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Background: The nuclear symmetry energy Esym(ρ ) encodes information about the energy necessary to make
nuclear systems more neutron rich. It is currently poorly known especially at suprasaturation densities but has
broad impacts on properties of neutron stars and on nuclear structure and reactions. While its slope parameter
L at the saturation density ρ0 of nuclear matter has been relatively well constrained by recent astrophysical
observations and terrestrial nuclear experiments, its curvature Ksym characterizing the Esym(ρ ) around 2ρ0

remains largely unconstrained. Over 520 calculations for Esym(ρ ) using various nuclear theories and interactions
in the literature have predicted several significantly different Ksym-L correlations.
Purpose: If a unique Ksym-L correlation of Esym(ρ ) can be firmly established, it will enable us to progressively
constrain the high-density behavior of Esym(ρ ) using the available and better constrained slope parameter L. We
investigate if and by how much the different Ksym-L correlations may affect neutron star observables. We also
examine if LIGO/VIRGO’s observation of tidal deformability using gravitational waves from GW170817 and
NICER’s recent extraction of neutron star radius using high-precision x-rays can distinguish the different Ksym-L
correlations predicted.
Methods: A metamodel of nuclear equations of state (EOSs) with three representative Ksym-L correlation
functions is used to generate multiple EOSs for neutron stars. We then examine effects of the Ksym-L correlation
on the crust-core transition density and pressure as well as the radius and tidal deformation of canonical
neutron stars.
Results: We found that the Ksym-L correlation affects significantly both the crust-core transition density and
pressure. It also has strong imprints on the radius and tidal deformability of canonical neutron stars, especially
at small L values. The available data from LIGO/VIRGO and NICER set some useful limits for the slope L but
cannot distinguish the three representative Ksym-L correlations considered.
Conclusions: The Ksym-L correlation is important for understanding properties of neutron stars. More precise
and preferably independent measurements of the radius and tidal deformability from multiple observables of
neutron stars have the strong potential to help pin down the curvature-slope correlation and thus the high-density
behavior of nuclear symmetry energy.
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I. INTRODUCTION

The crust-core transition density and pressure in neutron
stars (NSs) play significant roles in modeling NS observa-
tional properties [1,2]. In particular, they affect the fractional
moment of inertia of a NS’s crust closely related to the pul-
sar glitch phenomenon as well as the radius and quadrupole
deformation of both isolated NSs and those involved in NS
binary mergers. Regardless of the approaches used, deter-
mining the NS crust-core transition point involves both the
first-order and second-order derivatives of the nucleon aver-
age energy in isospin-asymmetric nuclear matter with respect
to the density of neutrons and protons. Thus it has been
known since the earlier 1970s that the core-crust transition
density and pressure are very sensitive to the fine details of
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the isospin and dense dependences of the nuclear equation
of state (EOS) [1–3]. Indeed, extensive studies using various
nuclear many-body theories and interactions have examined
effects of various terms in the EOS and demonstrated the
significant model dependence of the NS crust-core transition
density and pressure; see, e.g., Ref. [4] for a recent review.
In particular, both the slope L = 3ρ0[∂Esym(ρ)/∂ρ]|ρ=ρ0 and
curvature Ksym = 9ρ2

0 [∂2Esym(ρ)/∂ρ2]|ρ=ρ0 of nuclear sym-
metry energy Esym(ρ) at the saturation density ρ0 of nuclear
matter were found to play very important roles in determining
the crust-core transition density and pressure. They both also
affect significantly the radii and tidal deformations of canon-
ical neutron stars [4]. In fact, it is well known that NS radii
are mostly determined by the nuclear pressure around 2ρ0

where Ksym has the most important influence on Esym(ρ) and
the corresponding pressure there [5–8]. In turn, imprints of
Ksym on observational properties of NSs may help us further
constrain the poorly known high-density behavior of nuclear
symmetry energy.
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Unfortunately, it has been very challenging to constrain
the density dependence of nuclear symmetry energy Esym(ρ)
especially at suprasaturation densities [9]. While some signif-
icant progress has been made in experimentally constraining
the slope parameter L characterizing mostly the Esym(ρ)
around ρ0, the curvature Ksym dominating the behavior of
Esym(ρ) around 2ρ0 is much less constrained presently. More
quantitatively, a survey in 2013 of 28 previous analyses of
terrestrial nuclear laboratory experiments and astrophysical
observations found a fiducial value of L = 59 ± 16 MeV [10].
It changed to L = 58.7 ± 28.1 MeV in the 2016 survey of 53
more diverse analyses using more data [11]. While the uncer-
tainty range has increased, the mean value of L remains about
the same. These earlier analyses normally did not give any
useful information about Ksym. On the other hand, extensive
surveys of over 520 theoretical predictions available in the lit-
erature up to 2014 [12,13] indicated that Ksym is in the range of
−400 � Ksym � 100 MeV [14,15]. The latest Bayesian anal-
yses in 2020 of both the LIGO/VIRGO tidal deformability
data from observing GW170817 [16] and the NICER radius
data from observing PSR J0030+0451 [17,18] found the most
probable values of L = 66+12

−20 and Ksym = −120+80
−100 at 68%

confidence level [19,20]. The extracted L is consistent with its
fiducial value within the error bars. These analyses of the new
astrophysical data clearly provided some useful constraints
on the model predictions for Ksym, but its uncertainty range
remains quite large.

Predictions of the nuclear EOS based on many-body theo-
ries subject to various constraints, such as empirical properties
of nuclear matter at ρ0 and some properties of finite nu-
clei and/or terrestrial nuclear reactions, naturally introduce
correlations among some features of the EOSs predicted.
Indeed, strong correlations between L and Ksym have been
found in predictions by various nuclear energy density func-
tionals and/or microscopic many-body theories; see, e.g.,
Refs. [12–15,21–26]. As discussed above, some reasonably
tight experimental and observational constraints on the slope
L already exist. Moreover, coming nuclear experiments as
well as astrophysical observations will help narrow down
further its uncertainties. Thus, if one can establish firmly the
Ksym-L correlation, it can then help to progressively constrain
Ksym using the available constraints on L.

In this work, using the EOS metamodeling approach of
Refs. [27–30] we study effects of the Ksym-L correlation on
the crust-core transition density and pressure as well as its
imprints on the radius and tidal deformability of canonical
neutron stars of mass 1.4M�. When necessary and possible,
we also discuss if constraints on the NS tidal deformability
from LIGO/VIRGO’s observation of GW170817 [16] and
constraints on the NS radius from NICER’s recent observation
of PSR J0030+0451 [17,18] can help distinguish different
Ksym-L correlations and/or how they may help constrain the L
parameter.

The rest of the paper is organized as follows. In the next
section, we first outline the EOS meta-modeling method and
three representative Ksym-L correlation functions available in
the literature. We then examine effects of the Ksym-L cor-
relation on the crust-core transition density and pressure by
comparing results using the three different Ksym-L correlation

functions in a large EOS parameter space allowed by all ex-
isting constraints. We then investigate imprints of the Ksym-L
correlation on the radius and tidal deformability of neutron
stars. A summary and conclusions are given at the end.

II. THEORETICAL APPROACH

Here we outline the major components of our approach.
We focus on the new features but skip most of the details that
one can easily find in the literature. For completeness and ease
of the following discussions, when necessary we also recall
briefly some of the well established equations and methods
we adopted here.

A. Parametrizing the EOS of neutron-rich nucleonic matter

Neutron-rich nucleonic matter of neutron density ρn and
proton density ρp has an isospin asymmetry δ = (ρn − ρp)/ρ
and density ρ = ρn + ρp. Its EOS can be written as [31]

E (ρ, δ) = E0(ρ) + Esym(ρ)δ2 + O(δ4) (1)

in terms of the energy per nucleon E0(ρ) ≡ E (ρ, δ = 0) in
symmetric nuclear matter (SNM) and the symmetry energy
Esym(ρ). For a given EOS E (ρ, δ) from a nuclear many-body
theory, it is customary to Taylor expand both the E0(ρ) and
Esym(ρ) as functions of (ρ − ρ0)(3ρ0) with coefficients given
by their density derivatives at ρ0. This approach is particularly
useful in the traditional forward modeling of various physics
problems. Unfortunately, the coefficients predicted so far are
still very model dependent and often show characteristically
different correlations.

In a different method that is almost opposite to the tradi-
tional approach mentioned above, independent of the nuclear
many-body theories and interactions used and without know-
ing a priori the EOS, one can simply parametrize the SNM
EOS E0(ρ) and the symmetry energy Esym(ρ) as functions
of (ρ − ρ0)/(3ρ0) in the same form as if they are Taylor
expansions of some known EOSs. By randomly generating the
relevant parameters for the parametrized E0(ρ) and Esym(ρ),
one can mimic all available EOSs in the literature. By pur-
posely parametrizing the E0(ρ) and Esym(ρ) as if they are
Taylor expansions, one can limit their parameter ranges to
those of the Taylor coefficients predicted by all available
nuclear many-body theories. Such kinds of metamodeling
of nuclear EOSs [32,33] or EOS generators [27–30] have
been found particularly useful in solving the NS inverse-
structure problems. They have been used successfully in
both the direct inversion of NS observables in the three-
dimensional high-density EOS parameter space [27–30] and
the Bayesian inferences of EOS parameters from NS ob-
servables [19,20,34,35] or heavy-ion reaction data [36]. In
general, parametrized functions are necessary in all machine
learning processes. It is advantageous to select functions such
that one can make better use of available data and knowledge
to set the prior ranges and probability distributions of the
parameters. Our parametrizations of the E0(ρ) and Esym(ρ)
are based on this consideration.
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We parametrize the E0(ρ) and Esym(ρ) up to the third
power of (ρ − ρ0)(3ρ0) according to

E0(ρ) = E0(ρ0) + K0

2

(ρ − ρ0

3ρ0

)2

+ J0

6

(ρ − ρ0

3ρ0

)3

, (2)

Esym(ρ) = Esym(ρ0) + L
(ρ − ρ0

3ρ0

)
+ Ksym

2

(ρ − ρ0

3ρ0

)2

+ Jsym

6

(ρ − ρ0

3ρ0

)3

. (3)

Values of E0(ρ0) and Esym(ρ0) have no effect on the crust-core
transition and have little effects on NS global properties. We
thus fix them at their known empirical values of E0(ρ0) =
−15.9 ± 0.4 MeV [37] and Esym(ρ0) = 31.6 ± 2.7 MeV
[10,11].

In generating the EOSs, the parameters K0, J0, L, Ksym, and
Jsym are varied in ranges or fixed at specific values consistent
with our currently knowledge from nuclear theories and ex-
periments. For instance, the most probable incompressibility
of symmetric nuclear matter is relatively well constrained
to K0 = 240 ± 20 MeV [38–40]. We thus use three separate
values of 220, 240, and 260 MeV for K0. The J0 value was
predicted to be in the range of −800 � J0 � 400 MeV using
various nuclear theories and forces [14,15]. Its most probable
value was found to be J0 = −165+55

−45 [20] at 68% confidence
level from very recent Bayesian analyses of NS properties,
while a value of J0 = −215+20

−20 MeV [36] was inferred from a
recent Bayesian analysis of the collective flow and kaon pro-
duction in relativistic heavy-ion collisions. Obviously, these
Bayesian analyses have clearly narrowed down the predicted
range of J0, but still have relatively large errors. Fortunately,
as shown very recently in Ref. [35] in a Bayesian analysis
using the EOS metamodeling approach of Refs. [32,33], the
crust-core transition density and pressure are insensitive to J0

even when it is varied in an extremely large range between
−1000 and +1000 MeV. Thus, in studying the crust-core
transition we simply set J0 = 0. In constructing the core EOS
for studying properties of NSs, we will fix it at a value
sufficient to support NSs with a maximum mass of about
2M�, consistent with the results of the two Bayesian analyses
mentioned above.

Consistent with earlier findings, it was also shown in
Ref. [35] that the crust-core transition density and pressure
are very sensitive to the symmetry energy parameters by
varying them independently within their large prior ranges of
10 � L � 80 MeV, −400 � Ksym � 200 MeV, and −2000 �
Jsym � 2000 MeV [35]. Some of these prior ranges are sig-
nificantly wider than but consistent with those from surveying
earlier analyses of both nuclear and astrophysical data [10,11].
Interestingly, it was shown in Refs. [41,42] that the crust-core
transition density is almost equally sensitive to the slope L
and curvature Ksym while the sensitivity to the Jsym parameter
is weaker but appreciable. Such useful prior knowledge and
findings are considered when we vary the EOS parameters in
our own study here.
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FIG. 1. The Ksym-L correlation from Tews et al. [14] (red), Mon-
dal et al. [25] (black), and Holt et al. [26] (green). The solid lines are
the means and the dashed lines are the upper and lower limits of each
correlation.

B. Slope-curvature correlation of nuclear symmetry energy

Among the Ksym-L correlation functions found in the liter-
ature, the one by Mondal et al. [25],

Ksym = (−4.97 ± 0.07)[3Esym(ρ0) − L]+66.80 ± 2.14 MeV,

(4)

is based on probably the largest number of theoretical pre-
dictions, including 240 Skyrme Hartree-Fock (SHF) [12] and
263 relativistic mean-field (RMF) calculations [13] compiled
by Dutra et al. Using the same inputs but restricting to predic-
tions giving 0.149 < ρ0 < 0.17 fm−3, −17 < E0(ρ0) < −15
MeV, 25 < Esym(ρ0) < 36 MeV, and 180 < K0 < 275 MeV,
Tews et al. [14] deduced the following correlation at 68%
confidence level:

Ksym = 3.50L − 305.67 ± 24.26 MeV. (5)

Since the above two correlations stem from the same sets of
model predictions—albeit some additional selection criteria
were used by Tews et al., as shown in Fig. 1—they largely
overlap for L > 60 MeV but show significant differences at
lower L values.

More recently, within the Fermi liquid theory with param-
eters benchmarked by chiral effective field theory predictions
at subsaturation densities, Holt and Lim [26] derived the re-
lations L = 6.70Esym(ρ0) − 148.60 ± 4.37 MeV and Ksym =
18.50Esym(ρ0) − 613.18 ± 9.62 MeV, leading to the Ksym-L
correlation of

Ksym = 2.76L − 203.07 ± 21.69 MeV. (6)

This correlation is shown as the green line in Fig. 1.
In the range of 40 < L < 80 MeV, consistent with its fidu-

cial range from earlier surveys [10,11], the range of Ksym

especially at lower L values in the Holt correlation is sig-
nificantly higher than those in the other two cases. As we
shall show, this has significant effects on properties of neutron
stars. Holt et al. found that the largest source of uncertainty in
their Ksym-L correlation is the assumed fiducial value of K0
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between 220 and 260 MeV. We will thus also examine the
effect of K0 in comparison with that of the Ksym-L correlation
on the crust-core transition and radius of canonical neutron
stars. We note that in this study we only used the means of the
Ksym-L correlations shown in Fig. 1 without considering the
uncertainty of each individual correlation.

C. Thermodynamical method for finding the crust-core
transition density in neutron stars

Since the pioneering work of Baym et al. in 1971 [1,2], the
crust-core transition density and pressure in NSs have been
studied extensively using several approaches starting from
either the crust or core side. The most widely used one is
by examining whether small density fluctuations will grow in
the uniform core. This is often done by using the dynamical

method considering the surface and Coulomb effects of clus-
ters or its long-wavelength limit, i.e., the thermodynamical
method (see, e.g., Refs. [43–70]), or the RPA [71–73]. The
crust-core transition has also been studied by comparing the
free energy of clustered matter with that of uniform matter
either using various mass models within the compressible liq-
uid drop model [1,2,43,44,49,74–76] or the three-dimensional
Hartree-Fock theory [77,78] for nuclei on the Coulomb lattice
using the Wigner-Seitz approximation.

Perhaps the simplest approach is the thermodynamical
method which we use here. In this approach [7,45,46], the
crust-core transition density is found by examining when the
following effective incompressibility of the uniform NS core
at β-equilibrium becomes negative (the corresponding speed
of sound becomes imaginary), indicating the start of cluster
formation (or the onset of spinodal decomposition):

Kμ = ρ2 d2E0

dρ2
+ 2ρ

dE0

dρ
+ δ2

[
ρ2 d2Esym

dρ2
+ 2ρ

dEsym

dρ
− 2E−1

sym(ρ)
(
ρ

dEsym

dρ

)2]
. (7)

In terms of several EOS parameters, the crust-core transition density is determined by setting

Kμ = 1

9

( ρ

ρ0

)2
K0 + 2ρ

dE0

dρ
+ δ2

[
1

9

( ρ

ρ0

)2
Ksym + 2

3

ρ

ρ0
L − 2E−1

sym(ρ)
(1

3

ρ

ρ0
L
)2]

= 0. (8)

The last two terms in the square brackets (isospin-dependent
part) approximately cancel out, thus leaving Ksym dominant
[27]. Nevertheless, K0 and L also play significant roles. Thus,
different Ksym-L correlations are expected to affect the crust-
core transition density. For earlier discussions on this issue,
we refer the reader to Refs. [4,23,76] and the references
therein.

It is interesting to note that Eq. (8) may have a second
solution at a suprasaturation density besides the one at a
subsaturation density indicating the crust-core transition [46].
This happens only in cases where the symmetry energy is
supersoft (flat or decreasing with increasing density) at high
densities when L is very small but Ksym has a big negative
value. In these cases, if the incompressibility K0 of SNM is not
high enough, then the negative contribution of the symmetry
energy to Kμ may cause the latter to decrease with increasing
density. At some critical density, it will then reach zero again,
indicating the onset of another dynamical instability. While by
linking the liquid core EOS with a crust EOS at the crust-core
transition density one has constructed a stable EOS up to the
onset of the second instability, the physical meaning of the
latter is currently not clear. Interestingly, it was speculated
in Ref. [46] that the second instability may indicate the start
of another new phase, e.g., solidification, in the inner core of
neutron stars. Without knowing how to model this essentially
pure neutron matter core (as a result of the supersoft symmetry
energy) at very high densities (above the generally expected
hadron-quark transition density), we simply stop generating
the EOS when the second instability happens (by default in
the code by enforcing the dynamical stability condition in
metamodeling the EOS). This can happen before the causal
limit or the dM/dR = 0 point on the mass-radius (M-R) curve
is reached.

We found that the second instability happens mostly with
the Mondal and Tews correlations giving large negative values
of Ksym when L is around 40–50 MeV and K0 is around 220–
240 MeV. It does not happen with the Holt correlation as it
gives significantly higher Ksym values. These can be easily un-
derstood from the competition of the different terms in Eq. (8).
Thus, the three different Ksym-L correlations with small L
values affect significantly the maximum masses they predict.
However, they have little effect on properties of canonical
neutron stars as the second instability happens normally at
very high densities reachable only in the core of massive
neutron stars. For example, for the Mondal correlation with
L = 40 MeV, Ksym = −205 MeV, Jsym = 296.8 MeV, K0 =
220 MeV, and J0 = −180 MeV, the second instability happens
at 6.82ρ0. As a result, the maximum mass this EOS parameter
set can support is about 1.9M� while that with the Holt cor-
relation is about 2.1M�, as we shall discuss in more detail in
Sec. III C.

In our opinion, the possible appearance of the second insta-
bility when the symmetry energy is supersoft in the inner core
of neutron stars is not a deficiency of the EOS metamodel we
used. As pointed out in Ref. [46], there might be interesting
new physics associated with the second instability. Without
restrictions of the underlying energy density functionals in
various nuclear many-body theories, the EOS metamodel can
freely explore the entire EOS parameter space allowed by
general physics principles. It can thus facilitate the study of
previously unexplored areas of the EOS parameter space and
the corresponding phases of neutron star matter. Since the
second dynamical instability may happen mostly at densities
above the normally expected hadron-quark transition and we
do not have a model for the EOS of the possible new phase
above the second instability, we postpone the study of the
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possibly new physics associated with the latter to a future
work. In this work, within the npeμ model enforcing the
dynamical stability throughout neutron stars, we focus on
properties of canonical neutron stars that are not affected by
the possible second instability.

D. Constructing the EOS for neutron stars

Within the npeμ model assuming NSs are made of neu-
trons, protons, electrons and muons at β equilibrium under
charge neutrality and dynamical stability conditions, the
pressure

P(ρ, δ) = ρ2 dε(ρ, δ)/ρ

dρ
(9)

is obtained from the energy density ε(ρ, δ) = εn(ρ, δ) +
εl (ρ, δ) with εn(ρ, δ) and εl (ρ, δ) being the energy densities
of nucleons and leptons, respectively. While εl (ρ, δ) is calcu-
lated using the noninteracting Fermi gas model [79], εn(ρ, δ)
is from

εn(ρ, δ) = ρ[E (ρ, δ) + MN ], (10)

where MN is the average nucleon mass.
Below the crust-core transition density, we use the Negele-

Vautherin (NV) EOS [80] for the inner crust and the
Baym-Pethick-Sutherland (BPS) EOS [1] for the outer crust.
For the purposes of this work, this choice is sufficient. How-
ever, we notice that more modern descriptions for both the
inner crust including a possible pasta phase (see, e.g., [76]),
and the outer crust built from the same interaction as the core
EOS in a uniform approach (see, e.g., [81]), are available in
the literature.

Having discussed earlier how to find the crust-core tran-
sition point, we now discuss briefly how the core EOS is
determined, namely selecting the values or ranges of the
high-density EOS parameters, especially J0 and Jsym. The
maximum mass 2.14M� of NSs observed so far [82] requires
J0 to be higher than about −200 MeV [30], slightly depend-
ing on the symmetry energy parameters L, Ksym, and Jsym

used [30]. For the purposes of this work focusing on effects
of Ksym-L correlation on properties of canonical NSs, it is
sufficient to simply use a constant J0 that is large enough
to support NSs as massive as about 2.0M� in the whole
EOS parameter space considered. Here we present results all
obtained with J0 = −180 MeV. Using different values, e.g.,
−215 MeV, also satisfying the above conditions and being
consistent with the results of Bayesian analyses of both NS
properties and heavy-ion reactions mentioned earlier, our re-
sults remain qualitatively the same.

To our best knowledge, presently there is no clear
constraint on the value of Jsym from either astrophysical ob-
servations or terrestrial experiments. Interestingly, however,
the study of Mondal et al. predicted its most probable value
at Jsym = 296.8 ± 73.6 MeV by putting several terrestrial ex-
perimental constraints on the universal correlations of EOS
parameters they studied [25]. For demonstrating effects of
the Ksym-L correlations, here we adopt the value of Jsym =
296.8 MeV for both the crust and the core, except for a
comparison to examine effects of the crust using a different

value of Jsym. We did systematically vary the values of both
J0 and Jsym under the conditions that all EOSs have to be
casual, dynamically stable, and stiff enough to support NSs as
massive as about 2.0M�. Our qualitative conclusions are the
same while there are some slight differences quantitatively.
Since the crust-core transition density and pressure have some
appreciable dependences on Jsym, to be consistent, we use
the same Jsym in finding the crust-core transition point and
constructing the core EOS unless otherwise specified.

The resulting EOS for the whole NS in the form of P(ε)
is then used as the input in solving the standard Tolman-
Oppenheimer-Volkov (TOV) NS structure equations [79,83],

dP

dr
= −G(m(r) + 4πr3P/c2)(ε + P/c2)

r(r − 2Gm(r)/c2)
, (11)

dm(r)

dr
= 4πεr2. (12)

The NS mass M is obtained from integrating the mass profile
m(r) and the radius R is found when the pressure becomes
zero on the surface starting from the central pressure Pc where
m(0) = 0. The codes used in this work are developed from
modifying those used in Refs. [27,84].

III. RESULTS AND DISCUSSIONS

A. Effects of the Ksym-L correlation on the
NS crust-core transition density

Shown in Fig. 2 are the crust-core transition densities as
a function of L with the indicated three different Ksym-L cor-
relations, K0 = 220, 240, and 260 MeV, Jsym(crust) = −200
(left) and +296.8 MeV (right). The same results are also
shown in Fig. 3 but as functions of Ksym instead. Overall, the
crust-core transition density is around ρ0/2, often used as its
fiducial value in the literature. Clearly, among the variables
studied, the Ksym-L correlation has the strongest effect on the
crust-core transition density.

The incompressibility K0 of symmetric nuclear matter also
shows a significant effect especially in the case with the Holt
correlation. Its increase makes the transition density higher.
This can be understood easily from Eq. (8). A higher value
of K0 needs a higher ρt to make Kμ zero, as the first term
of Eq. (8) involving K0 is always positive and increases with
density quadratically.

It is seen that the Jsym parameter plays an appreciable role.
Its increase also makes the transition density higher through
the E−1

sym(ρ) term in Eq. (8). As shown in Fig. 1, in the same
range of L, the three correlations have different ranges for the
Ksym parameter. Since the latter plays the most important role
in determining the crust-core transition density, the correla-
tion effects look more obvious in Fig. 3, where the transition
density is shown as a function of Ksym. We notice that because
the L and Ksym are correlated, the results shown in Figs. 2 and
3 are not independent and can be translated into each other
easily.

For comparisons, it is worth noting that effects of both the
Ksym-L correlation and K0 examined here are actually larger
than those due to the isospin dependence of the surface ten-
sion examined in the compressible liquid drop model [42,76]
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FIG. 2. The crust-core transition density as a function of L with the indicated three different Ksym-L correlations with K0 = 220, 240, and
260 MeV and Jsym(crust) = −200 (left) and +296.8 MeV (right).

or the coefficients of the δ4 and δ6 terms in expanding the
EOS of isospin-asymmetric nuclear matter [47,48,67]. Thus,
considering all the factors and their associated uncertainties, it
appears that the model-dependent Ksym-L correlation is a dom-
inating factor in determining the crust-core transition density.

B. Effects of the Ksym-L correlation on the
crust-core transition pressure

We notice that in constructing the EOS for the whole NS by
connecting the core EOS with that of the crust, the transition
density plays the major role while the transition pressure is
only used to check if the pressure around the transition point
continuously increases with density to ensure the dynamical
stability of the NS. Thus, all effects of the different Ksym-L
correlations on the radii and tidal deformations of NSs are
coming through the crust-core transition density and the core
EOS. Nevertheless, it is interesting to examine how the transi-
tion pressure itself depends on the EOS parameters, especially
the Ksym-L correlation.

Moreover, the crust-core transition pressure may play an
important role in clarifying the still puzzling glitch phe-
nomenon of some pulsars. The crustal fraction of the moment
of inertia �I/I is a quantity that can be extracted from obser-
vations of pulsar glitches. It can be expressed approximately
in terms of the crust-core transition density and pressure as
[5–7]

�I

I
≈ 28πPt R3

3Mc2

(1 − 1.67ξ − 0.6ξ 2)

ξ

×
[

1 + 2Pt (1 + 5ξ − 14ξ 2)

ρt mc2ξ 2

]−1

(13)

where m is the baryon mass and ξ = GM/Rc2. Analyti-
cally, the Ksym-L correlation may affect significantly the �I/I
through both the transition density and pressure. It is thus also
important to examine effects of the Ksym-L correlation on the
crust-core transition pressure.

Having found the crust-core transition density ρt and
the corresponding isospin asymmetry δt through the charge
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FIG. 3. The crust-core transition density as a function of Ksym with the indicated three different Ksym-L correlations with K0 = 220, 240,
and 260 MeV and Jsym(crust) = −200 (left) and +296.8 MeV (right).
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FIG. 4. The crust-core transition pressure as a function of L with the indicated three different Ksym-L correlations, K0 = 220, 240, and 260
MeV, Jsym(crust) = −200 (left) and +296.8 MeV (right).

neutrality and β-equilibrium conditions [27], one can find the
corresponding crust-core transition pressure using the formal-
ism given in Sec. II. Shown in Figs. 4 and 5 are the crust-core
transition pressures as functions of L and Ksym, respectively.
The other EOS parameters used are the same as those used
in calculating the transition density shown in Figs. 2 and 3.
It is seen that the trends follow that of the transition density
as one expects. However, effects of the K0 are significantly
reduced while the strong effects of the Ksym-L correlation and
the appreciable effects of Jsym remain.

In the thermodynamical approach used here, the crust-core
transition pressure can be approximated as [5–7]

Pt ≈ K0

9

ρ2
t

ρ0

( ρt

ρ0
− 1

)

+ ρtδt

[
1 − δt

2
Esym(ρt ) +

(
ρ

dEsym(ρ)

dρ

)
ρt

δt

]
. (14)

Besides the explicit dependence on the magnitude and slope
of the symmetry energy at ρt , the latter itself also carries

effects of the symmetry energy. Effects of the various EOS
parameters are thus intertwined in the transition pressure.
Nevertheless, it is clearly seen that the Ksym-L correlation
plays the dominating role in determining the crust-core tran-
sition pressure.

C. Imprints of the Ksym-L correlation on the radius
of canonical neutron stars

We now turn to investigating effects of the Ksym-L cor-
relation on some observational properties of canonical NSs
of mass 1.4M�. We focus on the radii and tidal deforma-
tions of these canonical NSs as they are most sensitive to
L and Ksym without much influence of the high-order EOS
parameters, such as the J0 and Jsym [19]. The latter are known
to affect significantly the masses and radii of more massive
NSs [20,27].

Shown in Fig. 6 are the NS mass-radius (M-R) correlations
obtained using the three different Ksym-L correlations but the
same K0 = 240 MeV and all other EOS parameters discussed
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FIG. 6. The mass-radius correlation of neutron stars obtained using the three different Ksym-L correlations as indicated but the same
K0 = 240 MeV and all other EOS parameters indicated or given in the text.

earlier. Our results with other values of K0 are similar and
the resulting effects on the radius R1.4 of canonical neutron
stars will be examined later. Overall, the three correlations
lead to generally very similar M-R correlations, but there are
interesting differences in the L dependence, especially at low
L values. The increase of R1.4 with L is a well known and
common feature of all EOSs; see, e.g., Ref. [85].

As mentioned earlier, the maximum mass of neutron stars
is mostly determined by the SNM EOS characterized by the
K0 and J0 parameters. Effects of the symmetry energy param-
eters on the maximum mass are generally small but can be
appreciable when K0 and J0 are fixed. Comparing the results
in the three windows with different Ksym-L correlations, it
is seen that both the maximum mass and the radius R1.4

are appreciably different at low L values. This can be well
understood from the Ksym-L correlations shown in Fig. 1. For
low L values, the Ksym values are the lowest for the Mondal
correlation but the highest for the Holt case. The latter thus
has the stiffest while the Modal case has the softest symmetry
energy, making the strongest and the weakest contributions
to the nuclear pressure, respectively. Consequently, for low
L values, the Holt correlation predicts a higher value for the
maximum mass and also a larger radius compared to the other
two cases, while it is the opposite for the Mondal case. As
we discussed in Sec. II C, in the Mondal and Tew cases, the
second dynamical instability may happen at high densities
when the resulting symmetry energy is supersoft with small
L values but big negative Ksym values, especially if K0 is also
small. Without introducing new phases to stabilize neutron
star matter above the onset density of the second dynamical
instability, the maximum mass supported by the Mondal and
Tews correlations are thus smaller compared to the Holt result
in cases where both the L and K0 values are small, towards
their currently known lower limits.

The effects of different Ksym-L correlations on the radius
R1.4 of canonical NSs can be seen more clearly in Fig. 7,
where the R1.4 is shown as a function of L with three dif-
ferent K0 values covering their current uncertainty ranges.
As mentioned earlier, the high-density EOS parameters J0

and Jsym have little effects on the R1.4 [19,20,27–29]. We
thus focus on the dependence of R1.4 on L and K0 using the
three different Ksym-L correlations. A recent study combining
multimessenger observations of GW170817 and many-body
theory predictions using nuclear forces based on the chiral
effective field theory found that the most probable R1.4 is
R1.4 = 11.0+0.9

−0.6 km at 90% confidence level [86]. The latter
is indicated with the magenta boxes in Fig. 7 for comparisons.

Several interesting observations can be made from compar-
ing the results in the three windows:

(1) The R1.4 increases almost linearly with both L and K0

in their respective uncertainty ranges. The dual depen-
dence of R1.4 on L and K0 indicates that it is important
to have the prior knowledge of K0 as accurately as
possible to infer precisely the value of L from NS
radius measurements. On the other hand, it has been
known for a long time that the remaining uncertainty
of about ±20 MeV in extracting K0 from studying
giant resonances of finite nuclei is mainly due to the
correlations of K0 and parameters characterizing the
Esym(ρ) near ρ0; see, e.g., Refs. [87,88] for detailed
discussions. It is thus interesting to note that Bayesian
inferences of multiple EOS parameters simultaneously
from combined data of astrophysical observations and
nuclear experiments have the potential to further pin
down the L and K0 parameters altogether [19,20].

(2) For all three Ksym-L correlations considered, the R1.4 is
about the same when M is higher than about 60 MeV.
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FIG. 7. The radius R1.4 of canonical neutron stars of mass 1.4M� as a function of the symmetry energy slope parameter L obtained using
the three different Ksym-L correlations as indicated and three different values of K0 while keeping all other EOS parameters the same as
indicated or given in the text. The magenta box indicates the most probable value of R1.4 = 11.0+0.9

−0.6 km at 90% confidence level from the latest
multimessenger observation of GW170817 [86].

This is because at higher L values the three Ksym-L
correlations largely overlap, as shown in Fig. 1. R1.4

becomes gradually more different as L decreases. The
Holt correlation has the stiffest symmetry energy lead-
ing to the largest radius while the Mondal case has the
softest symmetry energy giving the smallest R1.4 value,
as we discussed earlier. Moreover, effects of K0 on R1.4

are almost independent of the Ksym-L correlation. At
a given L value, R1.4 increases with increasing K0, as
one expects. Quantitatively, however, the uncertainty
of R1.4 due to that of K0 is only about 4% while that due
to the uncertainty of L is about 16%. For a comparison,
at L = 40 MeV with K0 = 220 MeV, the difference in
R1.4 from using the Holt and Mondal Ksym-L correla-
tion is about 12%. This is actually slightly less than
the approximately 14% uncertainty of the latest con-
straint on R1.4 from the multimessenger observations
of GW170817. Thus, the latter cannot distinguish the
three Ksym-L correlations.

(3) The observational constraint R1.4 = 11.0+0.9
−0.6 km can

put some useful limits on the slope L. The Holt corre-
lation requires the L parameter to be less than about
45 MeV, close to the lower boundary of its fiducial
value, while the other two Ksym-L correlations prefers
an upper limit of L in the range of 45–55 MeV for
K0 between 260 and 220 MeV. This information is
useful for more accurate extraction of EOS parameters
and understanding their model dependences in future
analyses of new data.

The Ksym-L correlation affects both the crust-core tran-
sition point and the core EOS. We showed earlier how

the crust-core transition density and pressure are also being
affected appreciably by the uncertain Jsym parameter charac-
terizing the Esym(ρ) far away from ρ0 at either subsaturation
or suprasaturation densities [20]. More quantitatively, from
Jsym = −200 to +296.8 MeV, both the transition density
and pressure have appreciable changes of about 10% when
the L is small but there is not much difference when L
is large.

To understand effects of Jsym on R1.4 we have done sys-
tematical studies by using different combinations of Jsym

parameters in calculating the crust-core transition point and
the core EOS. We found that the effects are negligibly small
except when the L value is small close to the lower boundary
of its fiducial value. As an example, shown in Fig. 8 is a
comparison of the default calculation (with the same Jsym of
296.8 MeV for the core EOS and for finding the crust-core
transition point) and a calculation that uses Jsym = −200 MeV
for finding the crust-core transition point (while the core EOS
still uses the default Jsym of 296.8 MeV) with the Mondal
correlation. It is seen that the R1.4 versus L results from the
two calculation are not much different except when L becomes
smaller than about 50 MeV and K0 is also small. When L be-
comes small, its contribution to the pressure is smaller. Then,
what values one uses for the high-order symmetry energy
parameter Jsym in finding where to connect the core EOS to
the crust EOS becomes more important. While this is the same
region of L where the Ksym-L correlation plays a significant
role in determining R1.4, obviously the Ksym-L correlation
effect is much stronger than that due to uncertainty of the
Jsym parameter. Moreover, the comparison indicates that the
Ksym-L correlation effects on R1.4 in the default calculations
shown in Figs. 6 and 7 come mainly through the core EOS.
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D. Imprints of the Ksym-L correlation on the tidal deformation
and its correlation with the radius of canonical neutron stars

We now examine imprints of the Ksym-L correlation on
neutron stars’ scaled tidal deformability


 = 2
3 k2[(c2/G)R/M]5, (15)

where k2 is the second Love number obtained from solving
coupled differential equations simultaneously with the TOV
equation [89–92]. Shown in Fig. 9 is 
 as a function of

mass obtained using the three different Ksym-L correlations
but all the same EOS parameters. The magenta bar between
70 and 580 is the tidal deformability of canonical neutron
stars from LIGO/VIRGO’s observation of GW170817 [16].
Similar to the mass-radius correlation shown in Fig. 6, the
Ksym-L correlation has some observable influences on the
tidal deformability for small L values. Again, it can be eas-
ily explained by the different Ksym values with the different
Ksym-L correlation when L is small, as shown in Fig. 1.
Unfortunately, the range of 
 extracted by LIGO/VIRGO
from GW170817 is still too big to set a firmer limit on L
than its fiducial range. It also cannot differentiate the different
Ksym-L correlations. Namely, the use of different Ksym-L cor-
relations does not affect what one extracts about the symmetry
energy from the observational constraint on 
 alone from
GW170817.

Effects of the Ksym-L correlation can be more clearly seen
in the R-
 correlation by combing the M-R plot of Fig. 6 and
the 
-M plot of Fig. 9. In the R-
 correlation plot shown
in Fig. 10, each point on a given cure with a fixed L has a
specific mass. Starting from the first point on the left, the mass
decreases continuously on any curve with the same L. For
the very massive neutron stars with masses around 2.0M� to
1.8M�, on each curve the radius increases monotonically with
increasing 
 (decreasing mass) until the plateau is reached.
On the plateau, namely in a large range of mass around 1.4M�
from approximately 1.8M� down to 0.5M�, the radius stays
approximately a constant while 
 keeps increasing.

The magenta circles linked on the dashed lines are for
canonical neutron stars of mass 1.4M� on curves with dif-
ferent L values. It is seen that for these canonical NSs of
the same mass, the radius increases with 
 approximately
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FIG. 9. The scaled tidal deformability as a function of mass of neutron stars obtained using the three different Ksym-L correlations as
indicated but the same K0 = 240 MeV and all other EOS parameters indicated or given in the text. The magenta bar between 70 and 580 is the
tidal deformability of canonical neutron stars extracted from LIGO/VIRGO’s observation of GW170817 [16].
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linearly. It is known that the upper limit of 
 for canonical
NSs from observing GW170817 is more reliable than its
lower limit, which is more model dependent [16]. While the
two NSs involved in GW170817 have significantly different
mass ranges, two independent analyses [16,93] using different
approaches all found consistently that the two NSs have essen-
tially identical radii. It is thus appropriate for the discussions
here to assume the NS mass is 1.4M�. Comparing results in
the three windows and using the 
maximum = 580, it is seen
that all three Ksym-L correlations give consistently the same
upper limit of R1.4 � 13.2 km and the corresponding upper
limit of L � 80 MeV. This is consistent with the results of
recent Bayesian analyses [19,20] of the LIGO/VIRGO data,
as we mentioned in the Introduction. Again, as L decreases,
effects of the Ksym-L correlation becomes more obvious. Un-
fortunately, the lower limit of 
 from GW170817 is currently
unreliable. In fact, the lower limit of 
minimum = 70 requires
L values much smaller than the lower boundary of its fiducial
value discussed in the introduction.

In principle, independent measurements of R1.4 and 
1.4

for canonical NSs will put a more stringent constraint on
L and possibly also on the Ksym-L correlation. While many
recent works in the literature have focused on extracting
R1.4 from 
1.4 using the GW170817 data, there are indepen-
dent measurements of R1.4 from other observations, such as
x-ray observations. Since the constraining box on R1.4 shown
in Fig. 10 already used the 
 from GW170817 as one of
the multimessengers, let us examine how NICER’s recent
measurement of PSR J0030+0451 using x rays may help.
The NICER Collaboration measured simultaneously both the
mass and radius of PSR J0030+0451. Their results from
two somewhat independent analyses are M = 1.44+0.15

−0.14 M�
and R = 13.02+1.24

−1.06 km [18], and M = 1.34+0.16
−0.15 M� and R =

12.71+1.19
−1.14 km [17] at 68% confidence level. For a quali-

tative discussion, one can safely assume the mass is about
1.4M�. The most probable radii from both analyses are con-
sistent with the upper radius indicated by the upper limit
of 
1.4 from LIGO/VIRGO, as we discussed above. How-
ever, NICER’s 68% upper radius boundary is as high as
14.26 or 13.9 km, allowing much higher L values than that
allowed by the LIGO/VIRGO data, beyond the limit of
its fiducial value. Nevertheless, NICER’s lower radius limit
R1.4(minimum) from the two analyses, i.e., R1.4(minimum) =
11.96 or 11.57 km, can put a useful lower limit Lminimum on L.
This limit, however, depends on the Ksym-L correlation one
uses. It is seen from Fig. 10 that Lminimum is between 40–
50 MeV, 50–60 MeV and 50–60 MeV for the Holt, Tews, and
Mondal correlations, respectively. As we discussed before, the
last two have approximately the same Ksym-L correlation from
the same sets of model predictions. Thus, the different Ksym-L
correlations considered affect the extraction of Lminimum by
more than 10 MeV.

Overall, the most probable value of R1.4 from NICER can
independently limit the most probable value of L to the range
of 40–80 MeV, consistent with its known fiducial range. This
is also consistent with the finding of the detailed Bayesian
analyses of the combined LIGO/VIRGO and NICER data
[20]. Certainly, future independent data for both the R1.4 and

1.4 will help further constrain the value of L and the Ksym-L
correlation.

IV. SUMMARY AND CONCLUSIONS

In summary, using a metamodel of nuclear EOSs we ex-
amined effects of nuclear EOS parameters, especially the
curvature-slope (Ksym-L) correlation of nuclear symmetry
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energy on the crust-core transition density and pressure in
neutron stars. We also examined imprints of the Ksym-L corre-
lation on astrophysical observables, especially the radius and
tidal deformability of canonical neutron stars.

Our main conclusions are the following:

(1) The crust-core transition density and pressure have
some appreciable dependences on the incompress-
ibility K0 but are insensitive to the skewness J0 of
symmetric nuclear matter.

(2) The crust-core transition density and pressure are
sensitive to the L, Ksym, and Jsym parameters indepen-
dently as well as the Ksym-L correlation.

(3) The curvature Ksym plays a more important role than
the slope L in determining the crust-core transition
density.

(4) The J0 and Jsym parameters have little effects on R1.4,
and the Ksym-L correlation effects come through the
core EOS .

(5) The Ksym-L correlation has strong imprints on the ra-
dius and tidal deformability of canonical neutron stars,
especially when the slope L is close to the lower limit
(40 MeV) of its currently known fiducial value.

The astrophysical imprints of Ksym-L correlation can po-
tentially help better constrain the poorly known high-density
behavior of nuclear symmetry energy. In particular, if a
unique Ksym-L correlation can be firmly established by

observations and/or experiments, it will facilitate the extrac-
tion of the very poorly known Ksym parameter progressively
from the relatively better determined L value. We thus also
examined whether existing tidal deformability data from
LIGO/VIRGO’s observation of GW170817 and the NS radius
data from NICER’s recent observation of PSR J0030+0451
can help distinguish the three different Ksym-L correlations
considered, and how well they can constrain the L parameter.
Consistently with earlier findings in the literature, they can
put some useful constraints on L. Unfortunately, they cannot
distinguish the three different Ksym-L correlations studied.
Nevertheless, more precise measurements of especially in-
dependent radius and tidal deformability data from multiple
observables hold the strong promise of pinning down the
curvature-slope correlation, thus helping to constrain the high-
density behavior of nuclear symmetry energy.
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