) + φ1
T (mπ ,�π, r) S12

]
, (B1c)

JPC = 1+− : V (2)
(πω)1

(r) = + (4πρNM )

m3
π

g(πω)1

4π

fPgV sin(θV )

4π
(τ1τ2)

(
m3

π

m2
ω

)−1[1

3
φ1

C (mπ ,�π, r)(σ1σ2) + φ0
T (mπ ,�π, r) S12

}
,

(B1d)

JPC = 0++ : V (eff )
(σσ ) = −2

(4πρNM )

m3
π

g(σσ )

4π

g2
S

4π

(
m2

π

mσ

)[
φ0

C (mσ ,�σ , r) − m2
σ

�2
σ

ψ0
C (mσ ,�σ /

√
2, r)

]
. (B1e)

Here, the function ψ0
C (r, m,�) = (4π/2m2)(d/dm)I2(m,�, r), ψ1

C = [3/2 + m(d/dm)]φ1
C (m,�, r), and similarly for ψ0

T ,
where φ0

C (r, m,�), etc., are defined in Ref. [67]. We notice that the pairs of the type (ππ )1 and (πρ)1 do not contribute to
the effective two-body potentials in NN . The SU(3) generalization is similar to the two-body meson-pair potentials described in
paper II.
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TABLE XXVI. SU(3) contents of the various potentials on the isospin basis.

Space-spin antisymmetric states 1S0,
3P, 1D2, . . .

�� → �� I = 0 V��,�� = 1
40 (27V27 + 8V8s + 5V1)

�� → �N „ V��,�N = −1
40 (18V27 − 8V8s − 10V1)

�� → �� „ V��,�� =
√

3
40 (−3V27 + 8V8s − 5V1)

�N → �N „ V�N,�N = 1
40 (12V27 + 8V8s + 20V1)

�N → �� „ V�N,�� =
√

3
40 (2V27 + 8V8s − 10V1)

�� → �� „ V��,�� = 1
40 (V27 + 24V8s + 15V1)

�N → �N I = 1 V�N,�N = 1
5 (2V27 + 3V8s )

�N → �� „ V�N,�� =
√

6
5 (V27 − V8s )

�� → �� „ V��,�� = 1
5 (3V27 + 2V8s )

�� → �� I = 2 V��,�� = V27

2. Multi-Pomeron effective two-body potentials:

The “universal”, i.e., the same for all elastic BB channels and vanishing for inelastic BB channels, multi-Pomeron (MPP)
two-body effective potentials from the triple- and quartic-Pomeron vertices are

a. G3P-vertex : Veff (r) = 8g3Pg3
P

ρNM

M5

1

4π

4√
π

(
mP√

2

)3

exp

(
−1

2
m2

Pr2
12

)
, (B2a)

b. G4P-vertex : Veff (r) = 8g4Pg4
P

ρ2
NM

M8

4√
π

(
mP√

2

)3

exp

(
−1

2
m2

Pr2
12

)
. (B2b)

Here, gP = GP/
√

4π, g3P = G3P/(4π )3/2, g4P = G4P/(4π )2, i.e., the rationalized two-, three-, and four-point couplings.

3. Miyazawa-Fujita effective two-body potentials

The Hamiltonian for the Fujita-Miyazawa pion-nucleon pair-interaction reads [68]

HFM = −ψ̄[{
(

(A + B)∇1∇2 + D
)
δi j − (A − B)σ∇1 × ∇2εi jkτk}π1,i(x)π2, j (x)]ψ. (B3)

Here, the spatial derivatives operate on the pion fields, and the constants are

A = 5

18π

∫
σ33

ω2
p

d p, B = 3

5
A, D = 2π

3
(a1 + 2a3) (B4)

TABLE XXVII. SU(3) contents of the various potentials on the isospin basis.

Space-spin symmetric states 3S1,
1P1,

3D, . . .

�N → �N I = 1 V�N,�N = 1
3 (V10 + V10∗ + V8a )

�N → �� ,, V�N,�� =
√

6
6 (V10 − V10∗ )

�N → �� ,, V�N,�� =
√

2
6 (V10 + V10∗ − 2V8a )

�� → �� ,, V��,�� = 1
2 (V10 + V10∗ )

�� → �� ,, V��,�� =
√

3
6 (V10 − V10∗ )

�� → �� ,, V��,�� = 1
6 (V10 + V10∗ + 4V8a )

�N → �N I = 0 V�N,�N = V8a
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TABLE XXVIII. Pair coupling constants for model ESC16, divided by
√

4π . I (M ) refers to the isospin of the pair M with quantum numbers
JPC .

Pair JPC Type I (M ) NNM ��M ��M ��M I (M ) �NM ��M �NM ��M

πη 0++ g 1 –0.6881 –1.3763 0.0000 –0.6881 1/2 1.1919 –1.1919 0.6881 0.6881
0 –1.1919 0.0000 0.0000 1.1919

ππ 1−− g 1 0.2514 0.5028 0.0000 0.2514 1/2 –0.4354 0.4354 –0.2514 –0.2514
0 0.4354 0.0000 0.0000 –0.4354

ππ 1−− f 1 –1.7729 –1.4183 –1.2283 0.3546 1/2 1.8424 –0.6141 –0.3546 1.7729
0 –0.6141 1.2283 –1.2283 1.8424

πρ 1++ g 1 5.6912 4.5529 3.9430 –1.1382 1/2 –5.9145 1.9715 1.1382 –5.6912
0 1.9715 –3.9430 3.9430 –5.9145

πσ 1++ g 1 –0.3892 –0.3114 –0.2697 0.0778 1/2 0.4045 –0.1348 –0.0778 0.3892
0 –0.1348 0.2697 –0.2697 0.4045

πω 1+− g 1 –0.3280 –0.2624 –0.2273 0.0656 1/2 0.3409 –0.1136 –0.0656 0.3280
0 –0.1136 0.2273 –0.2273 0.3409

with the numerical values
∫

σ33/ω
2
p.d p = 3.7m−3

π , and a1 + 2a3 = −0.06m−1
π . The effective two-body FM-pair (ππ )33-

exchange potential is

V (eff )
FM = +2ρNM

(
f 2
P

4π

)
mπ (τ1τ2)

[
(A + B)

{
1

3
φ1

C (mπ ,�/
√

2, r12)(σ1σ2) + φ0
T (mπ ,�/

√
2, r12) S12

}

+2((A + B)m2
π − D)

�2
·
{

1

3
ψ1

C (mπ ,�/
√

2, r12) (σ1σ2) + ψ0
T (mπ ,�/

√
2, r12) S12

}]
. (B5)

Since the D term comes from the subtraction constant in the dispersion relation this term is omitted, D = 0.
The SU(3) generalization of the FM interaction shows that the effects of the decuplet resonances are exchanges in the t-

channel irreps {27}, {8s}, and {1}.
The details of the three-body meson pair, multi-Pomeron, and FM potentials can be found in Refs. [69–71], respectively.

APPENDIX C: BARYON-BARYON CHANNELS AND SU(3) IRREPS

In Tables XXVI and XXVII we give the relation between the potentials on the isospin basis and the potentials in the SU(3)
irreps.

APPENDIX D: MESON-PAIR COUPLING CONSTANTS

In Table XXVIII we give the MPE couplings for model ESC16.

TABLE XXIX. ESC08c �� → �� BKS-phase parameters in degrees as a function of the laboratory momentum p� in MeV/c.

p� δ(1S0 ) ρ(1S0) δ(3P0 ) ρ(3P0 ) δ(3P1) ρ(3P1) δ(3P2) ε2 δ(3F2)

10 0.64 – 0.00 – 0.00 – 0.00 0.00 0.00
50 3.08 – 0.13 – 0.01 – 0.01 0.00 0.00
100 5.58 – 1.18 – 0.05 – 0.10 0.00 0.00
200 7.80 – 31.72 – 0.26 – 0.59 0.01 0.00
300 7.61 – 128.51 – 0.36 – 1.32 0.04 0.02
350 10.49 12.72 106.23 3.41 0.25 0.22 1.64 0.08 0.05
400 4.63 19.29 104.04 13.25 –0.01 1.36 1.87 0.14 0.11
500 –4.90 21.46 –15.08 19.26 –1.05 3.37 1.95 0.35 0.30
600 –13.71 21.89 –17.77 21.89 –2.72 5.16 1.51 0.71 0.64
700 –22.02 21.75 –21.01 23.28 –4.84 6.60 0.66 1.23 1.18
800 –29.82 21.36 –24.53 23.93 –7.13 7.73 –0.48 1.98 2.03
900 –37.00 20.82 –28.30 24.02 –8.85 8.82 –1.76 3.18 3.57
1000 –43.83 20.68 –32.01 23.07 –11.42 15.84 –3.47 4.84 4.22
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APPENDIX E: BKS-PHASE PARAMETERS

In Tables XXIX–XXXI we display the BKS-phase parameters for model ESC08c.

TABLE XXX. ESC08c 1S0,
1 P1(�N → �N, I = 0) BKS-phase parameters in degrees as a function of the laboratory momentum p� in

MeV/c.

p� δ(1S0 ) ρ(1S0 ) δ(1P1) ρ(1P1)

10 0.03 4.96 0.00 1.00
50 –0.02 10.83 0.05 1.00
100 –0.84 14.60 0.33 1.00
200 –5.18 18.48 1.18 1.00
300 –11.52 20.36 1.40 1.00
350 –15.00 20.93 1.10 1.00
400 –18.55 21.34 0.54 1.00
500 –25.68 21.78 –1.28 1.00
600 –32.61 21.89 –3.81 1.00
700 –39.21 21.77 –6.81 1.00
800 –44.56 21.49 –10.09 1.00
900 –38.69 21.11 –13.52 1.00
1000 –33.22 20.67 –17.04 1.00

TABLE XXXI. ESC16 1S0(�N → �N, I = 1), etc. BKS-phase parameters in degrees as a function of the laboratory momentum p� in
MeV/c.

p� δ(1S0) ρ(1S0) δ(3P0) ρ(3P0 ) δ(3P1) ρ(3P1) δ(3P2) ε2 δ(3F2)

10 –0.67 – –0.00 – 0.00 – 0.00 0.00 –0.00
50 –3.32 – –0.05 – 0.04 – 0.00 0.00 –0.00
100 –6.47 – –0.32 – 0.26 – 0.00 0.01 –0.00
200 –12.14 – –1.54 – 1.26 – –0.03 0.12 –0.01
300 –17.15 – –3.02 – 2.34 – –0.28 0.35 –0.05
350 –19.41 – –3.74 – 2.71 – –0.55 0.48 –0.08
400 –21.43 – –4.40 – 2.89 – –0.92 0.61 –0.11
500 –24.18 – –5.59 – 2.71 – –2.03 0.86 –0.17
600 –19.07 19.18 –6.47 1.02 1.96 1.06 –3.56 1.07 –0.21
700 –32.61 26.30 –7.20 6.55 0.67 5.56 –5.44 1.21 –0.21
800 –41.84 27.11 –8.64 10.29 –1.45 9.43 –7.57 1.28 –0.16
900 –40.63 26.93 –10.79 12.79 –4.16 10.28 –9.87 1.29 –0.04
1000 –34.24 26.28 –13.51 14.39 –7.27 11.53 –12.30 1.27 0.16

TABLE XXXII. ESC16 1S0,
3 S1 −3 D1(�N → �N, I = 0) BKS-phase parameters in degrees as a function of the laboratory momentum

p� in MeV/c.

p� δ(1S0) ρ(1S0 ) δ(3S1) ε1 δ(3D1)

10 0.03 4.96 0.33 0.00 0.00
50 –0.02 10.83 1.69 0.09 0.00
100 –0.84 14.60 3.45 0.63 0.03
200 –5.18 18.48 6.46 2.97 0.30
300 –11.52 20.36 7.48 5.79 0.85
400 –18.55 21.34 6.42 8.44 1.61
500 –25.68 21.78 3.92 10.87 2.66
600 –32.61 21.89 0.52 13.11 4.12
700 –39.21 21.77 –3.45 15.15 6.08
800 –44.56 21.49 –7.78 16.96 8.50
900 –38.69 21.11 –12.30 18.44 11.24
1000 –33.22 20.67 –16.81 19.49 14.02
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TABLE XXXIII. ESC16 1P1,
3 S1 −3 D1(�N → �N, I = 1) BKS-phase parameters in degrees as a function of the laboratory momentum

p� in MeV/c.

p� δ(1P1) ρ(1P1) δ(3S1) ε1 δ(3D1) η11 η12 η22

10 –0.00 0.00 –0.15 0.00 –0.00 1.00 0.00 1.00
50 –0.02 0.00 –0.80 0.02 –0.00 1.00 0.00 1.00
100 –0.12 0.00 –1.75 0.16 –0.01 1.00 0.00 1.00
200 –0.54 0.00 –4.32 0.69 –0.08 1.00 0.00 1.00
300 –1.11 0.00 –7.66 1.24 –0.23 1.00 0.00 1.00
400 –1.91 0.00 –11.44 1.65 –0.36 1.00 –0.01 1.00
500 –2.97 0.00 –15.26 1.94 –0.36 1.00 –0.02 1.00
600 –3.97 1.47 –17.58 2.66 –0.02 0.95 –0.03 0.99
700 –5.08 8.01 –24.26 2.10 0.06 0.90 –0.03 0.99
800 –7.20 12.12 –29.73 1.68 0.47 0.91 –0.03 0.98
900 –10.12 14.83 –34.61 1.45 1.41 0.92 –0.03 0.97
1000 –13.58 16.48 –38.96 1.45 2.28 0.93 –0.03 0.87

TABLE XXXIV. ESC16 1S0,
3 S1 −3 D1(�� → ��, I = 1) BKS-phase parameters in degrees as a function of the laboratory momentum

p� in MeV/c.

p� δ(1S0) ρ(1S0) δ(3S1) ε1 δ(3D1) η11 η12 η22

10 0.18 6.76 0.14 0.00 –0.00 0.99 –0.00 1.00
50 0.70 14.60 0.61 0.08 –0.00 0.97 –0.00 1.00
100 0.53 19.43 0.68 0.51 –0.02 0.94 –0.00 1.00
200 –2.58 24.08 –1.25 1.98 –0.30 0.91 –0.00 1.00
300 –10.90 26.10 –5.28 3.39 –0.84 0.89 –0.01 1.00
400 –14.09 26.95 –10.35 4.50 –1.33 0.88 –0.03 1.00
500 –20.64 27.11 –15.73 5.42 –1.46 0.88 –0.06 0.99
600 –27.17 26.78 –20.93 6.57 –0.27 0.88 –0.09 0.98
700 –33.49 26.07 –27.60 6.62 –2.98 0.87 –0.12 0.77
800 –39.49 25.09 –33.63 4.60 –8.39 0.88 –0.12 0.79
900 –44.90 23.90 –38.87 3.64 –11.41 0.90 –0.06 0.83
1000 –39.67 22.58 –43.72 3.10 –13.65 0.91 –0.07 0.85

TABLE XXXV. ESC16 I = 2, L = 0, L = 1 �±�± → �±�± BKS-phase parameters in degrees as a function of the laboratory momen-
tum p� in MeV/c. In parentheses the phases without Coulomb are listed.

p� δ(1S0 ) δ(3P0) δ(3P1) δ(3P2) ε2 δ(3F2)

10 –14.73 (–0.29) –0.20(0.00) –0.22(–0.00) –0.21(0.00) 0.00 –0.00(0.00)
50 –19.07 (–1.60) –3.07(0.20) –3.43(–0.13) –3.27(0.01) 0.00 –0.01(0.00)
100 –16.36 (–4.04 –6.29(1.29) –8.34(–0.82) –7.45(0.10) 0.04 –0.59(0.00)
200 –19.28 (–11.40) 0.14(5.33) –8.97(–3.55) –4.70(0.75) 0.44 –3.25(0.05)
300 –26.49 (–20.53) 3.90(8.22) –11.35(–7.06) –2.43(1.87) 1.13 –2.68(0.22)
400 –35.22 (–30.36) 4.67(8.27) –14.57 (–10.99) –0.57(3.01) 1.85 –2.06(0.47)
500 –44.50 (–40.36) 3.03(6.14) –18.32 (–15.23) 0.90(3.99) 2.43 –1.54(0.70)
600 –36.13 (–39.76) 0.11(2.86) –22.37 (–19.63) 2.03(4.77) 2.81 –1.23(0.79)
700 –26.90 (–30.14) –3.34 (–0.86) –26.53 (–24.06) 2.82(5.28) 3.02 –1.24(0.60)
800 –17.93 (–20.86) –6.92 (–4.66) –30.72 (–28.46) 3.15(5.40) 3.09 –1.65(0.06)
900 –9.30 (–11.99) –10.41(–8.35) –34.87 (–32.77) 2.93(5.01) 3.11 –2.45 (–0.87)
1000 –1.07 (–3.57) –13.86(–11.89) –38.96 (–36.99) 2.14(4.09) 3.10 –3.63 (–2.13)
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