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Impact of the neutron-star deformability on equation of state parameters
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We use a Bayesian inference analysis to explore the sensitivity of Taylor expansion parameters of the nuclear
equation of state (EOS) to the neutron star dimensionless tidal deformability (�) on 1- to 2-solar-mass neutron
stars. A global power law dependence between tidal deformability and the compactness parameter (M/R) is
verified over this mass region. To avoid superfluous correlations between the expansion parameters, we use a
correlation-free EOS model based on a recently published metamodeling approach. We find that assumptions in
the prior distribution strongly influence the constraints on �. The � constraints obtained from the neutron star
merger event GW170817 prefer low values of Lsym and Ksym, for a canonical neutron star with 1.4 solar masses.
For a neutron star with mass <1.6 solar masses, Lsym and Ksym are highly correlated with the tidal deformability.
For more massive neutron stars, the tidal deformability is more strongly correlated with higher order Taylor
expansion parameters.
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I. INTRODUCTION

A neutron star (NS) is the remnant of a supernova explo-
sion of a massive star. The interior of a NS contains the densest
nuclear material in the universe. This matter is so dense that
it becomes energetically favorable for protons and electrons
to combine and form neutrons. From densities ranging from
somewhat below saturation density (ρ0 = 0.155 fm−1) to 3ρ0,
it is reasonable to describe NS matter as locally uniform
nuclear matter composed mostly of neutrons. Study of NSs
is of great relevance to nuclear physics because of the infor-
mation it can provide regarding the equation of state (EOS)
of asymmetric nuclear matter at high density. Even though the
current paper is self-contained with relevant materials detailed
in Appendixes and extensive references, for those who are
interested, Refs. [1–4] provide more in depth discussions of
the subjects.

Astrophysical NS properties, combined with constraints
from nuclear observations, have provided a rough understand-
ing of the EOS. Typical temperatures of NSs are low, kBT <

1 MeV; thus the finite temperature effect is small and the
main uncertainties in the EOS concern the relation between
the pressure and energy density of nuclear matter at various
baryon densities [5].

Measurements of collective flow and kaon production
in energetic nucleus-nucleus collisions have constrained the
EOS for symmetric matter, at densities up to 4.5ρ0 [6–8].
Specifically, the symmetric matter constraints on pressure vs
density were determined in Ref. [6] from the measurements of
transverse and elliptical flow from Au + Au collisions over a
range of incident energies from 0.3 to 1.2 GeV/nucleon. More

recently, these constraints were confirmed in an independent
analysis of elliptical flow data [9]. In Refs. [7,8], a similar
constraint from 1.2ρ0 to 2.2ρ0 was obtained from the kaon
measurements. These heavy ion constraints are consistent
with the Bayesian analyses of the neutron-star mass-radius
correlation in Ref. [10].

Recent gravitational wave observations from the LIGO
Collaboration [11] opened a new window for understanding
neutron-star matter. Specifically, the LIGO observation pro-
vides estimates for the tidal deformability, also known as tidal
polarizability, a quantity that bears direct relevance to the
nuclear EOS.

The tidal deformability is induced when two NSs orbit
around each other and tidal forces from each NS deforms
its companion star. The mass quadrupole that developed
in response to the external quadrupole gravitational field
emerges as

Qi j = −λEi j . (1)

Here Ei j is the external gravitational field strength and λ is the
tidal deformability. The orbital period of the inspiral differs
from that of two point masses because the additional tidal
deformation contributes to an overall orbital energy loss and
changes the rotational phase. This difference is used to extract
the dimensionless tidal deformability (�) of a NS [12,13].
Throughout this paper, tidal deformability given below always
refers to the dimensionless tidal deformability,

� = λc10

G4M5
= 2

3
k2

(
c2R

GM

)5

, (2)
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where k2 is the second Love number [14,15]. This whole
expression, including the Love number, is sensitive to the
nuclear EOS [11,16,17]. Steps necessary to calculate � for a
given EOS are detailed in Appendix A. Recent analysis of the
gravitational wave data constrained this value to � = 190+390

−120
[18].

Since most observables from nuclear structure experi-
ments constrain the energy density and its derivatives near
or somewhat below saturation density (see, for example,
Refs. [19–22]), it is customary to approximate the EOS by
a Taylor expansion about saturation density. We explore the
parameter space spanned by the derivatives of the EOS with
respect to density at ρ0 and examine its correlation with �.

Other studies have been carried out in placing tidal de-
formability constraints on these Taylor expansion parameters.
They explored the constraints on different two-dimensional
parameter planes [21,23], on a diverse set of models [24–26],
and with Bayesian analysis on EOSs from chiral effective
field theory [27]. In this study, we expand the analysis by
employing a less restrictive form of EOS and exploring a
larger parameter space by including higher order terms.

A family of theoretical EOSs is needed to correlate the Tay-
lor expansion parameters with the predicted �. One widely
used family in astrophysics is the piecewise polytropes [28],
but it is not suitable in this study because a Taylor expansion
assumes that the EOS is analytic over the range of interest.
As long as there is only one polytrope, a Taylor expansion
is valid, but its validity does not extend past the point of
connection between the original polytrope and the next.

Another commonly used family is the Skyrme-type EOS
[29]. It derives from simplified approximate nuclear interac-
tion and relies on 15 free parameters in its expanded form.
While it is shown to successfully reproduce various nuclear
properties, it is difficult to explore new physics from the
Taylor expansion parameters because they are strongly con-
strained by the form of the Skyrme interaction itself. With the
functional form of Skyrme EOS, different Taylor expansion
parameters may not be independent of each other [30,31].

In this study, an EOS from metamodeling [32] is used.
By construction, their derivatives of different orders are inde-
pendent of each other. This paper is organized as follows: In
Sec. II, a brief description of Bayesian inference is provided.
This is the statistical method employed in the extraction of
EOS information from NS tidal deformability constraints.
Section III describes our choice of EOS from the metamod-
eling approach in Ref. [32] and how it is adopted to describe a
neutron star. In Sec. IV, correlation between EOS parameters
and tidal deformability of a 1.4-solar-mass NS is discussed.
Section V extends the study to NSs of different masses and
Sec. VI summarizes our findings.

II. BAYESIAN INFERENCE

We use Bayesian inference to study the influence of
tidal deformability constraints from LIGO on nuclear-matter
EOS parameters. These parameters are sampled with a prior
probability distribution based on findings from literature
and are then transformed into a distribution of neutron-star
matter EOSs. Through solving the Tolman-Oppenheimer-

Volkoff (TOV) equation, we are able to calculate the
corresponding tidal deformabilities. By combining their prior
distribution and likelihood, which indicates the compatibility
between the calculated and the observed tidal deformability,
Bayesian inference will assign probability for each EOS pa-
rameter with Bayes’s theorem:

P(M) = 1

Vtot
w(M)p(�(M))

∏
i

gi(mi ). (3)

In this equation, M is the set of all EOS parameters, mi ∈ M
is one of the EOS parameters, Vtot is the feature scaling con-
stant, p(�(M)) is the likelihood of an EOS calculated from
its predicted �, gi is the prior distribution of the ith parameter,
and w(M) is the filter condition that filters out EOS parameter
space that is nonphysical.

The likelihood of the EOS is the probability of having the
observed LIGO event with the assumption that the given theo-
retical EOS is the ultimate true EOS. We model the likelihood
function as an asymmetric Gaussian distribution base on the
extracted � = 190+390

−120 [18] from GW170817:

p(�) =
{

1
V exp

( − (�−190)2

2×1202

)
if � � 190

1
V exp

( − (�−190)2

2×3902

)
if � > 190.

(4)

In the above, V is the feature scaling constant such that the
likelihood function integrates to 1.

The sought function is the probability distribution of EOS
parameters rather than that for �, so prior distribution gi is
required to convert between the two using Bayes’s theorem.
A commonly used prior is the Gaussian distribution:

gi(mi ) = 1√
2πσ 2

i

exp

(
− (mi − mi,prior )2

2σ 2
i

)
, (5)

where mi,prior and σi are the prior mean and standard deviation
of the free parameters, respectively. They should be chosen to
reflect our current understanding of those free parameters.

Some parameter sets may yield nonphysical EOSs due to
various additional considerations. The filter condition w(M)
takes that into account; it is set to 1 if the following three
conditions of stability, causality, and maximum mass are all
satisfied, and it is set to zero if not.

The stability condition rejects EOSs whose pressure de-
creases with energy density. Above the crust-core transition
density, we require the EOSs to be mechanically stable with
thermodynamical compressibility greater than zero, which
means that the pressure of homogeneous matter does not de-
crease with density. For EOSs with negative compressibilities
at density above the crust-core transition densities predicted
by Eq. (15), they will be rejected as being inconsistent with
experimental information.

The requirement of causality rejects EOSs whose speed of
sound is greater than the speed of light in the core region of
their respective heaviest NS. The maximum mass condition
rejects EOSs that fail to produce a NS of at least 2.04 solar
masses in accordance with observation [33,34].

Using the fact that the binary NS merger GW170817
detected by LIGO did not promptly produce a black hole,
Ref. [35] inferred that the heaviest possible NS should be
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around 2.17 solar masses. Other sources put the maximum
mass at around 2.15–2.40 solar masses [36–41]. Neither of
these constraints has been adopted in this work but can be
implemented in the future.

The calculated probability distribution from Eq. (3) is re-
ferred to as the posterior distribution. By comparing prior to
posterior distribution, we are able to infer the sensitivity of
various EOS parameters to NS tidal deformability. By con-
struction, priors of different free parameters in metamodeling
the EOS are not correlated with each other, so any correlations
in the posterior reflect the collective sensitivity of the Taylor
expansion parameters to NS tidal deformability.

III. NUCLEAR EQUATION OF STATE

A. Parameters in nuclear EOS

Nuclear matter is a theoretical construct composed of pro-
tons and neutrons. It resembles the core of ordinary nuclei
where the neutron and proton densities are approximately
uniform. Since the numbers of protons and neutrons are usu-
ally not far from each other in nuclei, we often expand the
EOS into the symmetric nuclear matter (SNM) term (isoscalar
term) and a correction term for the deviation from SNM
(isovector term), when proton densities and neutron densities
are not identical as shown in Eq. (6) below. SNM refers to an
infinite system where the density of protons equals the density
of neutrons. The EOS is commonly expanded as

E (ρ, δ) = Eis(ρ) + δ2Eiv (ρ). (6)

In the above, Eis is the isoscalar term, Eiv is the isovector term,
ρ is the matter density, and δ = (ρn − ρp)/(ρn + ρp) is called
the asymmetry parameter where ρn and ρp are neutron density
and proton density respectively. Nuclear structure probes are
generally sensitive to the density region around saturation (ρ0)
[19–22] and, as a result, derivatives of the EOS with respect to
density at this point are often used as empirical parameters to
characterize the density and isospin dependence of the EOS.
The derivatives are commonly expressed as parameters in the
Taylor expansion when the EOS is expanded in terms of x =
(ρ − ρ0)/(3ρ0):

Eis(ρ) = E0 + 1

2
Ksatx

2 + 1

3!
Qsatx

3 + 1

4!
Zsatx

4 + · · · , (7)

Eiv (ρ) = S0 + Lsym + 1

2
Ksymx2 + 1

3!
Qsymx3

+ 1

4!
Zsymx4 + · · · . (8)

One focus of this paper is to explore the sensitivity between
� and S, L, K , Q, and Z . Some families of EOSs depend
on density and asymmetry in a way that cannot be separated
explicitly into the sum of two terms, but the isoscalar term is
always well defined:

Eis(ρ) = E (ρ, δ = 0). (9)

The isovector term can be defined as the second order Taylor
expansion coefficient in δ around δ = 0 (not to be confused

with Taylor EOS expansion parameters, which expand in x),

Eiv (ρ) = 1

2

∂2E (ρ, δ)

∂δ2

∣∣∣
δ=0

. (10)

Likewise Taylor EOS parameters can always be extracted
from any nuclear EOS. This allows for comparison of vari-
ables across families of EOSs.

Another important quantity that characterizes nuclear mat-
ter properties is the effective mass m∗(ρ, δ). It is used to
characterize the momentum dependence of nuclear interaction
and it can be different for protons, m∗

p (ρ, δ), and neutrons,
m∗

n(ρ, δ), depending on the condition which the nuclear matter
is subjected to. It is generally assumed that m∗

p = m∗
n in SNM.

Comparison of effective mass is commonly carried out
through the comparison of two quantities: the nuclear effec-
tive mass in SNM at saturation, m∗

sat, and the splitting in
neutron and proton effective masses in pure neutron matter
(PNM) at saturation, 	m∗ = m∗

n − m∗
p. The choice of the

two quantities mirrors the spirit of splitting the EOS into
an isoscalar term and an isovector term in Eq. (6) in which
contribution from SNM is separated from the correction factor
that arises when matter is not symmetric.

Sometimes it is more convenient to express m∗
sat and 	m∗

in terms of κsat, κsym, and κv:

κsat = m

m∗
sat

− 1 = κs,

κsym = 1

2

(
m

m∗
n

− m

m∗
p

)
,

κv = κsat − κsym. (11)

The parameter κv plays the role of the enhancement factor
in the Thomas-Reiche-Khun sum rule and it depends on the
energy region of the resonance energy [42]. In this analysis,
the effective masses are expressed in terms of m∗

sat/m and κv .

B. EOS from a metamodeling approach

Our studies utilizing the metamodeling analysis follow the
approach of Ref. [32]. Such metamodels for the EOS can be
easily constructed with only Taylor expansion parameters and
effective masses. The metamodel EOS resembles the Skyrme
EOS with the same corresponding Taylor parameters to a
greater extent than a simple power law expansion.

Four different empirical local density functional (ELF)
metamodels are proposed in Ref. [32]: ELFa, ELFb, ELFc
and ELFd. ELFa does not produce vanishing energy as den-
sity approaches zero. ELFb does not converge to a typical
Skyrme EOS even when identical Taylor parameters are used.
ELFc does not have the shortcomings of EFLa and ELFb
and closely resembles the Skyrme with similar Taylor pa-
rameters. Although ELFd agrees with Skyrme better, it relies
on high density information that is not well constrained by
experiments.

From the above considerations, we adopt ELFc in this
study. A similar choice is also made in other recent studies
[43,44]. The formulation of ELFc is detailed in Appendix B.
As assessed in Ref. [32], the following choices of parame-
ters have been accurately constrained by nuclear experiment
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and are fixed in the analysis: Esat = −15.8 MeV and ρ0 =
0.155 fm−3.

C. Thermodynamic relations

Additional characteristics of nuclear matter can be inferred
using thermodynamic equations once an EOS is specified. The
pressure at various densities, P(ρ), is related to the derivative
of the energy:

P(ρ) = ρ2 ∂E (ρ, δ)

∂ρ
. (12)

The adiabatic speed of sound can then be calculated [45]:(
vs

c

)2

=
(

∂P

∂E
)

S

, (13)

where E = ρ(E + mc2) is the energy density of the mate-
rial including mass density. This implies any thermodynamic

stable EOS must satisfy ( ∂P
∂E )S > 0. Furthermore, since in-

formation cannot travel faster than the speed of light due to
causality, the inequality vs < c must hold for all densities
relevant to NSs. This may not be always true for ELFc. To
stay physical, we switch from ELFc to an expression for the
stiffest possible EOS whenever causality is violated:

PStiffest(E, vs, E0, P0) =
(

vs

c

)2

(E − E0) + P0. (14)

This equation represents an EOS with constant speed of
sound, vs, and vs = c yields the stiffest possible EOS [46].
Here E0 and P0 are reference values of energy density and
pressure, respectively. The reference values can be adjusted
to match the conditions at a specific density where energy
density and pressure are known. The switch in EOS avoids
superfluous rejection when causality is considered.

D. Structure of a NS and modifications on the nuclear EOS

Neutron stars are more than a “giant nucleus” described
in Ref. [47]. There are structural changes at various density
regions as a result of a competition between the nuclear
attraction and the Coulomb repulsion. The dynamics of the
outermost layers of NSs is described mostly by the Coulomb
repulsion and nuclear masses, where nuclei arrange them-
selves in a crystalline lattice. As the density increases, it
becomes energetically favorable for the electrons to capture
protons, and the nuclear system evolves into a Coulomb lat-
tice of progressively more exotic, neutron-rich nuclei that are
embedded in a uniform electron gas. This outer crustal region
exists as a solid layer of about 1 km in thickness [17].

At intermediate densities of subsaturation, the spherical
nuclei that form the crystalline lattice start to deform to re-
duce the Coulomb repulsion. As a result, the system exhibits
rich and complex structures that emerge from a dynamical
competition between the short-range nuclear attraction and
the long-range Coulomb repulsion [48].

At densities of about half of the nuclear saturation, the
uniformity in the system is restored and matter behaves as a
uniform Fermi liquid of nucleons and leptons. The transition
region from the highly ordered crystal to the uniform liquid

core is very complex and not well understood. At these re-
gions of the inner crust which extend about 100 m, various
topological structures are thought to emerge that are collec-
tively referred to as “nuclear pasta.” Despite the undeniable
progress [49–80] in understanding the nuclear-pasta phase
since their initial prediction over several decades ago [81–83],
there is no known theoretical framework that simultaneously
incorporates both quantum-mechanical effects and dynamical
correlations beyond the mean-field level. As a result, a reliable
EOS for the inner crust is still missing.

The matter in the core region of NSs can be described as
uniform nuclear matter where neutrons, protons, electrons,
and muons exist in β equilibrium [48]. Although a phase
change and exotic matter such as hyperons [48,84,85] could
appear in the inner core region, there is currently no direct
evidence of their existence. In this work, we calculate the
EOS in this region by assuming that the neutron-star matter
is composed of nucleons and leptons only.

Due to the rich structure of NSs, the nuclear EOS needs
to be contextualized before it can be used for NS prop-
erties calculation. To begin with, a crustal EOS should be
used at density below the transition density ρT . Normally
the determination of ρT requires complicated thermodynamic
calculations, but some simple relationship has been found
between transition densities and Taylor parameters of the EOS
in Ref. [86] that greatly simplifies its calculation. In this study,
the following equation is used to determine ρT :

ρT = (−3.75 × 10−4Lsym + 0.0963) fm−3. (15)

Outer and inner crust exhibit different physical properties and
should be described by different EOSs. For the outer crust,
the EOS provided by Ref. [87] is used in this analysis. For the
inner crust, spline interpolation in the region of 0.3ρT < ρ <

ρT is reserved for a smooth transition between the outer crust
and outer core. While this connection region cannot precisely
describe crustal dynamics, tidal deformability does not appear
to be sensitive to the choice of the crustal details for NSs
[17,88,89].

The outer core region ρ > ρT is characterized by the EOS
of a β-equilibrated system of protons, neutrons, electrons,
and muons. Protons and neutrons are collectively described
by ELFc while electrons and muons are modeled as rela-
tivistic Fermi gases. Equilibrium is attained by minimizing
the Helmholtz free energy at different densities. If the speed
of sound for the EOS reaches the speed of light at density
ρ = ρc, it will switch to the stiffest possible EOS of Eq. (14)
at higher densities to comply with the causality condition. If
ELFc does not violate causality at all densities relevant to NSs,
then ρc = ∞ and Eq. (14) is never used.

To summarize, the EOS of the neutron-star matter is for-
mulated as follows:

P(E ) =

⎧⎪⎪⎨
⎪⎪⎩

Pcrust(E ) if 0 < ρ < 0.3ρT

Pspline(E ) if 0.3ρT < ρ < ρT

PELFc(E ) if ρT < ρ < ρc

Pstiffest(E, c, E0, P0) if ρc < ρ.

(16)

In the above equations, E0 and P0 are the energy density and
pressure from β-equilibrated ELFc at ρc, respectively; Pcrust
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TABLE I. Summary information of various models [32]. The bottom half shows characteristics of the prior and posterior distribution,
respectively.

Lsym Ksym Ksat Qsym Qsat Zsym Zsat

(MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV) m∗
sat
m κv

Skyrme average 49.6 −132 237 370 −349 −2175 1448 0.77 0.44
Skyrme σ 21.6 89 27 188 89 1069 510 0.14 0.37
RMF average 90.2 −5 268 271 −2 −3672 5058 0.67 0.40
RMF σ 29.6 88 34 357 393 1582 2294 0.02 0.06
RHF average 90.0 128 248 523 389 −9956 5269 0.74 0.34
RHF σ 11.1 51 12 237 350 4156 838 0.03 0.07

Weighted average 69.0 −45.3 248 367 −114 −3990 3310 0.712 0.42
Weighted σ 20.1 70.8 18.3 214 200 1530 989 0.06 0.17

Posterior average 71.6 −76.9 245 436 −97 −3410 3490 0.74 0.41
Posterior σ 16.5 66.0 23 219 202 1710 970 0.07 0.25

is the pressure from the crustal EOS; and PELFc is the pressure
from the β-equilibrated ELFc EOS. Pspline and Ecrust govern the
cubic spline that smoothly connects Pcrust to PELFc and Ecrust to
EELFc, respectively.

IV. RESULTS FOR A 1.4-SOLAR-MASS NS

A total of 1 500 000 EOSs have been sampled and 682 652
of them satisfy all of our constraints. Only 11 711 EOSs apply
to all densities without switching to the stiffest EOS.

Prior distributions of the parameters should reflect our
initial belief of those quantities before information on tidal de-
formability is taken into account. For this, we rely on Ref. [32]
which summarizes the distributions of EOS parameters from
three phenomenological families: Skyrme, relativistic mean
field (RMF), and relativistic Hartree-Fock (RHF). The mean
and standard deviation of the parameters for each family are
tabulated in the first six rows of Table I. In this study, the
prior means and standard deviations are the weighted average
values of the three families, with weights of 0.500, 0.333, and
0.167, respectively. The weights reflect our confidence in the
models. We give the Skyrme EOS the most weight as it is
the most heavily employed parametrization in a myriad of
nuclear predictions [29]. These relative weights are ad hoc, but
should cover most plausible parameter spaces. Prior means
and standard deviations are listed in the seventh and eighth
rows in Table I, respectively.

The posterior distributions of Taylor expansion parameters
are represented in Fig. 1. The lower triangular plots show
the bivariate distributions for two parameters. The diagonal
plots show the prior (blue curves) and marginalized posterior
distributions (red curves) for individual parameters. The up-
per triangle displays the Pearson correlation coefficients for
parameter pairs:

ρX,Y = E[(X − X̄ )(Y − Ȳ )]

σX σY
, (17)

where E is the expectation value and σX and σY are the stan-
dard deviations of the parameters distributions. The Pearson
coefficient ranges from −1 to 1 and its absolute value reflects
the strength of the correlation. A positive value close to 1
indicates a strong correlation and a negative value close to

−1 indicates strong anticorrelation while a value close to zero
indicates lack of correlation [90]. Only bivariate distributions
between Lsym, Ksym, Ksat, Zsym, and Zsat are shown because
the higher order parameters do not seem to be influenced by
our tidal deformability constraints. The full correlation plot
is included in Appendix C. Characteristics of the probability
distribution are summarized in the bottom two rows of Table I.

Figure 2 shows the mean and 2σ region spanned by the
EOS in the posterior. The 2σ region converges to a line
for E � 20 MeV/fm3, which corresponds to the outer crust.
Since we connect all EOSs to the crustal EOS given by
Ref. [87], this convergence is expected. From around 20 to
70 MeV/fm3, the spline connection kicks in and manifests in
the broadening of pressure.

The cutoffs in the lower left corner of the Zsym vs Zsat

distribution and the upper left corner of the Ksym vs Lsym

distribution in Fig. 1 are the consequence of the stability
condition. At such extreme values, the speed of sound may be
imaginary when extrapolating to a NS of 2 solar masses. This
is evident in Fig. 3 in which 50 randomly selected EOSs from
the cutoff region in Ksym vs Lsym are shown in the lower panel.
The pressure for those EOSs does not increase monotonically
with the energy density and becomes mechanically unstable.
These EOSs are discarded.

The posterior distributions of Ksym and Zsym differ from
the prior distributions significantly. The tidal deformabil-
ity constraint favors the lower Ksym region. The inference
also narrows the range of possible Lsym. Parameters such as
Ksat and Zsat, whose posterior distributions are not altered
significantly, reflect that they are not sensitive to the tidal
deformability constraints.

While this Bayesian analysis is well suited to discuss the
sensitivity of the deformability to the Taylor expansion pa-
rameters Lsym, Ksym, Ksat, etc., it has some limitations. In
particular, we note that the prior and post distributions of � as
shown in Fig. 7 (row 2, column 10,) are drastically different,
probably as a consequence of the narrow prior distributions
of the Taylor expansion parameters listed in Table I. This
reflects the strong sensitivity of � to the prior distributions
of the EOS. Furthermore, the posterior distribution of � is
much sharper and peaked at 624 ± 129 which exceeds the
value of 190+390

−120 obtained in Ref. [18] from the analysis of the
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FIG. 1. Bivariate characteristics of posterior likelihood distributions. Three regions can be distinguished. The lower triangle panels show
likelihood distributions, with intensity proportional to distribution value, for pairs of Taylor parameters. The diagonal panels display prior
(blue) and marginalized posterior (red) distributions for each parameter. The upper triangular region shows the Pearson correlation coefficient
for parameter pairs. Three dots indicate weak correlations with magnitude less than 0.1.

GW170817. While the GW constraint reflects the high density
of the NS core, the prior distributions of the Taylor expansion
parameters do not have rigorous laboratory constraints at the
high density region where � is determined.

V. NEUTRON STAR WITH DIFFERENT MASSES

While the chirp mass of GW170817 has been determined
quite accurately [11], the exact masses of the two neutron
stars or their mass ratios are not known [11]. In anticipation
that more merger events involving different NS masses than
the nominal NS mass of 1.4 solar masses are observed in the
future [91], we use the posterior EOS distributions to predict
the deformability of a NS with different masses. The posterior
EOS distributions can be used to predict the deformability
of a NS with different masses. In Table II, we provide our
predictions for the tidal deformabilities for a NS with 1.2, 1.4,
1.6, 1.8, and 2 solar masses using this group of EOSs weighted

by their posterior distributions. To show the sensitivity of
these predictions to the Taylor parameters, Fig. 4 shows the
bivariate distributions between the Taylor parameters of the
posterior distributions and the predicted tidal deformabilities
of different stellar masses. We find that � is more strongly
correlated with Lsym and Ksym than it is with higher order Tay-
lor expansion parameters. The sensitivity to Ksym increases,
while the sensitivity to Lsym decreases, with stellar mass.

To quantify this dependence of sensitivity on mass, the
Pearson correlation coefficients for a few selected Taylor

TABLE II. Predicted tidal deformability for NSs of different
masses.

�(1.2) �(1.4) �(1.6) �(1.8) �(2.0)

Posterior average 1490 624 281 132 64
Posterior σ 310 129 61 31 17
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FIG. 2. Distribution of EOSs sampled from the posterior. The
divergence above energy density �20 MeV/fm3 coincides with the
transition from outer crust to spline connection.

parameter pairs are shown in Fig. 5. A gradual reduction in
correlation between Lsym and tidal deformability is observed
as the mass of a NS increases. This is expected as the relevant
average density for more massive stars shifts upward and away
from those most directly impacted by Lsym. A high density
parameter P(2ρ0), the pressure for pure neutron matter at
twice the saturation density, is also included in Figs. 4 and 5.
The strong correlation between tidal deformability and P(2ρ0)

FIG. 3. Top: The 50 dots in the upper left hand corner of Ksym vs
Lsym correspond to 50 randomly chosen parameter spaces within the
stability cutoff region. Bottom: Unstable EOS corresponding to the
50 dots. The red and blue lines correspond to the red and blue points
in the upper panel, respectively. They are highlighted to showcase
what a typical EOS in the cutoff region looks like.

is consistent with prior work [18,27,28,92]. While this strong
correlation is maintained for both heavy and light NSs, the
slope of the correlation becomes smaller, reflecting the de-
crease in average values and variations of � with stellar mass.

Such a decrease is correlated with an increase in stel-
lar compactness. Using the posterior probability distributions
for the Taylor expansion parameters, we can also make pre-
dictions on the relation between stellar mass and inverse
compactness (R/M). Figure 6 shows tidal deformability plot-
ted against inverse compactness, with calculation results for
1.2-, 1.4-, 1.6-, and 1.8-solar-mass NSs all combined together.
It is consistent with Eq. (2) where � ∝ k2(R/M )5. The best
fitted power law has an index of 5.84 due to additional inter-
dependence of tidal Love number k2 and R/M. The result is
consistent with Refs. [17,93,94].

Recently, we found that, independently and in parallel,
Ref. [44] conducted a very similar analysis using ELFc. Our
work examines correlations between more parameters and our
study extends to a higher mass neutron star. Reference [44]
uses much wider priors while our prior is more restrictive
and provides finer details in a smaller phase space. In ad-
dition, they apply additional constraints on the EOS using
data from the Chiral effective field theory (χEFT) approach
and isoscalar giant monopole resonance (ISGMR) collective
mode. Even though their extracted Qsat and Ksym values are
consistent with our extracted values, details in the correlations
are not the same. The subtle differences suggest that Bayesian
analysis results depend on the choice of priors and constraints
applied to the EOS.

VI. CONCLUSION

In this paper, the ELFc form of metamodeling is used in a
sensitivity study of NS tidal deformability to Taylor expansion
parameters of the nuclear equation of state. Constraints on
the isoscalar parameters, such as Ksat, are found to be less
affected by NS properties. For the isovector parameters, Lsym

is found to be most correlated with tidal deformability, closely
followed by Ksym, although the importance of the former
dwindles and reverses as NS mass increases to above 1.6 solar
masses.

We have further demonstrated the global relation between
tidal deformability and compactness of NSs with different
masses. When more merger events involving different NS
masses are observed in the future, one can verify the relation
of tidal deformability and inverse compactness in Fig. 6 and
provide independent constraints on Lsym and Ksym.

A strong correlation with the pressure of matter at 2ρ0

is observed. This highlights the need for high density
observables from nuclear physics, as constraints on tidal
deformability can be tightened with accurate high density
observations. A strong experimental constraint on pressure for
PNM at 2ρ0 complements pressure [95,96] constraints from
future measurement of NS mergers.
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FIG. 4. Bivariate distributions between deformabilities with NSs of different masses and Taylor parameters. Correlation with tidal
deformability is clearly seen with Lsym, Ksym, and P(2ρ0).
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APPENDIX A: TOV EQUATION

The TOV equation set predicts the structure of a static
spherical object under general relativity for any given EOS.
The equations are

dP(r)

dr
= − (E (r) + P(r))(M(r) + 4πr3P(r))

r2(1 − 2M(r)/r)
,

dM(r)

dr
= 4πr2E (r). (A1)

Here geometrized units G = c = 1 are used, E (r) is the energy
density given by the EOS, P(r) is the internal pressure at given
depth, and M(r) is the integral of gravitational mass from the
core up to radius r. The surface is defined as the radial distance
R at which P(R) = 0.

FIG. 5. Pearson correlation parameters for different NS masses.

A list of equations whose solutions lead to the value of �

from the above structural functions is shown without deriva-
tion. Please refer to Refs. [16,97] for details. To begin with,
an auxiliary variable yR = y(R) is calculated,

r
dy(r)

dr
+ y(r)2 + y(r)F (r) + r2Q(r) = 0, (A2)

where

F (r) = r − 4πr3(E (r) − P(r))

r − 2M(r)
, (A3)

Q(r) =
4πr(5E (r) + 9P(r) + E+P(r)

∂P(r)/∂E − 6
4πr2

r − 2M(r)

− 4

[
(M(r) + 4πr3P(r)

r2(1 − 2M(r)/r)

]2

. (A4)

FIG. 6. Tidal deformability vs inverse compactness for 1.2-, 1.4-,
1.6-, and 1.8-solar-mass NS.
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The tidal Love number k2 can then be calculated with the following expression:

k2 = 1

20

(
Rs

R

)5(
1 − Rs

R

)2[
2 − yR + (yR − 1)

Rs

R

]{
Rs

R

(
6 − 3yR + 3Rs

2R
(5yR − 8) + 1

4

(
Rs

R

)2

×
[

26 − 22yR + Rs(3yR − 2)

R
+

(
RS

R

)2

(1 + yR)

])
+ 3

(
1 − Rs

R

)2[
2 − yR + Rs(yR − 1)

R

]
ln

(
1 − RS

R

)}−1

. (A5)

In the above, RS = 2M is the Schwarzschild radius. The value of � is then extracted with Eq. (2).

FIG. 7. Bivariate characteristics of posterior likelihood distributions. This is an extension of Fig. 1 and correlation pairs of all parameters are
shown. Three regions can be distinguished. The lower triangle panels show likelihood distributions, with intensity proportional to distribution
value, for pairs of Taylor parameters. The diagonal panels display the marginalized distribution for each parameter. The upper triangular region
shows Pearson correlation coefficients for parameter pairs, but when correlation in magnitude is less than 0.1, it is omitted and three dots are
put in place of its value.
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APPENDIX B: METAMODELING PARAMETERS AND
TAYLOR PARAMETERS MAPPING

The ELFc energy functional is written as a sum of kinetic
energy and potential energy terms:

EEFLc(ρ, δ) = tFG∗(ρ, δ) + vN
EFLc(ρ, δ), (B1)

where ρ is the density and δ is the asymmetry parameter. The
kinetic energy term tFG∗(ρ, δ) in the above is written as

tFG∗(ρ, δ) = tFG
sat

2

( ρ

ρ0

) 2
3

[(
1 + κsatρ

ρ0

)(
(1 + δ)

5
3 + (1 − δ)

5
3
)

+ κsymρ

ρ0
δ
(
(1 + δ)

5
3 − (1 − δ)

5
3
)]

. (B2)

In the above, the parameter tFG
sat = 22.1 MeV while κsym and

κsat are effective mass parameters described in Eq. (11).
The potential energy term vN

EFLc(ρ, δ) is written as

vN
EFLc(ρ, δ) =

4∑
i=0

1

i!

(
vis

i + viv
i δ2)(1 − (−3)5−i )

× exp

(
− 6.93ρ

ρ0

)
xi. (B3)

In the above, the parameters vis
i and viv

i are free parameters.
These ten parameters can be uniquely mapped onto Tay-
lor parameters using the following formulas (for a detailed
derivation, please refer to Ref. [32]):

vis
0 = Esat − tFG

sat (1 + κsat ), (B4)

vis
1 = −tFG

sat (2 + 5κsat ), (B5)

vis
2 = Ksat − 2tFG

sat (−1 + 5κsat ), (B6)

vis
3 = Qsat − 2tFG

sat (4 − 5κsat ), (B7)

vis
4 = Zsat − 8tFG

sat (−7 + 5κsat ), (B8)

viv
0 = S0 − 5

9
tFG
sat (1 + (κsat + 3κsym)), (B9)

viv
1 = L − 5

9
tFG
sat (2 + 5(κsat + 3κsym)), (B10)

viv
2 = Ksym − 10

9
tFG
sat (−1 + 5(κsat + 3κsym)), (B11)

viv
3 = Qsym − 10

9
tFG
sat (4 − 5(κsat + 3κsym)), (B12)

viv
4 = Zsym − 40

9
tFG
sat (−7 + 5(κsat + 3κsym)). (B13)

When exploring the parameter space, Taylor parameters will
be translated to a metamodeling EOS using the above for-
mulas and NS features will then be calculated with the TOV
equation. Neutron star properties will be examined in order to
search for Taylor parameter spaces flavored by the observed
tidal deformability.

APPENDIX C: FULL CORRELATION BETWEEN TIDAL
DEFORMABILITY AND PARAMETERS

The correlation between Lsym, Ksym, Ksat, Qsym, Qsat, Zsym,

Zsat, (msat/m), P(2ρ0), and � are shown in Fig. 7. This is
an extension of Fig. 4 where bivariate distributions of some
selected parameters are shown. The organization is similar:
Lower triangles show bivariate distributions between vari-
ables and marginal distribution of each variable is shown on
the diagonal. The upper triangles show Pearson correlation
coefficients between each variable pair if it is larger than 0.1;
otherwise they are omitted for simplicity and three dots are
put in their place.
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