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Charge radii of exotic neon and magnesium isotopes
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We compute the charge radii and ground-state energies of even-mass neon and magnesium isotopes from
neutron number N = 8 to the dripline. Our calculations are based on nucleon-nucleon and three-nucleon
potentials from chiral effective field theory that include � isobars. These potentials yield an accurate saturation
point and symmetry energy of nuclear matter. We use the coupled-cluster method and start from an axially
symmetric reference state. Binding energies and two-neutron separation energies largely agree with data, and
the dripline in neon is accurate. The computed charge radii are accurate for many isotopes where data exist.
Finer details, such as isotope shifts, however, are not accurately reproduced. These chiral potentials indicate a
subshell closure at N = 14 for the radii (but not for two-neutron separation energies) and a decrease in charge
radii at N = 8 (observed in neon and predicted for magnesium). They yield a continued increase of charge radii
as neutrons are added beyond N = 14 yet underestimate the large increase at N = 20 in magnesium.
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Introduction. The radii of atomic nuclei carry information
about their structure as isotopic trends reflect changes in nu-
clear deformation, shell structure, superconductivity (pairing),
and weak binding. The difference between the radii of the neu-
tron and proton distributions of an atomic nucleus also impact
the structure of neutron stars. Matter radii are usually ex-
tracted from reactions with strongly interacting probes, which
requires a model-dependent analysis [1,2]. In contrast, electric
charge radii (and more recently also weak charge radii) can be
determined using the precisely known electroweak interaction
[3,4]. Precision measurements of nuclear charge radii have
contributed much to our understanding of stable nuclei and
rare isotopes, and they continue to challenge nuclear structure
theory [5–8].

In the past two decades we have seen a lot of progress
in ab initio computations of nuclei, i.e., calculations that
employ only controlled approximations and are based on
Hamiltonians that link the nuclear many-body problem to
the nucleon-nucleon and few-nucleon systems. Virtually ex-
act methods [9–12] scale exponentially with increasing mass
number and depend on the exponential increase of avail-
able computational cycles for progress. A game changer has
been combining ideas and soft interactions from effective
field theory (EFT) [13–18] and the renormalization group
[19–21] with approximate (but systematically improvable)
approaches that scale polynomially with mass number. Exam-
ples of such methods are coupled-cluster (CC) theory [22–24],
in-medium similarity renormalization group [25,26], nuclear
lattice EFT [27,28], symmetry-adapted shell model [29], and
self-consistent Green’s function approaches [30,31].

Nuclei as heavy as 100Sn have now been computed within
this ab initio approach [32,33], and the first ab initio survey

of nuclei up to mass 50 or so has appeared [34]. Com-
puting nuclei within this framework is much more costly
than using, e.g., nuclear density-functional theory [35–37].
However, the ever-increasing availability of computational cy-
cles makes these computations both feasible and increasingly
affordable.

In this Rapid Communication, we compute the charge radii
of neutron-rich isotopes of neon and magnesium. These nuclei
are at the center of the island of inversion [39,40] and at
the focus of current experimental interests. Charge radii are
known for 17–28Ne [41–43] and 21–32Mg [38] leaving much to
explore. The experimental situation for magnesium isotopes
and our theoretical calculations (described in detail below)
are shown in Fig. 1. Of particular interest is the impact (or
lack thereof) of the “magic” neutron numbers N = 8, 14, and
20 on charge radii, the onset of deformation past N = 20, and
the rotational structure of neutron-rich isotopes as the dripline
is approached [44,45].

Among the many available interactions from chiral EFT
[15–17,46–50], the next-to-next-to leading order potentials
NNLOsat [18] and �NNLOGO [51–53] stand out through
their quality in describing nuclear radii. These interactions
contain pion physics, three-nucleon forces, and—in the case
of �NNLOGO—effects of the � isobars. Both interactions
have been constrained by data on the nucleon-nucleon in-
teraction, and nuclei with mass numbers A = 3, 4. Although
NNLOsat also was constrained by binding energies and radii
of nuclei as heavy as oxygen, �NNLOGO was constrained
by the binding energy, density and symmetry energy of nu-
clear matter at its saturation point. These potentials use the
leading-order three-body forces from chiral EFT [54]. In this
Rapid Communication we will employ two �NNLOGO inter-
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FIG. 1. Charge radii for magnesium isotopes with even mass
numbers computed with the potentials �NNLOGO(394) (red) and
�NNLOGO(450) (blue) compared to data (black points) [38]. The
model spaces consist of 13 oscillator shells with oscillator frequen-
cies h̄ω = 12 and 16 MeV as indicated by the bands.

actions which differ by their respective momentum cutoffs
of 394 and 450 MeVc−1. The interaction �NNLOGO(394)
is as soft as the 1.8/2.0(EM) interaction of Ref. [17], while
�NNLOGO(450) is as hard as NNLOsat [18]. Nuclei as heavy
as 100Sn have been converged with the former [32,33,55],
whereas the latter has been used for somewhat lighter nuclei
[4,50,56–58].

Theoretical approach. Our coupled-cluster calculations
start from an axially deformed product state built from nat-
ural orbitals. To construct the natural orbitals we start from
a spherical harmonic-oscillator basis and perform a Hartree-
Fock calculation that keeps axial, parity, and time-reversal
symmetries. To obtain the axially symmetric deformed ref-
erence state we fill the partially occupied neutron and proton
shells at the Fermi surface from low to high values of | jz|. This
creates a Hartree-Fock reference state with prolate deforma-
tion, and we checked that this state gives a lower energy than
starting from an oblate reference (i.e., filling the high values
of | jz| first). The self-consistent solution of the Hartree-Fock
equations then yields a prolate deformed product state with
the lowest energy. Following Ref. [59] we then compute the
density matrix in second-order perturbation theory and diago-
nalize it to obtain the natural orbitals. As shown in Fig. 2 and
discussed below, natural orbitals improve the convergence of
the ground-state energies with respect to the number of three-
particle–three-hole (3p-3h) amplitudes in the coupled-cluster
wave function.

The natural orbital basis is spanned by up to 13 spherical
harmonic-oscillator shells. We present results for two differ-
ent oscillator frequencies (h̄ω = 12 and 16 MeV) to gauge
the model-space dependence. These values are close to the
simple estimate ω ≈ h̄�

2mR that relates the optimal oscillator
frequency to the cutoff � of the interaction and the radius
R of the nucleus [60]. The three-nucleon interaction had
the additional energy cut of E3 max = N1 + N2 + N3 � 16h̄ω,
where Ni = 2ni + li are single-particle energies. This cut is

FIG. 2. Ground-state energy of 20Ne with respect to the number
of included 3p-3h amplitudes, computed from the Hartree-Fock basis
(blue circles connected by a dashed line), and natural orbitals (red
diamonds connected by a full line). For the Hartree-Fock basis we
limited the number of 3p-3h excitations by the energy cut Ẽpqr =
ẽp + ẽq + ẽr < Ẽ3 max, where ẽp = |Np − NF | is the energy difference
between the single-particle energies and the Fermi surface NF . The
cut in the natural orbital basis is described in the main text. We
used the �NNLOGO(394) potential and a model space of 11 major
spherical oscillator shells with the frequency h̄ω = 16 MeV. The
black solid line is the experimental value, whereas the gray dashed
line includes the energy gain from projection after variation of the
Hartree-Fock result.

sufficient to converge the energies and radii reported in this
Rapid Communication.

The breaking of rotational symmetry by the reference
state is consistent with the emergent symmetry breaking and
captures the correct structure of the nontrivial vacuum [61].
However, our approach lacks possible triaxial deformation
and symmetry restoration for which several proposals ex-
ist [62–65]. Overcoming these limitations is, thus, possible
but comes at a significant increase in computational cost:
The loss of symmetries (either by permitting triaxiality or
by rotating the Hamiltonian during projection) significantly
increases the number of nonzero Hamiltonian matrix elements
and coupled-cluster amplitudes. To estimate the impact of
symmetry restoration we performed projection after variation
of the deformed Hartree-Fock states for all nuclei considered
in this Rapid Communication and found an energy gain from
3 to 6 MeV. This provides us with an upper limit on the
energy that can be gained through symmetry restoration as we
would expect that correlations beyond the mean-field partially
restore broken symmetries. We note that triaxial deformations
in the ground state are not expected to be significant for
the nuclei we study in this Rapid Communication [66]. We
finally note that the axially symmetric coupled-cluster compu-
tations are an order of magnitude more expensive than those
that keep rotational invariance. Fortunately, the availability of
leadership-class computing facilities and the use of graph-
ics processor units (GPUs) now make such computations
possible.
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Our calculations start from the “bare” Hamiltonian,

H = Tkin − TCoM + VNN + VNNN (1)

based on the �NNLOGO nucleon-nucleon and three-nucleon
potentials VNN and VNNN , respectively. Here, Tkin denotes the
kinetic energy, and we subtract the kinetic energy of the
center-of-mass (CoM) TCoM to remove the center of mass
from the Hamiltonian. We express this Hamiltonian in terms
of operators â†

p and âq that create and annihilate a nucleon
with quantum numbers p and q, respectively, in the natural
orbital basis. The Hamiltonian HN is normal ordered with
respect to the reference state, and we only retain up to normal-
ordered two-body forces; we have HN = FN + VN where the
Fock term FN denotes the normal-ordered one-body part and
VN the normal-ordered two-body terms [67]. We note that
the normal-ordered two-body approximation breaks rotational
invariance. In the case of particle-number-breaking methods a
solution has been proposed in Ref. [68].

The coupled-cluster method [22–24,69–73] generates a
similarity-transformed Hamiltonian,

HN ≡ e−T̂ HN eT̂ , (2)

using the cluster-excitation operator,

T̂ = T̂1 + T̂2 + T̂3 · · ·
=

∑

ia

t a
i â†

aâi + 1

4

∑

i jab

t ab
i j â†

aâ†
bâ j âi

+ 1

36

∑

i jkabc

t abc
i jk â†

aâ†
bâ†

c âk â j âi + · · · . (3)

The operator T̂n creates n-particle–n-hole excitations of the
reference state |ψ〉 ≡ ∏A

i=1 â†
i |0〉. Here and in what follows,

labels i, j, k refer to single-particle states occupied in the
reference state, whereas a, b, c are for unoccupied states.

We truncate the expansion (3) at the 3p-3h level and in-
clude leading-order triples using the CC singles, doubles, and
linearized triples (CCSDT-1) approximation [74,75]. In this
approximation eT ≈ eT1+T2 + T3, and the amplitudes t a

i , t ab
i j ,

and t abc
i jk fulfill

〈
ψa

i

∣∣HN + HN T̂3|ψ〉 = 0,
〈
ψab

i j

∣∣HN + HN T̂3|ψ〉 = 0, (4)
〈
ψabc

i jk

∣∣(FN T̂3 + VN T̂2)con||ψ〉 = 0.

In the first two lines T̂ = T̂1 + T̂2 enters the similarity
transformation, which gives the commonly used CCSD ap-
proximation when T3 = 0. In the last line only the connected
terms enter. The correlation energy is then E0 = 〈ψ |HN |ψ〉.

The CCSD approximation costs o2u4 compute cycles for
each iteration with o = A and u being the number of occupied
and unoccupied states, respectively. The cost of CCSDT-1 is
o3u4 and, thus, an order of magnitude more expensive.

Both CCSD and CCSDT-1 are too expensive without fur-
ther optimizations. To overcome this challenge we first take
advantage of the block-diagonal structure of the Hamiltonian
imposed by axial symmetry, isospin, and parity and only store

and process matrix elements that obey these symmetries. Sec-
ond, we impose a truncation on the allowed number of 3p-3h
amplitudes by a cut on the product occupation probabilities
np for three particles above the Fermi surface and for three
holes below the Fermi surface, i.e., we require nanbnc � ε and
(1 − ni )(1 − n j )(1 − nk ) � ε. This cut favors configurations
with large occupation probabilities near the Fermi surface
and—as shown in Fig. 2—requires only a manageable number
of 3p-3h amplitudes to be included. Third, we exploit the
internal structure of the three-body symmetry blocks, which
can be expressed as the tensor product of two- and one-body
symmetry blocks, to formulate the equations as a series of
matrix multiplications. This allows us to efficiently utilize the
supercomputer Summit at the Oak Ridge Leadership Comput-
ing Facility, whose computational power mainly comes from
GPUs.

For the computation of observables other than the en-
ergy (the radius in our case), we also need to solve
the left eigenvalue problem as the similarity transformed
Hamiltonian is non-Hermitian. This is performed using the
equation-of-motion coupled-cluster method (EOM), see Refs.
[24,72,75,76] for details. In this Rapid Communication we
limit the computations of radii to the EOM-CCSD approx-
imation level. For 32Mg the inclusion of (computationally
expensive) triples via the EOM-CCSDT-1 approximation [75]
increases the radius by less than 1%, consistent with the find-
ings of Refs. [57,77].

In EOM-CCSDT-1 the left ground-state eigenvalue prob-
lem is

〈ψ |(1 + �̂)HN = E0〈ψ |(1 + �̂). (5)

Here �̂ is a deexcitation operator with amplitudes �i
a, �

i j
ab,

and �
i jk
abc. We need to solve for

�̂ = �̂1 + �̂2 + �̂3

=
∑

ia

�i
aâ†

i âa + 1

4

∑

i jab

�
i j
abâ†

i â†
j âbâa

+ 1

36

∑

i jkabc

�
i jk
abcâ†

i â†
j â

†
k âcâbâa. (6)

Given HN , Eq. (5) is an eigenvalue problem, and we are
only interested in its ground-state solution E = E0. In the
EOM-CCSDT-1 approximation, the triples deexcitation part
�̂3 only contributes to the doubles deexcitation part of the
matrix-vector product via 〈ψ |�̂3VN |ψ i j

ab〉, while the triples
deexcitation part of the matrix-vector product is 〈ψ |(�̂1 +
�̂2)VN + (�̂2 + �̂3)FN |ψ i jk

abc〉. To compute the left ground
state we can either solve a large-scale linear problem (because
we know the ground-state energy E0), or we use an iterative
Arnoldi algorithm for general nonsymmetric eigenvalue prob-
lems to compute the ground state of HN . In our experience the
latter approach is more stable and requires fewer iterations.
The ground-state expectation value of an operator Ô is

〈Ô〉 ≡ 〈ψ |(1 + �̂)O|ψ〉. (7)

Here the similarity-transformation O ≡ e−T̂ ÔeT̂ of Ô enters.
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The charge radius squared is computed from

R2
ch = R2

p + 〈
r2

p

〉 + N

Z

〈
r2

n

〉 + 〈
r2

DF

〉 + 〈
r2

SO

〉
. (8)

Here, R2
p is the mean radius squared of the intrinsic point-

proton distribution, and 〈r2
SO〉 is the spin-orbit corrections.

These two quantities are actually computed with the coupled-
cluster method [4]. The corrections 〈r2

p〉 = 0.709 fm2, 〈r2
n〉 =

−0.106 fm2, and 〈r2
DF〉 = 3/(4m2) = 0.033 fm2 (with m de-

noting the nucleon mass) are the charge radius squared of
the proton (updated according to Refs. [78,79]), the neutron
(updated value from Ref. [80]), and the Darwin-Foldy term,
respectively.

Results. Our results for the charge radii of magnesium
isotopes are shown in Fig. 1. Here, each band reflects model-
space uncertainties from using two oscillator frequencies of
12 and 16 MeV. This choice of frequencies is based on
Ref. [57] where the convergence of the 68Ni charge radius
was studied in detail for similar interactions. The results for
the softer interaction with a cutoff of 394 MeVc−1 are shown
in red and exhibit less model-space dependence than those
for the harder interaction with 450 MeVc−1 shown in blue.
Based on these results and our expert judgment we estimate
that the uncertainties for the radii, both from the model space
and the two interactions are about 2 to 3%, i.e., the full area
covered by (and between) both bands. This uncertainty esti-
mate is in line with theory error bars from similar calculations
[50,52,57,58]. The experimental uncertainties are smaller than
the marker size [38].

Overall, the �NNLOGO potentials reproduce the promi-
nent pattern of a minimum radius at the subshell closure
N = 14, and they agree with data within uncertainties for
mass numbers 22 � A � 30. The computed radii continue
to increase beyond N = 14, and they reflect the absence of
the N = 20 shell closure in magnesium. This is, of course,
the beginning of the island of inversion. However, the theory
results do not reproduce the very steep increase from A = 30
to 32. Thus, they seem to reflect remnants of a shell closure
at N = 20 that are not seen in the data. Theory predicts in-
creasing charge radii as the dripline is approached. This is
consistent with an increase in nuclear deformation as neutrons
are added [44]. We also note that theory predicts a marked
shell closure at N = 8 for neutron-deficient magnesium. This
is in contrast to the trend projected in Ref. [38]. The excited
2+ state in 18Mg at 1.6 MeV is somewhat higher that the
1.2 MeV observed in 20Mg, and the question regarding a
subshell closure at N = 8 is thus, undecided. It will be inter-
esting to compare the theoretical results with upcoming laser
spectroscopy experiments that are at the proposal stage [45].

The plot of isotopic variations in the charge radii, shown
in Fig. 3, is interesting. Theory is not accurate regarding most
isotopes shifts and overemphasizes shell closures at N = 14
and N = 20 that are not in the data. This is perhaps a most
important result of this study: Whereas state-of-the-art po-
tentials and many-body methods can now describe trends of
charge radii, finer details, such as isotope shifts, still escape
the computations.

FIG. 3. As in Fig. 1 but for the isotope shift, i.e., the charge radii
squared relative to 26Mg. Data taken from Ref. [38].

We show the results for binding energies in Fig. 4. Our
calculations yield the dripline at 40Mg with 42Mg being about
1.8 MeV less bound for the �NNLOGO(394) potential. How-
ever, computational limitations prevented us from including
continuum effects, which can easily yield an additional bind-
ing energy of the order of 1 MeV [81]. This prevents us
from predicting the unknown dripline in magnesium more
precisely [82].

Another uncertainty stems from the lack of angular mo-
mentum projection. To estimate the corresponding energy
correction, we performed a projection after variation within
the Hartree-Fock computations. These projections lower the
Hartree-Fock energy by about 3–5 MeV, see Fig. 2 for an
example. We expect that a projection of the coupled-cluster
results would yield slightly less energy gains (because these
calculations already include some of the correlations that are
associated with a projection). Overall, Fig. 4 shows that the
�NNLOGO potentials accurately describe nuclear binding en-
ergies also for open-shell nuclei.

Binding-energy differences, such as the two-neutron sepa-
ration energy, is another observable sensitive to shell structure
and dripline physics. Figure 5 shows that the overall pattern
in the data is accurately reproduced within the uncertainties
from the employed interactions and model spaces. Although
our radii suggest a subshell closure at N = 14, neither theory

FIG. 4. As in Fig. 1 but for the ground-state energies.
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FIG. 5. As in Fig. 1 but for the two-neutron separation energies.

nor data support this closure for the two-neutron separation
energies.

We finally turn to neon isotopes. Here, our computations
have been less extensive to manage the available computa-
tional cycles. We limited the computations of energies to the
�NNLOGO(394) potentials in a model space of 13 harmonic-
oscillator shells at h̄ω = 16 MeV. For the charge radii we also
employed the �NNLOGO(450) potential at h̄ω = 12 MeV.
Figure 6 shows that the ground-state energies are close to the
data. We estimate theoretical uncertainties to be a bit smaller
than for the magnesium isotopes. We also note that about
3–5 MeV of energy gain is expected from a projection of
angular momentum (see again Fig. 2). We find the dripline
at 34Ne, in agreement with data [83]. Our computations yield
that 36Ne is unbound by several MeV, too much to be changed
by continuum effects.

The computed two-neutron separation energies, shown in
Fig. 7, confirm this picture. Compared to magnesium, it is
interesting that the addition of two protons shifts the drip line
by about six neutrons. Again we estimate that theoretical un-
certainties are a bit smaller than for the magnesium isotopes.

Finally, we show results for charge radii in Fig. 8 using the
�NNLOGO(394) and �NNLOGO(450) potentials. We only

FIG. 6. Ground-state energies for neon isotopes with even mass
numbers computed with the potentials �NNLOGO(394) shown as a
red line. The model spaces consist of 13 oscillator shells. Data [84]
are shown as black bars.

FIG. 7. As in Fig. 6 but for the two-neutron separation energies.

employed one oscillator frequency for each interaction. Thus,
the theoretical uncertainties are estimated to be somewhat
larger than the area between the two lines (compare with
Fig. 1 of the magnesium isotopes). Based on these estimates,
theoretical results are not quite accurate below 22Ne, although
they qualitatively reproduce the overall trend. The results ac-
curately reflect the known subshell closures at N = 14 and
N = 8. We see no closure at N = 20, and it will be interesting
to confront this prediction with data.

Conclusion. We computed ground-state energies, two-
neutron separation energies, and charge radii for neon
and magnesium isotopes. Our computations were based on
nucleon-nucleon and three-nucleon potentials from chiral
EFT, and we employed coupled-cluster methods that started
from an axially symmetric reference state. The computed en-
ergies and radii are accurate when taking expected corrections
from angular momentum projection into account. Trends in
charge radii, and the minimum and neutron number N = 14
are qualitatively reproduced. Within our estimated uncertain-
ties of about 2 to 3%, however, quantitative accuracy is not

FIG. 8. Charge radii for neon isotopes with even mass numbers
computed with the potentials �NNLOGO(394) and �NNLOGO(450)
shown in red and blue, respectively. The model spaces consist of 13
oscillator shells. Data is shown as black squares with statistical and
systematic uncertainties [41,42] and as gray circles with statistical
uncertainties [43].
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achieved for all isotopes, and isotope shifts still challenge
theory. Nevertheless, we predict a continuous increase as the
neutron dripline is approached, and this is consistent with a
considerable nuclear deformation. Proposed experiments will
soon confront these predictions.
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