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Reanalysis of the 13N(p, γ )14O reaction and its role in the stellar CNO cycle
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Within the framework of the modified potential cluster model with forbidden states, the 13N(p, γ )14O reaction
rate and the astrophysical S factor are considered. It is shown that the first p13 N resonance determines the S
factor and contributions of the M1 and E2 transitions are negligible at energies E < 1 MeV, but are significant
at high energies. The S factor strongly depends on the 3S1 resonance parameters. The influence of the width of
the 3S1 resonance on the S factor is demonstrated. The reaction rate is calculated and an analytical approximation
for the reaction rate is proposed. A comparison of our calculation with existing data is addressed. Results of our
calculations for the 13N(p, γ )14O reaction rate provide the contribution to the steadily improving reaction-rate
database libraries. Our calculations of the 13N(p, γ )14O reaction rate along with results for the rates of the
14N(p, γ )15O and 12C(p, γ )13N processes provide the temperature range 0.13 < T9 < 0.97 for the conversion
of the carbon-nitrogen-oxygen (CNO) cycle to the hot CNO cycle. Our results demonstrate that, at the early
stages of a nova explosion at temperatures of about 0.1T9 and at late stages of evolution of supermassive stars at
temperatures of about 1.0T9, the ignition of the hot CNO cycle could occur at much lower densities of a stellar
medium.

DOI: 10.1103/PhysRevC.102.045805

I. INTRODUCTION

Radiative capture reactions play an important role in as-
trophysics. Light elements are either created during the big
bang or during fusion reactions in stars. In the latter case,
they are the result of hydrogen burning, which is charac-
terized by two major reaction sequences: (i) the pp chain,
and (ii) the carbon-nitrogen-oxygen (CNO) cycle [1]. The
CNO cycle is considered as a catalytic process that requires
the presence of some initial carbon, nitrogen, and oxygen
abundance in the stellar material. Radiative capture reactions,
namely those in which an atomic nucleus fuses with one
proton or neutron and produces a nucleus with the emission
of electromagnetic radiation, or with α-particle emission, have
the greatest importance in nuclear astrophysics [2,3]. In par-
ticular, competing (p, γ ) and (p, α) reactions are branching
points in the CNO cycling process [1]. However, the strong-
interaction (p, α) branch is substantially stronger than the
electromagnetic (p, γ ) branch, but, in some cases, the latter
one can be comparable with the (p, α), which alters the re-
action flow substantially in certain astrophysical temperature
regimes [4]. The proton-induced radiative capture reactions
(p, γ ) occur in many stellar environments, for example, in
novae and x-ray bursts. Especially in stellar environments
due to the high temperatures and short reaction times, (p, γ )
reactions involving short-lived nuclei play an important role
for energy generation and nucleosynthesis. It takes the high-
density environment of stars to generate nuclei with masses

A � 12. The reactions of protons’ radiative capture are widely
discussed in the literature (see reviews [2,3,5] and references
therein). It is done primarily due to the fact that the carbon
component burns out in a series of processes known as the hot
CNO cycle (HCNO-I), which occurs at temperatures starting
from 0.2T9 [1]. The synthesized isotope 14O is considered
as a waiting point, which is overcome by a chain of reac-
tions, starting with 14O(α, p) 17F when temperature is above
0.4T9. The review [1] presents comprehensive and consistent
illustrations of CNO and HCNO-I cycle chains, as well as
the evolution of the CNO isotope abundance with time for
different density and temperature conditions, the calculations
of which are directly based on the reaction rates.

The pioneering measurement with a rare-isotope beam was
the first direct determination of the 13N(p, γ )14O reaction
cross section using a radioactive 13N beam [6–8]. In the
reaction 13N(p, γ )14O the s-wave capture on the broad 1−
resonance dominates the reaction rate and, over three decades,
many efforts have been made to determine the parameters for
resonance using different experimental approaches: transfer
reactions [7,9–11], Coulomb dissociation of a high energy 14O
beam in the field of a heavy nucleus [12–14], a rare-isotope
beam [6–8], the use of the unstable ion beam by indirect mea-
surements [15,16], and, most recently, via neutron-knockout
reactions with a fast 15O beam [17]. Reference [5] provides
an overview of current experimental projects specializing
in the synthesis of radioactive isotope beams and experi-
ments on astrophysical applications. However, there is no
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experimental data today suitable for comparison with theoreti-
cal calculations of cross sections or astrophysical S factors. In
this case, apparently, it is possible to synthesize 13N isotope
beams, given that its lifetime of 9.965 min is comparable with
the neutron lifetime. At the same time, direct measurements
of the 14O(α, p) 17F reaction are carried out, although the β+
decay of isotope 14O is 70.598 s. Nevertheless, in the future
we can expect new data for cross sections of the process
13N(p, γ )14O [5].

The results of the studies [6,8,15,16,18–24] on astrophys-
ical S factor and 13N(p, γ )14O reaction rate are included in
the nuclear astrophysics compilation of reactions (NACRE)
database [25] and in the new compilation, referred to
as NACRE II [26]. These databases form the basis for
macroscopic astrophysical calculations. The key generalizing
element of all calculations is the first 3S1 resonance in the
p 13N scattering channel, and all calculations are based on
the energy and the width of this resonance. In the above-
mentioned works, experimental data on these characteristics
are taken from Ajzenberg’s 1991 compilation [27]. At present,
new data are available on the spectra of the 14O nucleus [28].
Therefore, it is relevant to consider these data for analysis of
the 13N(p, γ ) 14O reaction. Moreover, another incentive for
these calculations are the data from the latest experimental
research [17] that will also be brought to our discussion.

Theoretical calculations of a reaction rate rely on the
reaction cross section, which is determined by the nuclear
structure of the nuclei involved, the reaction mechanism, and
the associated interaction forces. The cross section can be
calculated in the framework of ab initio models, where it is de-
termined by using the wave functions (WFs) of the system, but
subject to uncertainties associated with the theoretical model
and the quality of the optical potential. Most notable are clus-
ter model approaches, where nucleons are grouped in clusters
of particles, which is a configuration that might, in particular,
enhance the reaction rates and that also rely on the qual-
ity of the optical potential [29–31]. Calculations of the rate
for the 13N(p, γ )14O reaction and the astrophysical S factor
were performed within potential models using shell-model,
cluster-model, and R-matrix approaches [18–20,22,23]. There
are significant differences between the various calculations of
the 13N(p, γ )14O reaction and, in light of a new experimental
study [17], an independent and well-established approach is
greatly needed to analyze this process. Continuing our studies
of the processes of radiative capture on light atomic nuclei
(see Refs. [29,31–33] for concise summaries), we consider
the reaction of p + 13N → 14O + γ at astrophysical energies.
This process is clearly not included in the thermonuclear
standard CNO cycle, but it makes a certain contribution to ac-
cumulation processes of a stable 14N nucleus, which is further
involved in other reactions of this cycle [34] and belongs to
the hot CNO cycle [1].

The goal of this study is twofold: (i) to calculate the
cross section of the 13N(p, γ )14O reaction at the energies
of astrophysical interest and the reaction rate as a function
of temperature for the analyses of the influence of the first
p 13N resonance width on the astrophysical S factor; and (ii) to
analyze and determine a temperature range for the conversion
of the CNO cycle to the HCNO cycle.

The article is organized as follows: In Sec. II the potential
cluster model with the classification of orbital states and meth-
ods of calculations are described. Classification and structure
of states are introduced and analyzed in Sec. III, while in
Sec. IV the potentials for the p 13N interaction are presented.
Astrophysical S factors of the proton radiative capture on 13N
and the 13N(p, γ )14O reaction rate are given in Sec. V. The
role of the 13N(p, γ )14O reaction in the conversion from the
CNO to the hot CNO cycle is discussed in Sec. VI. Conclu-
sions follow in Sec. VII.

II. THEORETICAL MODEL AND FORMALISM

To carry out calculations of astrophysical S factors for var-
ious reactions, we usually use the modified potential cluster
model (MPCM) of light atomic nuclei [29,31–33,35] with
the classification of orbital states according to Young dia-
grams [36,37]. The model provides relatively many simple
possibilities for performing calculations of various astro-
physical characteristics. For example, one can calculate the
astrophysical S factor of radiative capture for electromagnetic
transitions from scattering states of clusters to bound states
(BSs) of light atomic nuclei in cluster channels [29,31]. The
choice of this model is due to the fact that, in many atomic
nuclei, the probability of cluster formation and the degree of
their separation are relatively high. This is confirmed by nu-
merous experimental data and various theoretical calculations
obtained in various works over the past few decades [37].

Thermonuclear rates are defined by reaction cross sections
that can be obtained by using a theoretical model. In the
present study of the 13N(p, γ )14O reaction we use the mod-
ified potential cluster model, where a proton interacts with a
system of nucleons which are grouped into cluster 13N. States
of the p- 13N system are defined by the classification accord-
ing to Young diagrams. Relative motion WFs are determined
by solving the Schrödinger equation [29,31,32,35]. The entry
channel presents the proton p( 1

2
+

) (Jπ is the total momentum

and parity) and 13N( 1
2

−
) nucleus. For description of the final

state we assume that 14O nucleus consist of the same particles
as in the initial channel, but in the bound state.

In the microscopic formalism widely known as the
resonating-group method [38,39], the wave function (WF) of
the p 13N system has the form of an antisymmetrized product
of internal cluster wave functions and a WF of their relative
motion:

� = Â[ψp(r1)ψ13N(r2)χ (r1 − r2)]. (1)

In Eq. (1) Â is the antisymmetrization operator, ψp(r1) and
ψ13N(r2) are the wave functions of the proton and 13N nucleus,
respectively, r1 and r2 are the radius vectors of their center
of mass, χ (r) is the WF of their relative motion, while r =
r1 − r2.

According to Refs. [36,38] the WF of 13N is anti-
symmetrized. Thus, only exchange transpositions between
nucleons of the 13N nucleus and proton must be taken into
account, which leads to the modification of the function. By
contrast, in our approach this method of antisymmetrization
consists in the effective accounting of the Pauli principle
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by using the deep attractive potentials with the forbidden
states (FSs). Mathematically, this realization is based on the
classification of orbital states according to the Young dia-
grams [36,37]. Exclusion of FSs from spectra leads to the
correct node behavior of the function in the internal range,
both for a bound state and for a continuous spectrum that, in
its turn, reflects on the asymptotics of these functions.

To build interaction potentials between the proton and 13N
for scattering states in the MPCM, results of phase shift anal-
ysis of experimental data of differential cross sections for
an elastic scattering of corresponding particles are generally
used. The other way to build the potentials is to use spectra
of the resulting nucleus 14O [29,31]. Moreover, the multipar-
ticle nature of the problem is taken into account by dividing
single-particle levels of such a potential into states allowed
and forbidden by the Pauli principle [36,37]. The concept of
Pauli-forbidden states allows one to consider the multibody
character of the problem in terms of two-body interaction
potential between clusters. Potentials for bound states (BSs)
of p and 13N particles are built primarily based on the require-
ment to describe the main characteristics of the 14O nucleus.
For example, this is a requirement to reproduce the binding
energy of 14O in a corresponding p 13N cluster channel and a
description of the other static nuclear characteristics, such as
a charge radius and asymptotic constant (AC), with the same
potential [35]. The functions of the initial p 13N and final 14O
states are characterized by specific quantum numbers, includ-
ing the Young diagrams f , which determine the permutation
symmetry of the orbital part of relative motion WFs of these
states. Thus, the problem can be reduced to two parts:

i. a construction of p 13N interaction potentials with the
FS for each partial wave, i.e., for the given orbital
angular momentum L, which also includes a point-like
Coulomb term;

ii. the numerical solution of the radial Schrödinger equa-
tion for these potentials to find the corresponding WFs
of the relative motion.

Furthermore, following Refs. [29,31–33,35], we use well-
known expressions for total cross sections and matrix
elements of multipole transition operators with the initial and
final channel spins Si = S f = S:

σc(NJ, Jf )

= 8πKe2

h̄2k3

μ

(2S1 + 1)(2S2 + 1)

J + 1

J[(2J + 1)!!]2
A2

J (NJ, K )

×
∑
LiJi

P2
J (NJ, Jf , Ji )I

2
J (Jf , Ji ), (2)

where the notation NJ corresponds to EJ for the electric
and MJ for the magnetic transitions, respectively. The matrix
elements of the EJ transitions have a form

P2
J (EJ, Jf , Ji )

= (2J + 1)(2Li + 1)(2Ji + 1)(2Jf + 1)

× (Li0J0|L f 0)2

{
LiSJi

Jf JL f

}2

, (3)

and

AJ (EJ, K ) = KJμJ

(
Z1

mJ
1

+ (−1)J Z2

mJ
2

)
, (4)

IJ (Jf , Ji ) = 〈χ f |rJ |χi〉. (5)

In Eqs. (2)–(5), e is the elementary charge, K = Eγ

h̄c is
the wave number of the emitted photon with energy Eγ ,
k is the wave number of particles in the initial channel,
m1, m2, Z1, Z2, and μ are masses and charges of collid-
ing nuclei and their reduced mass, respectively, in the initial
channel, Si, S f , Li, L f , Ji, Jf are the total spins, orbital
momenta, total momenta of particles in the initial ( i) and
final ( f ) channels, respectively, while (Li0J0|L f 0) are the
Clebsch-Gordan coefficients and {:::} are the 6 j symbols. The
integral IJ (Jf , Ji ) is defined by using WFs of relative motion
of particles in the initial χi(r) and final χ f (r) states, which
depend on an intercluster distance r.

Using the general form for MJ transitions for arbitrary rank
J , the matrix element in Eq. (2) can be written by means of the
9 j symbols as

P2
J (MJ, Jf , Ji ) = S(S + 1)(2S + 1)(2Ji + 1)(2Li + 1)

× (2J − 1)(2J + 1)(2Jf + 1)

×(Li0J − 10|L f 0)2

⎧⎨
⎩

Li J − 1 L f

S 1 S
Ji J Jf

⎫⎬
⎭

2

,

(6)

AJ (MJ, K ) = h̄K

m0c
KJ−1

√
J (2J + 1)

×
[
μ1

(
m2

m

)J

+ (−1)Jμ2

(
m1

m

)J]
, (7)

IJ (Jf , Ji ) = 〈χ f |rJ−1|χi〉, (8)

where m is a mass of a nucleus in the final channel, μ1 and
μ2 are magnetic momenta of the clusters, and the remaining
notations are the same as in Eqs. (2)–(4).

Thus, to find the cross section of the 13N(p, γ )14O reaction
one should calculate the expressions (5) and (8) for EJ and
MJ transitions, respectively. The latter requires finding the
radial WFs χi and χ f of the relative motion of particles in
the initial and final states.

III. CLASSIFICATION AND STRUCTURE OF STATES

Let us now consider a classification of the p 13N sys-
tem orbital states according to the Young diagram. It was
previously shown that the ground bound state (GS) of 13N
and 13C nuclei corresponds to the Young orbital diagram
{4441} [36,40]. Recall that possible Young orbital diagrams
in the system of N = n1 + n2 particles can be defined as
a direct external product of the orbital diagrams of each
subsystem [41,42], which for the p 13N system within the
1p shell gives {1} × {4441} → {5441} + {4442}. The first of
the obtained diagrams is compatible with orbital momentum
L = 1, 3 and is forbidden for the s shell, since there cannot
be five nucleons in the s shell, while the second diagram is
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allowed and compatible with the orbital momenta zero and
two [41,42]. Thus, the potential of the 3S1 (here and below
we use notations 2S+1LJ for resonances) wave has only the
allowed state, but the P and F waves have both forbidden and
allowed states [27]. However, since we do not have complete
tables of the products of Young diagrams for a system with
a number of particles greater than eight [43], which we used
earlier for such calculations [29,31], the result obtained above
should be considered only as a qualitative estimate of possible
orbital symmetries in the ground state of 14O nucleus for the
p 13N channel.

We now consider the basic characteristics of the 14O nu-
cleus, which has in the GS Jπ = 0+ the energy 4.628 MeV
[27]. Since for the 13N nucleus Jπ = 1/2− [27], the GS of
14O in the p 13N channel can be associated with the 3P0

state. Below this threshold, there are no bound excited states
(ESs) [27]. Above the threshold, there are the following reso-
nance states (RSs):

1. For the first resonance, which plays the most important
role in determining the magnitude of the astrophysical
S factor, new data [17] lead to an excitation energy of
5.164(12) MeV (here and below numbers in parenthe-
ses are uncertainties), which corresponds to the energy
Eres = 536(12) keV relative to the threshold in the
center-of-mass (c.m.), the width 
res = 38(2) keV, and
momentum Jπ = 1−. Previously in Ref. [28] it was
reported for this level the excitation energy of 5.156(2)
MeV, i.e., Eres = 0.528(2) MeV, and the width 
res =
37.3(9) keV. In an earlier work [27], for this reso-
nance the excitation energy 5.173(10) MeV, i.e., Eres =
545(10) keV and the width 
res = 38.1(1.8) keV were
reported. In fact, these three results lead to the same
38(2) keV width. However, the resonance energies do
not overlap within the experimental errors and can be
in the range of Eres = 524–555 keV. This resonance
can be matched to the 3S1 state, and the E1 transition
3S1 → 3P0 is possible. It is clear that it cannot be 3D1

because this needs protons in the 1d3/2 shell (in the
framework of a shell-model scheme), which is much
higher in energy and likely irrelevant for this state. In
this paper, we consider the E1 transition 3S1 → 3P0.

All other resonances, as can be seen below, do not
make a significant contribution to the S factor at low
energies, and their energies, as follows from Refs. [17]
and [28], practically overlap. Therefore, we use the data
from Ref. [28], but for a comparison we also give the
energies and widths obtained in Ref. [17].

2. At an excitation energy of 5.710(20) or 1.082(20) MeV
relative to the channel’s threshold in the c.m., there
is a state Jπ = 0− with a width of 400(45) keV [28]
which can be associated with a 1S0 wave. However,
in this case, the transition to the GS is impossible,
because it refers to a triplet state. Let us mention that
the classification of allowed transitions is defined by the
algebra of the geometric addition of angular momenta,
represented by the Clebsch-Gordan coefficients, 6 j and
9 j symbols [44,45]. Besides, EJ and MJ transitions
change the parity of the initial and final states according

to (−1) j and (−1) j+1, respectively. So, for example, the
1S0 → 2P0 transition is not allowed because there is no
E or M transition connecting the 0− and 0+ states, as is
seen from Eqs. (3) and (6).

3. At an excitation energy of 5.920(10) MeV, i.e., Eres =
1.29(10) MeV, there is a state Jπ = 1+ with a width

res < 12 keV [17], which can be matched to a 3P0

wave. In Ref. [17] the energy 5.931(10) MeV and the
width less than 12 keV were reported. From this wave,
magnetic transitions to the GS are impossible.

4. At an excitation energy of 6.284(9) MeV [Eres =
1.656(9) MeV in the c.m.], there is a state Jπ = 3− with
the width 
res = 25(3) keV [28], while in Ref. [17]
the energy 6.285(12) MeV and the width 37.7(17) keV
are obtained. This state can be matched to a 3D3 wave.
From this wave, only the E3 transition is possible. The
E3 transition is omitted in our consideration, because
of its smallness.

5. At an excitation energy of 6.609(10) MeV [Eres =
1.981(10) MeV], there is a state Jπ = 2+

1 with a width

res < 5 keV [28], which can only be associated with
a 3P2 or 3F2 waves. In Ref. [17] the energy 6.585(11)
MeV and the width less than 25 keV are reported. For
3F2 wave the E2 transition is possible and we evaluate
its effect.

6. At an excitation energy of 6.767(11) MeV [Eres =
2.139(11) MeV], there is a state Jπ = 2− with the width

res < 90(5) keV [28]. Based on the results [17], the
energy is 6.764(10) MeV and the width is 96(5) keV.
This state can be associated with a 3D2 wave. From this
wave, only the M2 transition to the GS is possible. This
transition is omitted, because we restrict ourselves with
the consideration of the M1 transition only.

7. At an excitation energy of 7.768(10) MeV [3.140(10)
MeV in the c.m.] for the state Jπ = 2+

2 the width of
68(6) keV was observed in Ref. [17], while Ref. [28]
reported 7.745(19) MeV [Eres = 3.117(19)] and 62(10)
keV for the energy and the width, respectively. This
resonance state can be associated with the 3P2 or 3F2

waves. From the 3F2 wave the E2 transition to the GS
is possible and we evaluate its effect.

8. Recently, in Ref. [17] at the excitation energy of
9.755(10) or 5.123(11) MeV relative to the threshold
of the p 13N channel, a state Jπ = 2+

3 with the width

res = 229(51) keV was observed. While the excita-
tion energy is in good agreement with the results from
Ref. [28], 9.751(11) MeV, the width of the resonance is
almost twice as large. Moreover, a momentum Jπ = 2+

3
of this state was in question in Ref. [28], but in a recent
work [17] it was finally determined. This state can also
be associated with 3P2 or 3F2 waves. From the 3F2 wave
the E2 transition to the GS is also possible, and we will
consider its effect.

Schematic of energy levels of 14O are shown in Fig. 1.
Following Ref. [17] we are using subscripts for the Jπ = 2+
states. It is worth noticing that the appearance of states with
the same momentum Jπ , ad hoc 2+

1 , 2+
2 , and 2+

3 in Fig. 1, con-
sidered in points 5, 7, 8 above are under detailed discussion
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FIG. 1. Schematic of energy levels of 14O (not to scale). The left
panel shows the energy levels of 14O according to Ref. [17] and a
visual summary of the resonance states analyzed in Sec. III matching
the γ -quantum emission of EJ and MJ multiplicity. The energy
spectrum illustrates the correspondence to the resonance behavior of
phase shifts in the p 13N scattering channel presented in Fig. 2. The
right panel shows detailed data on the 1− excited state. The excitation
energies Ex are given in MeV.

in Ref. [17]. To describe spectra of 14O resonances and their
properties, the authors used the shell model embedded in the
continuum (SMEC) based on the different internal coupling
schemes due to the complicated interaction potentials and
configuration mixing (see Refs. [1–5,24–26] in Ref. [17] for
SMEC applications). While the nature of 2+

1 and 2+
3 states is

quite transparent, the 2+
2 state is declared as the partner of the

new 0+
3 state with a width 
res = 128 keV lying at 7.669(53)

MeV [17].
As a result of the analysis of the above-mentioned res-

onances, it turns out that, first of all, it is necessary
to consider the E1 transition from the first resonance at
Eres = 536(12) keV with Jπ = 1− and the width 
res =
38(2) keV [17]. In addition, we consider two other values for
the energy of this resonance Eres = 528(2) keV with the width

res = 37.3(9) keV [28] and Eres = 545(10) keV with the
width 
res = 38.1(1.8) [27]. In addition to the E1 transition,
there are three E2 transitions for Jπ = 2+

1 , Eres = 1.981(10)
MeV, 
res = 5 keV, Jπ = 2+

2 , Eres = 3.140(10) MeV, 
res =
68(6) keV, and Jπ = 2+

3 , Eres = 5.123(11) MeV, 
res =
229(51) keV resonance states, which are admissible and can
be associated with the 3F2 wave. We also consider the M1
transition for the Jπ = 1+, Eres = 1.29(10) MeV of a non-
resonance 3P1 scattering wave to the GS of 14O. Resonances
with higher energies either have a large momentum, or their
momentum is not determined at all [28] and are not considered
here.

IV. INTERACTION POTENTIALS

To find the radial wave functions χi and χ f of the relative
motion of particles in the initial and final states, respectively,
one should solve the Schrödinger equation with potentials
that describe the p13N scattering process and the states of the
residual 14O nucleus. The p 13N potentials for each partial

wave, i.e., for the given orbital angular momentum L have
a point-like Coulomb term, and a nuclear part of the p 13N
interaction. The nuclear part of potential can be written in the
one-range Gaussian form as [31,35]

V (r, SLJ ) = −V0(SLJ ) exp[−α(SLJ )r2], (9)

where r is the distance between the proton and 13N, V0(SLJ ) is
the depth of the potential, and α(SLJ ) is the range parameter
for a given S, L, and J , respectively. Resonance potentials
were constructed in such a way as to correctly describe the
energy and width of such resonances.

The interaction (9) is given as a two-parameter Gaussian
potential, i.e., with just an LSJ-dependent central term, and
the consideration of Pauli-forbidden states is based on Young
diagrams. Each state is described independently, so the poten-
tial for each partial wave effectively includes all features such
as spin-orbit and spin-spin terms, but without separation in
operator terms. There are different approaches and prescrip-
tions related to the choice of the potential parametrization. In
this study we are using the one-range Gaussian potential (9),
which has only two fitting parameters, due to its simpler form
than the Woods-Saxon and also because at studies of the ra-
diative capture processes at low energies this potential allows
complete description of all basic characteristics of the process.
Over 30 radiative capture reactions have been successfully
described (see Refs. [31,35] and citations therein) using the
one-range Gaussian potential. One can also mention that a
comparison of studies of a radiative capture process using the
Woods-Saxon potential [46] and a simple one-range Gaussian
potential [47] shows that the latter potential provided a good
description of the process. Besides, the use of the Gaussian
potential is easy due to the fact that the expansion of the WF
in terms of the Gaussian basis within the variation method [31]
the majority of matrix elements are obtained in a closed ana-
lytical form.

In calculations, we use for the proton mass mp =
1.007 276 469 atomic mass units (amu) [48] and 13N mass
13.005 736 7 amu [49], where 1 amu =931.494 102 4
MeV [48] and the constant h̄2/m0 = 41.4686 MeV fm2. The
Coulomb potential at RC = 0 is written in MeV as VC (r) =
1.439 975Z1Z2/r, where r is the interparticle distance in fm,
Z1 and Z2 are charges of the particles in units of the elementary
charge. The Sommerfeld parameter η = μZ1Z2e2/(kh̄2) =
3.44476 × 10−2μZ1Z2/k, where k = (2μE/h̄2)1/2 is the wave
number specified in fm−1 and defined by the energy E of
interacting particles and the reduced mass μ of these particles
in amu.

Following Ref. [50] for calculations of the width and
employing the resonance-scattering phase, we use the ex-
pression 
res = 2(dδ/dE )−1, where δ is the phase shift. For
descriptions of the 3S1, 3P1, and 3F2 scattering states we
use the corresponding experimental energies and widths. For
the 3S1 resonance, three different experimental measurements
are reported for the resonance energy and width. Therefore,
we constructed the potential for the 3S1 resonance-scattering
phase with three sets of parameters. In Table I are given the
results of calculations of parameters for the corresponding
potential. The potential with sets of parameters 1a, 1b, and
1c reproduce the resonance energies 528, 536, and 545 keV,
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TABLE I. List of transitions from the initial {(2S+1)LJ}i state to 3P0 GS of the 14O nucleus. The value of P2 determines the coefficient in
expressions (3) and (6). The width 
res and S(0) factor are obtained by using the potential parameters V0 and α. The value S̃(0) of the S factor
and the set of parameters 1d , 1e, and 1 f for the potential are used for calculations of the resonance width 
̃res.

Set {(2S+1)Lf }i Transition P2 V0, MeV α, fm−2 Eres, MeV 
res, keV S(0), keV b 
̃res, keV S̃(0), keV b

a 14.955 0.085 0.528(1) 37(1) 8.4(2)
b 15.882 0.092 0.536(1) 38(1) 7.9(2)

1 3S1 resonance at E1 1 c 18.244 0.11 0.545(1) 37(1) 7.0(2)
0.528, 0.536, 0.545 MeV d 35.053 0.25 0.528(1) 22(1) 4.8(1)

e 29.316 0.02 0.536(1) 25(1) 5.1(1)
f 31.582 0.22 0.545(1) 26(1) 4.9(1)

2 3P1 no resonance M1 2 555.0 1.0 0.014(1)
3 3F2 resonance at 1.981(10) E2 3 698.134 0.36 2.000 13 <0.01
4 3F2 resonance at 3.117(19) E2 3 343.613 0.18 3.120 58 <0.01
5 3F2 resonance at 5.123(11) E2 3 430.2 0.23 5.127 232 <0.01

respectively. The latter allows us to find the optimal astrophys-
ical S factor. Figure 2 presents the dependence of the elastic
p13N scattering phase shifts on the energy Ec.m.. The result of
the calculation of the 3S1 phase shift with the set 1c parameters
for the S scattering potential without FS leads to 90◦ ± 1◦ at
the energy Eres = 0.545 MeV [27] are presented by the red
solid curve. The calculations of the 3S1 phase using the sets of
parameters 1a and 1b, which correspond to the resonances at
Eres = 0.528 MeV [28] and Eres = 0.536 MeV [17], give the
coincide results in Fig. 2. Thus, the scattering potentials with
the set of parameters 1a, 1b, and 1c are phase-shift-equivalent
potentials.

The potential of the nonresonance scattering is also con-
structed quite unambiguously based on the scattering phase
shifts for a given number of bound states allowed and for-

FIG. 2. The dependence of the elastic p13N scattering phases on
the energy. Calculations are performed by using the potentials with
parameters from Table I. The 3S1 phase shift is calculated by using
the set 1a (green dashed curve), 1b (black dotted curve), and 1c (red
solid curve) from Table I, respectively. The three sets of parameters
for the potential given almost the same results for the 3S1 phase shift.
In the given energy region, the 3P1 phase shift has very weak energy
dependence.

bidden in the partial wave. The accuracy of determining the
parameters of such a potential is primarily associated with
the accuracy of extracting the scattering phase shifts from the
experimental data. Since the classification of states accord-
ing to Young diagrams makes it possible to unambiguously
fix the bound state number, which completely determines its
depth, the potential width at a given depth is determined by
the shape of the scattering phase shift. When constructing a
nonresonance scattering potential from the data on the spectra
of the nucleus, it is difficult to evaluate the accuracy of finding
its parameters even for a given number of bound states. Such a
potential, as is usually assumed for the energy range up to 1–3
MeV, should lead to the scattering phase shift close to zero or
give a smoothly decreasing phase shift shape, since there are
no resonance levels in the spectra of the nucleus.

For the 3P1 scattering potential, one can use the parameter
set 2 from Table I. Such a potential has the FS and leads to a
scattering phase shift of 180◦ ± 1◦, which has a very weak
dependence on energy and is presented by the green solid
curve in the energy range from zero to 7 MeV. Since it has the
FS, according to the generalized Levinson theorem, its phase
shift begins at 180◦ [37].

We also considered the Jπ = 2+
1 , Eres = 1.981(10) MeV,


res = 5 keV, Jπ = 2+
2 , Eres = 3.140(10) MeV, 
res =

68(6) keV, and Jπ = 2+
3 , Eres = 5.123(11) MeV, 
res =

229(51) keV resonances, which lead to a noticeable change
in the S factor in resonance regions, using the potentials with
the parameters sets 3, 4, and 5, respectively, from Table I.
However, it was not possible to construct such potentials in P
waves, therefore, F scattering waves were used here. The first
of them leads to a resonance at 2.00 MeV with a width 
res =
13 keV shown by the blue solid curve in Fig. 2, the second
gives the resonance at Eres = 3.12 MeV and a width 
res =
58 keV and is presented by the black dashed curve, while
the phase shift of the third resonance at Eres = 5.127 MeV
is shown by the dotted curve. We were not able to obtain the
resonance at Eres = 1.981 MeV with the width 
res < 5 keV,
as given in Ref. [28], but the obtained value is completely
consistent with the recent data [17].

To build the potential for the description of the GS of
14O, we use the experimental binding energy and the asymp-
totic normalization coefficient (ANC) ANC of this state. The
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corresponding potentials are tested based on the calculation
of the root mean square charge radius of 14O.

In Ref. [15] the value of ANC = 5.42(48) fm−1/2 and
the proton spectroscopic factor Sp = 1.88(34) are given. A
similar value of ANC = 5.42(74) fm−1/2 is also reported in
Ref. [16], while Ref. [22] reports ANC = 5.39(38) fm−1/2.
Using the results of Ref. [15] for the ANC and the expression
for the asymptotic normalization constant

ANC = √
SpC, (10)

one gets C = 4.04(72) fm−1/2. For the determination of C, the
following definition is also used (see, for example, Ref. [51]):

χL(r) = CW−η,L+1/2(2k0r), (11)

where W−η,L+1/2(2k0r) is a Whittaker function. We use a
different definition of ANC [52]

χL(r) =
√

2k0CwW−η,L+1/2(2k0r), (12)

which differs from the previous definition by the factor
√

2k0

which in this case is 0.956. Then, for the dimensionless
Cw, we get Cw = 4.23(75). At the same time in Ref. [22]
Sp = 0.90(23) was given for the spectroscopic factor, which
yields ANC = 5.39(38) fm−1/2 and allows us to obtain Cw =
6.15(1.22). ANC = 30.4(7.1) fm−1 and Sp = 1.94(45) were
obtained in Ref. [23], which lead to the dimensionless asymp-
totic normalization constant within the range 3.26–5.30 with
an average of 4.28(1.02).

The potential of a bound ground 3P0 state with the FS
should correctly reproduce the GS energy 4.628 MeV of the
14O nucleus with Jπ = 0+ in the p 13N channel [27], and it
is reasonable to describe the mean square radius of 14O as
well. Since data on the radius of 14O are not available, we
consider it to coincide with the radius of 14N, the experimental
value of which is 2.5582(70) fm [49]. As a result, we obtained
the following parameters for the GS potential, which lead to
Cw = 4.1(1):

V0(1, 1, 0+) = 226.230 MeV, α(1, 1, 0+) = 0.23 fm−2.

(13)
The potential (9) with the parameters (13) gives for the 14O

nucleus the binding energy of 4.628 MeV and the root mean
square charge radius Rch = 2.55 fm. We used 0.8768(69) fm
for the proton radius [48] and 2.4614(34) fm for the 13N
radius. The latter radius was taken to be the radius of 13C [49],
because the 13N radius is not available.

The GS potential which leads to Cw = 6.1(1) has the pa-
rameters

V0(1, 1, 0+) = 156.728 MeV, α(1, 1, 0+) = 0.15 fm−2.

(14)
The GS potential with parameters (14) gives a binding

energy of 4.628 MeV and the root mean square charge radius
Rch = 2.63 fm. One can see that the potential (14) gives a
larger radius than the potential (13), so by simple estimates
it is clear the GS with (14) should have larger cross sections.

We calculated the radial WFs of GSs and shape of the inte-
grand in matrix element ME (5) of the E1 transition using the
scattering potential with the set of parameters 1a and 1c from
Table I. The results of calculations are presented in Fig. 3. The

radial WFs for the GS of 14O in the p 13N channel obtained
with potentials (13) and (14) are shown in Fig. 3(a). The GS
WFs have the same behavior, different magnitudes, and the
shifted nodes. The different magnitudes lead to the different
shape of the integrand in the ME (5) of the E1 transition,
which also depends on the choice of the parameters for the
potential for the description of the scattering state. The node
in the nuclear interior leading to the node in the integrand
shown in Fig. 3(b) and 3(c), respectively. We should note that
integrands in the ME (5) of the E1 transition almost coincide
with the integrand shown in Fig. 8 in Ref. [22].

One should note that the shell model is undoubtedly the
most perfectly formulated from both a physical and math-
ematical point of view. In fact, on the one hand, in the
framework of the shell model, the Pauli principle is precisely
taken into account. On the other hand, this model allows,
based on algebraic methods, to take into account the effects
of clustering in atomic nuclei. Thus, the shell model could
be recognized as a criterion for testing the “quality” of other
models by using phenomenological nucleon-cluster poten-
tials. Let us for comparison consider the GS potentials without
FS and scattering potentials with the FS in the 3S1 wave based
on a single-particle model. The GS potential without the FS
has parameters

V0(1, 1, 0+) = 61.23803 MeV, α(1, 1, 0+) = 0.13 fm−2.

(15)
This potential leads to the binding energy of 4.628 00 MeV,
root mean square charge radius Rch = 2.54 fm, and Cw =
4.1(1). This completely coincides with the option for po-
tential (13). One can also obtain another option for the GS
potential, which agrees with the shell model of the system,
which has parameters

V0(1, 1, 0+) = 45.46913 MeV, α(1, 1, 0+) = 0.085 fm−2.

(16)
This potential leads to the binding energy of 4.62800 MeV,
root mean square charge radius Rch = 2.61 fm, and Cw =
6.0(1). This coincides with the option for potential (14). The
scattering potential for the resonance 3S1 wave now has the
FS and parameters

V0(1, 1, 0+) = 125.529 MeV, α(1, 1, 0+) = 0.24 fm−2.

(17)
This potential leads to the resonance energy of 545 keV and its
width of 37(1) keV, which completely coincides with results
for the set 1c from Table I. The shape of the integrands in
ME (5) of the E1 transition for the GS potentials (15) and (16)
and scattering potential (17) is shown in Fig. 3(d).

We use the potentials with parameters from sets 1a, 1b, and
1c in Table I for the description of the resonance states and
parameters (13) and (14) for the description of the residual
14O nucleus for calculations of the 13N(p, γ )14O reaction rate
and the astrophysical S factor.

The astrophysical S factor was calculated previously by
using the 3S1 resonance scattering. Using the values of S̃(0)
from Table I, we consider the inverse problem to construct
potentials for a description the 3S1 resonance based on the res-
onance energies and the corresponding astrophysical S factor.
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FIG. 3. The radial part of the GS wave functions 14O in the p 13N channel and integrands in the matrix element (5) for the E1 transition
in arbitrary units (arb. units). (a) The GS wave function obtained with potential (13) (solid curve) and potential (14) (dashed curve). (b) The
integrand of the E1 transition ME (5) for the scattering potential with the set of parameters 1a from Table I and for the GS potential (13) (solid
curve) and (14) (dashed curve), respectively. (c) The integrand of the E1 transition ME (5) for the scattering potential with the set of parameters
1c from Table I and for the GS potential (13) (solid curve) and (14) (dashed curve), respectively. (d) The integrand of the E1 transition ME (5)
for the GS potential without FS (15) at CW = 4.1 (solid curve) and the GS potential without FS (16) at CW = 6.0 (dashed curve) and for the
scattering potential (17), respectively.

The parameters of these potentials are given in Table I as sets
1d , 1e, and 1 f .

V. REACTION RATE AND ASTROPHYSICAL S FACTOR
OF THE PROTON RADIATIVE CAPTURE ON 13N

Let us calculate the reaction rate for the 13N(p, γ )14O
radiative capture and the astrophysical S factor using the total
cross section (2) and corresponding matrix elements of mul-
tipole transition operators. The astrophysical factor S(E ) is
defined as

S(E ) = Eσc(NJ, Jf )e−2πη, (18)

where the factor exp(−2πη) approximates the Coulomb bar-
rier between two point-like particles with charges Z1 and

Z2 and orbital momentum L = 0, while the reaction rate is
commonly expressed in cm3 mol−1 s−1 and is determined ac-
cording to Ref. [25,53] as

NA〈σcv〉 = NA
2(2/π )1/2

μ1/2(kBT )3/2

∫ ∞

0
σc(E )E exp(−E/kbT )dE

= 3.7313 × 104μ−1/2T −3/2
9

×
∫ ∞

0
σc(E )E exp(−11.605E/T9)dE . (19)

In Eq. (19), NA is Avogadro’s number, kB is Boltzmann’s
constant, E is the energy in the center-of-mass frame given
in MeV, the cross section σc(E ) is measured in μb, μ is the
reduced mass in a.m.u., and T9 is the temperature in units
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FIG. 4. Astrophysical S factor of the proton radiative capture on 13N. (a) The energy range is 30 keV to 7 MeV. The solid curves 1–4
present results of calculations which include the sum of E1, E2, and M1 transitions. Results presented by curves 1–3 are obtained by using
potential with the set of parameters 1a, 1b, and 1c from Table I, respectively, and the GS potential (13). The curve 4 corresponds to the “node
inversion” in the E1 transition simulated by the GS potential without FS (15) and scattering potential (17). The dashed, dash-dotted, and dotted
curves illustrate the contributions of the E1, E2, and M1 transitions, respectively, into S factors obtained for the potentials with the set of
parameters 1a from Table I and GS (13). (b) The energy range 30–200 keV. The solid curves 1, 2, 3, and 4 present the same results as in panel
(a). The red dotted curve, which coincides with curve 3, presents the quadratic approximation (20) of the S factor at low energies. (c) The
energy range is 30 keV to 0.7 MeV. Notations are the same as in panel (b). (d) The energy range is 1–7 MeV. Notations are the same as in
panel (a).

of 109 K. The behavior of the S factor, when resonances
are present, in general is expected to be rather smooth at
low energies and can be expanded in a Taylor series around
E = 0 [54,55] as

S(E ) = S0 + ES1 + E2S2. (20)

Essentially, the experimental data are absent on the astrophys-
ical S factor of the proton radiative capture on 13N, but in
the database of Ref. [56] there are rates of this reaction from
Refs. [7,15]. However, it is clear that the shape of the S factor
should mainly be determined by resonance in the 3S1 scatter-
ing wave at 0.528 MeV with a width 
res = 37.3(9) keV and
Jπ = 1− [28]. The contributions of cross sections of 3F2 reso-

nances from Table I, which are determined by E2 transitions,
are possible as well.

For calculations of the astrophysical S factor we use the
potentials with parameters from sets 1a, 1b, and 1c in Table I
for the description of the resonance state and parameters (13)
and (14) for the description of the residual 14O nucleus. We
also calculate the width of the 3S1 resonance using the set
of parameters 1d , 1e, and 1 f for the potentials from Table I,
which were obtained based on the values of the astrophysical
S factor.

The results of the calculation of the S factor of the proton
radiative capture on 13N to the GS of 14O nucleus include
the sum of E1, E2, and M1 transitions are shown in Fig. 4.
For the contribution of the 3S1 scattering wave the set of
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TABLE II. Astrophysical S factors at zero energy.

Ref. [26] [15,16,21–23]a [19]b [27]a

S, keV b 3.8+1
−08 5–6 2.6 2–2.3

aValues are taken from figures in Refs. [16] (Fig. 7), Ref. [17]
(Fig. 8), Ref. [18] (Fig. 9), Ref. [23] (Fig. 5), Ref. [25] (Fig. 3),
Ref.[27] [Fig. 2(b)].
bValue is taken from the approximation at low energies.

parameters from Table I for the potential and potential (13)
for the GS are considered. We calculated the contributions
of the M1 transition 3P1 → 3P0, as well as the resonance E2
transitions into the S factor by using the set of potentials 2,
3, 4, and 5 from Table I, respectively, and for the description
of the GS the potential (13) was used. The results of these
calculations are shown in Fig. 4(a). Analysis of results pre-
sented in Fig. 4(a) shows that contributions of the M1 and
E2 transitions in the S factor are negligible at energies E < 1
MeV, but are significant at high energies. At the resonance
energy, the S factor reaches 2.4 MeV b, which is in good
agreement with the results of other works (see, for example,
Refs. [7,15,21,22] ), where the values for the S factor from
about 2.0 to 2.5 keV b were reported. The S factor shown in
Fig. 4(b) is given for three sets of parameters 1a, 1b, and 1c,
highlighting the differences. Results of our calculations for the
S factor for the potentials 1a from Tables 1 and Eq. (13) in the
energy range of 30–50 keV lie in the range of 8.2–8.3 keV b,
while in the energy range of 30–70 keV, the average value is
8.4(2) keV b. The error given here is determined by averaging
the S factor over the above energy range. Known results for the
S factor at zero energy lead to a value in the range from 2.0 to
6.0 keV b [7,15,21,22]. We use the GS potential (14) and cal-
culate the S factor in the energy range 30–70 keV by using the
set of parameters 1a from Table I for the potential and obtain
almost a constant value S = 11.9(2) keV b. At the resonance
energy, the S factor reaches 2.9 MeV b, which is noticeably
more than the results of Refs. [7,15,21,22]. Therefore, we
should mention that the GS potential with the parameters (13)
for description of the GS of 14O nucleus in the p 13N channel
at the low-energy region leads to more preferable results for
the astrophysical S factor, which are quite consistent with
results from previous calculations. Our calculations for the S
factor with the parameters (14) for the potential of the GS
gives too high of a value for the S factor at low energies.
However, since there are no experimental measurements of the
S factor for this reaction, no final conclusions can be drawn.

Table II displays the compilation of the results for the
astrophysical S factors at zero energy obtained in different
works. As can be seen from Table II, the deviation of data
for the S factor is in the range from 2 to 6 keV b, although
the most recent value is apparently given in Ref. [26]. We use
the sets of parameters 1a, 1b, and 1c for the potential of 3S1

scattering from Table I and potential (13) for the GS, which
reproduce accurately the position and width of resonances,
and calculate the corresponding S factors. The results are
presented in Table I. Depending on the resonance energy, the
S factors are 8.4(2) keV b [Eres = 528(1) keV], 7.9(2) keV b
[Eres = 536(1) keV], and 7.0 keV b [Eres = 545(1) keV]. The

potential with the set 1a from Table I accurately reproduces
the width average value of 37 keV [28] and leads to S(0) =
8.4(2) keV b. The potential with the set 1b reproduces the res-
onance energy of 536(12) keV and the width 
res = 38(2) keV
from Ref. [17]. The corresponding average value for the S
factor at 30–70 keV is S(0) = 7.9(2) keV b, which is slightly
less than for the S scattering potential 1a. We consider a
potential with parameters 1c, which leads to the resonance at
545 keV and a width 
res = 37(1) keV [27]. This potential
gives S(0) = 7.0(2) keV b.

Nevertheless, let us try to find out whether it is possible
within our approach to obtain the S factor at zero energy that
is close to the results of Ref. [26], namely, 3.8+1

−08 keV b.
We constructed S wave scattering potentials, which with the
potential (13) for the GS allow us to obtain maximum value
of the S factor at about 4.8–5.0 keV b given in Ref. [26].
Such potentials have the set of parameters 1d , 1e, and 1 f
listed in Table I. These potentials lead to the resonance en-
ergies 528(1), 536(1), and 545(1) keV, respectively, but the
corresponding widths are significantly smaller than reported
in Refs. [17,27,28]. In particular, the set 1d leads to Eres =
528(1) keV, but the width is 
̃res = 22(1) keV. At 30 keV,
S̃(0) = 4.8 keV b and its average value in the range of 30–
70 keV is S̃(0) = 4.8(1) keV b. If for the potential with a
resonance energy of 536 keV, we use the parameters 1e from
Table I, which lead to 
̃res = 25(1) keV, then the S factor
decreases to S̃(0) = 5.1(1)keV b. The S factor decreases to
S̃(0) = 4.9(1) keV b when we use the set 1 f for the potential
and the width becomes 
̃res = 26(1) keV. Thus, in principle,
all previously obtained results for the S factor at zero energy
can be reproduced, but the width of the resonances does not
correspond to the data [17,27,28]. Therefore, for the consid-
ered resonance energies, if we correctly describe their widths,
it is impossible to obtain the S factor below 7.0(2) keV b.
Only a decrease in the resonance width to 25–26 keV with
its energy of 536–545 keV leads to an S factor of the order of
4.9–5.1 keV b.

We also calculated the S factor using the GS potential (15)
without FS and the scattering potential (17). The result for
the average value of the S factor in the range of 30–70 keV
is 7.0(1) keV b that completely coincides with the S factor,
calculated with the parameters set 1c from Table I and GS
potential (13). We use Eq. (20) for the approximation of the
S factor at low energies. The corresponding parameters are
S0 = 6.7645, S1 = −2.7612 × 10−3, S2 = 1.1428 × 10−4 at
χ2 = 1.0 × 10−3. The results are shown in Fig. 4(b) by the
dotted curve that coincides with the curve 3, which presents
the results of calculations for the potentials with the set of
parameters 1c from Table I and GS (13).

Using Eq. (19), we calculated the rate of the 13N(p, γ ) 14O
radiative capture by considering the sum of E1, M1, and E2
transitions. The dependence of the 13N(p, γ )14O reaction rate
on astrophysical temperature is shown in Fig. 5. The corre-
sponding rates are tabulated in Table III for 0.01 < T9 < 10.
The calculations are performed by using the set of parame-
ters 1c and (13) for the potentials. Let us mention that the
earlier calculations [15,21,22] practically coincide with our
results with small deviations, while results from Ref. [7] at
temperatures T9 > 1 are up to two times lower than the present
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FIG. 5. The dependence of the reaction rate of the 13N(p, γ ) 14O
radiative capture on astrophysical temperature. The solid curve
presents our calculations for the sum of E1, M1, and E2 transitions
performed for the potentials with the set of parameters 1c from
Table I and GS (13), and the NACRE II data [26] are shown by
dashed curve. The inset shows the dependence of the reaction rate
of the proton radiative capture on 13N on astrophysical temperature
in the range of 0.01T9–10T9.

results. The results of calculations with the set of parameters
1c and (14) for the potentials give a noticeable excess of the
reaction rate over the rates obtained with the GS potential (13)
at temperatures above 1T9.

Following Ref. [57] the reaction rate obtained in our calcu-
lations is parametrized as

NA〈σv〉 = a1

T
exp

(
−a2

T

)
(1 + a3T 1/3 + a4T 2/3

+ a5T 4/3 + a7T 5/3 + a8T 6/3 + a9T 7/3)

+ a10

T 1/2
exp

(
− a11

T 1/2

)
+ a12

T
exp

(
− a13

T 1/3

)

+ a14

T 1/3
exp

(
− a15

T 1/2

)
+ a16

T 2
exp

(
−a17

T 2

)
. (21)

TABLE III. The results of the dependence of the p13N
reaction rate on temperature.

Temperature (T9) Reaction rate (cm3 mol−1 s−1)

0.01 4.81 × 10−22

0.02 6.46 × 10−16

0.03 5.94 × 10−13

0.04 4.37 × 10−11

0.05 9.28 × 10−10

0.06 9.54 × 10−9

0.07 6.14 × 10−8

0.08 2.86 × 10−7

0.09 1.05 × 10−6

0.1 3.22 × 10−6

0.11 8.61 × 10−6

0.12 2.06 × 10−5

0.13 4.49 × 10−5

0.14 9.09 × 10−5

0.15 1.73 × 10−4

0.16 3.12 × 10−4

0.17 5.37 × 10−4

0.18 8.90 × 10−4

0.19 1.42 × 10−3

0.2 2.21 × 10−3

0.25 1.42 × 10−2

0.3 6.46 × 10−2

0.35 2.53 × 10−1

0.4 9.10 × 10−1

0.45 2.91
0.5 8.04
0.6 4.02 × 101

0.7 1.30 × 102

0.8 3.13 × 102

0.9 6.13 × 102

1 1.04 × 103

1.5 4.53 × 103

2 8.46 × 103

2.5 1.15 × 104

3 1.35 × 104

3.5 1.46 × 104

4 1.51 × 104

4.5 1.52 × 104

5 1.51 × 104

6 1.44 × 104

7 1.35 × 104

8 1.25 × 104

9 1.16 × 104

10 1.08 × 104

The parameters for the reaction rate (21) from Table IV
lead to χ2 = 0.006 and allow us to merge with the calculated
reaction rate using Eq. (21). Results of calculations using
Eq. (21) are presented in Fig. 5. It almost merges with a
blue solid curve that shows the calculated reaction rate us-
ing Eq. (19) that is given in Table III. We parametrized the
NACRE II data [26] using the same Eq. (21) with χ2 = 0.05
and 5% errors, which leads to the parameters listed in Ta-
ble IV. The corresponding results of calculations are shown
in Fig. 5 by the dashed curve.
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TABLE IV. Parameters of the analytical parametrization of the 13N(p, γ )14O reaction rate for the present calculations based on Eq. (21)
and the NACRE II data [26] based on Eq. (21) as well.

Parameters a1 a2 a3 a4 a5 a6 a7

Present work, Eq. (21) 4.68425 5.5271 72207.8 −2.86832 −17716.6 −1304.726 −1155.274
NACRE II 77.14845 4.87776 −2791.957 7554.465 −4686.978 3691.79 −4033.686

Parameters a8 a9 a10 a11 a12 a13 a14

Present work, Eq. (21) −1020.536 215.4007 4.66187 × 106 10.92388 8.5529 × 107 15.50687 16674.76
NACRE II 1901.048 −309.4704 −3320.309 7.12181 3.13709 × 108 15.87507 −13.31191

Parameters a15 a16 a17

Present work, Eq. (21) 7.86955 −77.74082 1.38331
NACRE II 5.65906 −48.07274 1.23332

For the detailed comparison of the dependence of the re-
action rate on astrophysical temperature, we calculated the
ratio of our reaction rate to the rates from Refs. [15,21–23,26].
The results of this comparison are shown in Fig. 6(a). It can
be seen from Fig. 6(a) that the results of present calculations
exceed NACRE II up to 1.7 times at the lowest temperatures
and are almost equal to them at a temperature of 10T9. The
results of other studies lead to values that go below present
calculations up to 1.2 times at a temperature of 0.01T9, and
in the range of 0.4T9–0.5T9 practically coincide with our data.
But as the temperature tends to 1T9, the values again become
less than ours by a factor of 1.2. In Fig. 6(b) are presented the
ratios of the reaction rates obtained in the present work and
in Refs. [15,21–23] to NACRE II [26] which is parametrized
with the parameters from Table IV.

Let us make a comparative analysis for the S factor ob-
tained within our approach and calculated in the R-matrix
approach [22,58]. Reference [22] presents the most detailed
and accurate uncertainties analysis for the astrophysical S
factor, where the uncertainties were investigated by vary-
ing five parameters: the ANC for 14O, 
γ , 
tot, and Ec.m.

of the first resonance. The authors concluded that, with in-
creasing energy, the fractional uncertainty in the S factor
drops from 0.31 to 0.21 and the uncertainty of the 
γ and
the total width of the first resonance 
tot as well as the
ANC make significant contributions to the uncertainty for
Ec.m. < 0.6 MeV [22].

In our model we operate with three experimental input pa-
rameters, i.e., ANC, 
tot, and Ec.m.. So, the initial score is 5 : 3.
The uncertainty of Ec.m. only produces less than 2% [22].
Therefore, it is reasonable to exclude Ec.m. among both pa-
rameter sets as the consensus holds. Thus, the score drops to
4 : 2. 
γ raises the highest uncertainty to 20%–30% [22].

In our model there is no such uncertainty because we do
not subdivide the capture cross section into direct and resonant
parts and we operate with ANC and 
tot only. The signature
of the resonances is seen in the phase-shift energy dependence
shown in Fig. 2. In our calculations, the resonances are incor-
porated in natural continuous form without any subdivisions
so that there is no need for the 
γ parameter. Also, it is
important to mention that we are implementing the calcula-
tions of the overlap integrals starting from r = 0, contrary

FIG. 6. The dependence of the ratio of the reaction rates on temperature. (a) The ratio of the reaction rate obtained in the present calculations
and given in Refs. [15,21–23,26], correspondingly: NACRE II [26] (solid curve), Li et al. [15] (dash-dotted curve), Guo et al. [18] (dashed
curve), Tang et al. [22] (circles with error bars), Magnus et al. [21] (triangles with error bars). The dotted curve is the ratio of the estimated
speed to its approximation (21). (b) The ratio of the reaction rates obtained in the present calculations, Refs. [15,21–23] to the NACRE II [26]
approximated with parameters from Table IV: present calculations (solid curve), Li et al. [15] (dashed curve), Guo et al. [18] (dash-dotted
curve), Tang et al. [22] (circles with error bars), Magnus et al. [21] (triangles with error bars), correspondingly. The dotted curve corresponds
to the ratio of NACRE II data and its approximation using the parameters from Table IV.
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to Refs. [15,16,22,23], where the channel radius cutoff pa-
rameter is exploited. Concerning the ANC: we examined the
cases with ANCmin and ANCmax and found ANCopt, within the
correlation of 
tot. Results in Refs. [15,16,22,23] are obtained
based on the average ANC and do not examine or show the
band variety on the cross sections or S factors within this very
context.

VI. CNO AND HOT CNO CYCLES

Since the late 1930s, when von Weizsäcker [59] and
Bethe [60] independently proposed sets of fusion reactions
by which stars convert hydrogen to helium, it has been well
established that the carbon-nitrogen-oxygen cycle is a mech-
anism for hydrogen burning in stars. The dominant sequence
of reactions for this cycle is the following:

12C(p, γ )13N(e+νe)13C(p, γ )14N(p, γ )15O(e+νe)15N(p, α)12C. (22)

The character of the nuclear burning is extremely temperature sensitive and, when the temperature is low enough, the hot
carbon-nitrogen-oxygen cycle

12C(p, γ )13N(p, γ )14O(e+νe)14N(p, γ )15O(e+νe)15N(p, α)12C (23)

starts. Since, at low T9 temperatures, the 13N(p, γ )14O reac-
tion in sequence (23) is competitive with the 13N(e+νe)13C de-
cay in sequence (22), the formation and decay of 14O becomes
a major distinguishing feature of this higher-temperature
cycle. Therefore, the stellar 13N(p, γ )14O reaction rate deter-
mines the order and the precise temperature of the conversion
of the cold CNO cycle to the HCNO cycle and the waiting
point in the cycle changes from 14N to the 14O and 15O and
the 13N(p, γ )14O reaction is a key process which determines
this conversion.

One can say that the topic is hardly new, which is
illustrated by the number of references on the S factor
of the 13N(p, γ )14O reaction and the different reactions
rates [15,16,19,21–23]. Reference [11] suggested the most
consistent and accurate methodology for analyses of the tem-
perature and density conditions for the HCNO cycle. Below
we use this methodology along with our results for the
13N(p, γ )14O reaction rate and reanalyze the dependence of
the lifetime against hydrogen burning via the 13N(p, γ )14O
reaction as a function of temperature and find the temper-
ature window and densities of a stellar medium at which
the CNO cycle is converted to the hot CNO cycle. The re-
analysis is extended for the stellar density dependence on
temperature. Therefore, we use our results for the 13N(p, γ )14

O reaction rate, follow Ref. [11], and find the temperature
window and densities of a stellar medium at which the CNO
cycle is converted to the hot CNO cycle. We can achieve
the latter by comparing the 13N(p, γ )14O, 14N(p, γ )15O, and
12C(p, γ )13N reaction rates and the lifetime of nuclei against
destruction by hydrogen burning.

The lifetime of isotopes in the stellar CNO cycle relative
to the combustion of hydrogen one can be determined as
follows [55,61]:

τ = AH

ρXH

1

NA〈σcv〉 , (24)

where AH is the atomic mass of hydrogen, XH is the rela-
tive abundance of hydrogen by mass, ρ is the density of the
stellar medium, and NA〈σcv〉 is the appropriate proton-capture
reaction rate. Thus, as follows from Eq. (24), lifetime is de-
termined precisely by the rate of the corresponding reaction.
In our calculations, we use the 12C(p, γ )13N, 13N(p, γ )14O,
and 14N(p, γ )15O reactions rates. In Fig. 7 the reaction rates

of the 13N(p, γ )14O, 14N(p, γ )15O, and 12C(p, γ )13N pro-
cesses are shown, which are further used in the calculations
of τ . For the 13N(p, γ )14O reaction we use results of the
present calculations and data from Ref. [11], for the reaction
14N(p, γ )15O data Refs. [57] and [33] are used, while for the
12C(p, γ )13N we employed data [57], which are very close to
data given in the NACRE II database [26]. Let us comment
on the difference in the data for the 14N(p, γ )15O reaction
(curves 3 and 5 in Fig. 7). In contrast to Ref. [57], in Ref. [33]
the 14N(p, γ )15O reaction rate was calculated by taking into
account the radiative capture of protons both in the GS of
the 14N nucleus and in all four excited bound levels. Such
consideration allows one to describe experimental data for the
astrophysical S factors of the proton radiative capture on 14N
to five excited states of the 15O nucleus at excitation energies
from 5.18 to 6.86 MeV, under the assumption that all five
resonances are D scattering waves. The latter approach leads
to a significant increase of the 14N(p, γ )15O reaction rate at
temperatures T9 > 0.3, which is indicated in Fig. 7.

FIG. 7. The dependence of the reaction rates of the NA〈σcv〉 on
temperature for the 12C(p, γ )13N, 13N(p, γ )14O, and 14N(p, γ )15O
reactions. The data for curves 1, 2, and 3 are taken from Ref. [11],
the data for curve 4 are from the present calculation, and the data for
curve 5 are from Ref. [33].
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FIG. 8. Comparison of lifetime against hydrogen burning via the 12C(p, γ )13N, 13N(p, γ )14 O, and 14N(p, γ )15O reactions as a function
of temperature, and the 13N, 14O, and 15O β-decay lifetimes for the temperature intervals (a) 0.08 < T9 < 1.0 and (b) 0.08 < T9 < 0.14.

To determine the astrophysical temperatures at which the
CNO cycle is converted to the HCNO cycle, it is necessary
to determine the 13N(p, γ )14O reaction rate as a function of
temperature and compare it with one for the other processes.
Using the reaction rates presented in Fig. 7, we calculate
the dependence of the lifetime of isotopes produced in the
processes 12C(p, γ )13N, 13N(p, γ )14O, and 14N(p, γ )15O on
temperature. Following Ref. [11], in calculations we used for
the hydrogen mass fraction XH = 0.77 and the stellar density
ρ = 5 × 103 g/cm3 [62].

The dependencies on temperature of the lifetime of iso-
topes produced in the processes are presented in Fig. 8. The
data for the lifetime of radioactive isotopes are also presented
in Fig. 8: τ13N = 863 s for 13N(e+νe)13C, τ14O = 102 s
for 14O(e+νe)14N, and τ15O = 176 s for 15O(e+νe)15N. The
analysis of the results presented in Fig. 8 shows that at
T9 = 0.08 the 13N(p, γ )14O and 13N(e+νe)13C reactions have
equal lifetime. When the lifetime of 14O isotope produced
via 13N(p, γ )14O reaction will be less than the 13N(e+νe)13C
decay lifetime, the reaction sequence changes to the hot CNO
cycle. For these conditions in the CNO cycle the lifetimes of
β+-unstable systems such as 13N and 15O are long enough that
proton capture can occur on these unstable nuclei before they
undergo the β+ decay.

The onset of the HCNO cycle occurs at T9 = 0.08 when
the rate of the slowest 13N(p, γ )14O reaction exceeds the
14O(e+νe)14N and 15O(e+νe)15N decay rates. Moreover, at
T9 = 0.1 the ratio of the 13N(p, γ )14O and 13N(e+νe)13C rates
is 10.8, in contrast with Ref. [11], where this ratio is about 6.
Therefore, at T9 = 0.1 the reaction 13N(p, γ )14O is already
ten times faster than the 13N(e+νe)13C decay, resulting in
mass flow going via 14O at the very onset of the HCNO cycle.
The present result indicates that the HCNO cycle is turned on
at the early stage of a nova explosion when the temperature is
lower than reported in the earlier calculations of Refs. [11,18].

Our calculations lead to the temperature range 0.13 < T9 <

0.97, where the reaction rate of 14N(p, γ )15O is greater than
the reaction rate of 13N(p, γ )14O. The 13N(p, γ )14O reaction
rate obtained in the present calculations leads to a temperature
window which is much wider than that reported in Ref. [11]:
0.14 < T9 < 0.64. One should mention that the reaction rates
for 13N(p, γ )14O in the present work and 14N(p, γ )15O in

Ref. [33] are obtained in the framework of the same theoreti-
cal approach.

Following Ref. [11], let us determine the dependence of
the stellar medium density corresponding to the onset of the
HCNO cycle on temperature as

ρ = AH

XH (τ14N + τ15N)

1

NA〈σcv〉min
, (25)

where the smallest reaction rate NA〈σcv〉min includes the tem-
perature dependence. An analysis of the density-temperature
relationship allows us to determine the temperatures and
densities at which the stellar CNO cycle is converted to the
HCNO cycle. If the density and temperature of the stellar
medium fall above the curve ρ(T ) on the density-temperature
diagram, then the HCNO cycle occurs; otherwise, the CNO
cycle operates.

The results of present calculations for the density-
temperature dependence ρ(T ) along with results from
Ref. [11] are shown in Fig. 9. The comparison of our calcu-
lations and results from Ref. [11] indicates that, in the same
temperature range, the HCNO cycle operates at the lower den-

FIG. 9. Density and temperature range for the operation of the
hot CNO cycle. Curves 1 shows the result from Ref. [11], curve 2
shows the present result.
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sities of a stellar medium than in the case reported in Ref. [11].
Analysis of the results given in the density-temperature dia-
gram in Fig. 9 demonstrate that, at the early stage of a nova
explosion and in the temperature range 0.2T9–0.4T9, the hot
CNO cycle could be turned on at half the density of the stellar
matter. The difference becomes more significant at T9 > 0.6
and the HCNO cycle could be operated when, at 1T9, the
stellar medium density becomes about 10 times less compared
with that of Ref. [11], as can be seen from Fig. 9.

Reanalysis of the astrophysical S factor and reaction rate
of the proton capture on the 13N nucleus leads us to numerical
differences with previous studies. These numerical differences
bring us to a new temperature corridor for the conversion of
stellar CNO cycle to the HCNO cycle. The small variation for
the range of the HCNO window may lead to huge macroscopic
consequences on the scale of astrophysical events. Thus, in
supermassive stars at high temperature, the ignition of the
hot CNO cycle can occur at much lower densities, generating
sufficient energy which can affect the collapse of very massive
stars at the end of their life cycle.

VII. CONCLUSION

We briefly summarize our results. We have employed the
modified potential cluster model to describe the 13N(p, γ )14O
reaction at astrophysical energies and the influence of the
width of the first p 13N resonance on the astrophysical S
factor. At energies of 30–70 keV, the S factor remains almost
constant with the average value of 8.4(2) keV b, thereby de-
termining its value at zero energy, which is determined by
the potential of S-wave scattering. The values of the S(0)
factor of 7.0(2) to 8.4(2) keV b are listed in Table I for
three options of potentials, which correspond to three dif-
ferent values of energies for resonance in the S scattering
wave. The potentials of the S wave, leading to the correct
resonance width for different resonance energies, do not al-
low us to obtain the value of the S factor, which would be
consistent with previous results. Only a decrease in the res-
onance width to 22–26 keV leads to an S factor of the order
of 5 keV b, which is consistent with the upper limit of the
results from Ref. [26] and the results of other works such
as Refs. [16,22,23]. Thus, an accurate determination of the
width is crucial. Our results demonstrate that contributions
of the M1 and E2 transitions in the S factor are negligible
at energies E < 1 MeV, but are significant at high energies.
At the resonance energy, the S factor reaches 2.4 MeV b,
which is in a good agreement with the results of previous
studies. Using the MPCM capabilities, it was shown that the
values of the astrophysical S factor for the 13N(p, γ )14 O
reaction at ultralow energies depends strongly on the 3S1

resonance parameters.

Based on the potentials for the S scattering wave, consis-
tent with the energy and widths of the first resonance, the
13N(p, γ )14O reaction rate was calculated and a simple ana-
lytical approximation for the reaction rate was proposed. The
inclusion of resonances at 1.981, 3.117, and 5.123 MeV prac-
tically does not affect the reaction rate, although the contri-
butions of resonances are clearly visible when calculating the
S factor. The reason for such a weak influence is their small
widths and relatively large resonance energies. Results of our
calculations for the 13N(p, γ )14O reaction rate provide the
contribution to the steadily improving reaction-rate libraries.

A precise knowledge of a cross section of the proton radia-
tive capture on 13N isotope at low energy is important because
it plays a key role in the HCNO cycle, due to the proton
capture rate on 13N at temperature range of 0.05T9–1.0T9 can
become of the same order or larger than the 13N(e+νe)13C
decay rate. Our calculations show that, at T9 = 0.1, the ratio
of the 13N(p, γ )14O rate to the 13N(e+νe)13C rate is 10.8.

In the context of the CNO cycle scenario, our calcula-
tions of the 13N(p, γ )14O and results for the other bottleneck
14N(p, γ )15O reaction [33], together with the NACRE II
data [26] for the 12C(p, γ )13N process, show that, in the
temperature window 0.13 < T9 < 0.97, where the reaction
rate of 14N(p, γ )15O is greater than the reaction rate of
13N(p, γ )14O, the CNO cycle converts to the HCNO cycle.
The present result indicates that the HCNO cycle is turned on
at the early stage of a nova explosion at the temperature T9 =
0.08. Therefore, the significant mass flow through 14O nuclei
begins to occur at the temperature T9 = 0.08. Our calculations
show that, at this temperature, the 13N(p, γ )14O reaction rate
and the decay rate of the 13N(e+νe)13C process are equal.

Our results demonstrate that, at the early stages of a nova
explosion, at temperatures of about 0.1T9, and at the late
stages of evolution of supermassive stars at temperatures of
about 1T9, the ignition of the hot CNO cycle could occur at
much lower densities of a stellar medium.

Therefore, at the temperature and density of a stellar
medium such as the conditions in a nova explosion and
very massive stars, hydrogen burning occurs at temperatures
0.01T9–1.0T9. For these conditions in the CNO cycle, the
lifetimes of β+-unstable systems such as 13N and 15O are long
enough that proton capture can occur on these unstable nuclei
before they undergo β+ decay.
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