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Determining the diffusivity for light quarks from experiment
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Charge balance functions reflect the evolution of charged pair correlations throughout the stages of pair
production, dynamical diffusion, and hadronization in heavy-ion collisions. Microscopic modeling of these
correlations in the full collision volume shows that the balance functions are sensitive to the diffusivity of
light quarks when studied as functions of relative azimuthal angle. By restricting our analysis to K+K− and
pp̄ pairs, we find that the diffusivity of light quarks, a fundamental property not currently well understood, can
be constrained by experimental measurement.
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I. INTRODUCTION

A principal goal of relativistic heavy-ion physics is to
determine bulk properties of the quark-gluon plasma (QGP),
i.e., matter where the density exceeds the point at which indi-
vidual hadrons can be defined. Interesting properties include
the equation of state, charge susceptibility, quark-antiquark
condensate, viscosity, diffusivity, and jet-energy loss. Several
of these properties can be reliably extracted from lattice gauge
theory, but even in those cases it is important to extract the
properties from experiment to test whether the idealization
of a locally equilibrated QGP has indeed been realized in
the collision. Careful comparisons of experiment to theo-
retical models have so far constrained the equation of state
[1], charge susceptibility [2], viscosity [1,3,4], jet-energy loss
[5,6] and the diffusivity for heavy quarks [7]. Here, we de-
scribe how the diffusivity for light quarks can be added to
this list.

For temperatures near or above 200 MeV, a range explored
in heavy-ion collisions at the Relativistic Heavy Ion Collider
(RHIC) and by the Large Hadron Collider (LHC) at CERN,
the charge susceptibility of light quarks is consistent with a
picture which treats the light quarks (up, down, and strange)
as well-defined quasiparticles, in accordance with lattice cal-
culations [8,9]. This result is rather surprising given that the
medium is strongly interacting. The shear viscosity and diffu-
sivity represent measures of how strongly the matter interacts.
Because there are three charges, or flavors, the diffusivity, Dab,
is a three-by-three matrix,

ja = −Dab∇δρb, (1)
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where ρa and ja are the charge and current densities in the rest
frame of the fluid. As the medium is heated above the hadron-
to-QGP transition temperature (≈160 MeV), and up, down,
and strange quarks become good quasiparticles, the three
flavors should behave similarly for zero chemical potential,
and the matrix should become proportional to the unit matrix,
Dab ≈ Dδab.1 Such conditions are realized in the midrapidity
regions for top RHIC and LHC beam energies. Theoretical
calculations of the diffusivity are typically based on the Kubo
relation for the conductivity tensor, which translates into the
diffusivity,

ja = −σab∇μb,

σab = 1

3T

∫
t>0

dt d3r 〈 ja(0) · jb(t, r)〉,

Dab = σacχ
−1
cb , (2)

where μa is the chemical potential for flavor a, and χ is
the susceptibility, or charge fluctuation matrix. The electric
conductivity, i.e., the response to a gradient of the charge
density for uniform strangeness and baryon number, is

DE = (2Duu + Ddd − 2Dud − Ddu − Dsu + Dsd )/3. (3)

At high temperatures, where D becomes proportional to the
unit matrix, DE ≈ Duu ≈ Ddd ≈ Dss.2

1Note that the indices a, b range over the light-quark basis (u, d, s).
A basis of conserved charges (B, Q, S) would not yield a diagonal
diffusivity matrix in the QGP phase [10].

2Although off-diagonal elements in Dab can in principle be re-
tained, they make it significantly more difficult to treat diffusion as
a random walk. Here, we neglect any off-diagonal elements in this
matrix; the full treatment is described in Ref. [11].
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FIG. 1. The electric diffusivity, scaled by 2πT , from lattice
gauge theory as calculated in Ref. [12] (green points). A hadron
gas with a fixed 25-mb cross section (red line) has significantly
higher diffusivity, as does a perturbative approach, EQCD, to next-to-
leading order [16] (gray line). For AdS/CFT, the value is unity (blue
dashes). This collection of calculations illustrates the uncertainty
with which the diffusivity is understood.

Lattice results for the diffusivity have been obtained
[12,13] despite the challenges in extracting transport
coefficients from lattice calculations, due to the difficulty
in evaluating real-time correlations. For a strongly coupled
liquid, anti–de Sitter space and conformal field theory
(AdS/CFT) provides a value of 1/(2πT ) for light quarks [14],
whereas for heavy quarks the value can approach zero for
infinite couplings or colors [15]. The values extracted from
the lattice are indeed of the order of 1/(2πT ), suggesting that
the diffusivity, like the viscosity, is characteristic of strong
coupling. For the lattice calculations plotted as a function
of T , D dips near Tc and falls below the AdS/CFT value
(cf. Fig. 1). D can also be calculated perturbatively by using an
approach known as “electrostatic quantum chromodynamics”
(EQCD) [16]. As shown in Fig. 1, this approach applies only
above Tc and yields values a few times larger than the lattice
results. Alternatively, one can estimate the conductivity from
a quasiparticle picture if one has first an estimate of the
relaxation time,

σab ≈
∫ ∑

h

dh
d3 p

(2π )3 fh(p)qhaqhb
|vp|2

3
τh(p), (4)

where τh is the relaxation time for a hadron of type h, spin
degeneracy dh, and charge qha, to lose its correlation with
its original velocity. For fixed s-wave cross sections, one can
estimate the lifetime for a given momentum by calculating the
rate at which the correlation, 〈v(0)v(t )〉, changes at t = 0 for
each mode p, then use the inverse rate as the lifetime above.
Such a calculation is displayed in Fig. 1 for a hadron gas with
25 mb cross sections, a value consistent with expectations for
a hadron gas [10,17,18]. This estimate lies significantly above

the lattice prediction. In more realistic pictures, one would in-
clude resonant scatterings, and the s-wave cross section would
be much smaller. But for the purpose of giving an estimate, 25
mb is characteristic of an average cross section in a hadronic
system. None of the calculations in Fig. 1 are without signif-
icant error and uncertainty, and the four examples are by no
means exhaustive in representing the literature, but the vari-
ance of these calculations provides a rough picture of how un-
certain knowledge is of the diffusivity of high-density matter.

II. COMPUTATIONAL MODEL OF DIFFUSION

Here, a method is proposed for experimentally determining
the diffusivity of the light (u, d, s) quarks. Local charge con-
servation demands that quarks are produced simultaneously
with antiquarks, and if one knows the times at which such pro-
duction occurs, one can constrain the diffusivity by measuring
the correlation of balancing charges in relative momentum.
These correlations, which are typically binned in terms of
relative rapidity or relative angle, are highly correlated with
separation in coordinate space due to the strong collective flow
present in these collisions.

In Ref. [19] a detailed simulation of the production and
diffusion of balancing charges was presented. The evolution
of charge correlations was superimposed onto a state-of-the
art description of the dynamics, based on hydrodynamics [20]
for higher temperatures and using a hadronic simulation for
the hadronic stage and for dissolution. The details of the
hydrodynamic evolution were adjusted to reproduce typical
multiplicities and pT -spectra, as described in Refs. [19,21].
The parameters, however, were not adjusted to represent the
best fit to a wide variety of data, and the sensitivity of re-
sults to the particular choice of parameters is discussed in
the summary. To model the evolution of charge correlations,
the charge correlator is first split into local (equilibrated) and
nonlocal (inequilibrated) pieces:

Cab(�r1, �r2, t ) ≡ 〈ρa(�r1)ρb(�r2)〉 (5)

= χab(�r1, t )δ(�r1 − �r2) + C′
ab(�r1, �r2, t ). (6)

The nonlocal piece C′
ab, which probes the effects of diffusion

in an evolving system, is then evolved according to the fol-
lowing diffusion equation:

∂tC
′
ab(�r1, �r2, t ) = D

(∇2
1 + ∇2

2

)
Cab(�r1, �r2, t )

+ Sab(�r1, t )δ( �r1 − �r2). (7)

The source function was determined from the evolution of the
susceptibility, assuming the matter maintains local chemical
equilibrium [19,21]:

Sab(r, t ) = (∂t + v · ∇ + ∇ · v)χab(r, t ). (8)

This choice enforces the fact that the correlation Cab(�r1, �r2)
must integrate to zero due to charge conservation, or equiva-
lently that ∫

d�r1 C′
ab(�r1, �r2) = χab(�r2). (9)

As described in Ref. [19], the diffusion equation for
C′

ab(�r1, �r2) is solved through a Monte Carlo procedure where
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the correlation is represented by pairs of sample charges. Pairs
are created according to the source function above, where
the susceptibility at each point in space-time is found as a
function of the local temperature according to lattice calcu-
lations [8,9]. The sample charges are propagated according to
a random walk as charges move at the speed of light, with
their trajectories punctuated by collisions which randomly
reorient their direction. The mean-free path is chosen to be
consistent with the diffusion constant, and given that most test
charges experience a half-dozen reorientations, this mimics
the diffusion equation, with the caveat that the noncausal tails
are naturally pruned by requiring the particles to move at the
speed of light.

Given that lattice calculations provide only the diffusion
for the electric charge, the calculations here assume that the
diffusion matrix is diagonal in the QGP phase. Although
this should be true at temperatures well above the transi-
tion temperature, Dss, Duu, and Ddd should differ once one
approaches the transition region, 160 < T < 200 MeV. Non-
diagonal elements should then appear. It is not clear whether
in a full lattice calculation the elements would differ greatly
from one another, or whether the presence of off-diagonal ele-
ments would significantly change the results. For this reason,
without a better picture of the whole diffusivity matrix, it is
difficult to ascertain the degree to which results might change.

When the differential charges dqa enter the hadron phase
they are translated into differential hadron yields dNh by using
thermal arguments [19],

dNh = nhdqaχ
−1
ab Qhb, (10)

where nh is the equilibrated density of hadrons of species h,
Qhb is the charge of type b on said species, and χ−1 is the in-
verse susceptibility. For a pair of sample charges, each charge
and its decay products are tracked through a hadron simula-
tion. The resulting products are then used to build the correla-
tion function. In addition to correlations between the products
generated by two correlated charges, additional correlations
from the hadron phase are generated from the originally
uncorrelated particles produced at the interface between the
hadronic simulation and the hydrodynamic interface. These
come mainly from decays but are complicated by the rescat-
tering of the decay products, which represents additional
diffusive spreading of the balancing charges coming from the
decay of the original resonances. This second contribution
to the correlation was calculated in a brute force manner by
generating uncorrelated particles, simulating their decay and
rescattering, and, finally, constructing correlations using the
entire ensemble of particles. This procedure includes a large
number of uncorrelated particles, which do not contribute to
the correlation but do contribute to the noise. To overcome the
noise, the equivalent of 500 000 hadron events were simulated
for each choice for the diffusivity. The two contributions are
similar in magnitude, and the latter comprised the bulk of the
computational requirements for this analysis.

If chemical equilibrium is established, the susceptibility
must jump from χ = 0 to its equilibrated value. This con-
tributes a sharp peak to the source function at early times.
Once the charges of type a and b are created, they diffuse
away from one another according to the diffusivity. If chem-

ical equilibrium were not assumed, one could repeat these
calculations with χab(�r, t ) chosen to be consistent with what-
ever alternate chemistry one might wish to explore. For the
calculations here, it was assumed that chemical equilibrium
was established 0.6 fm/c after the beginning of the collision,
at the time the hydrodynamic calculation begins. At this time
the balancing correlation C′

ab(�r1, �r2) is established with a finite
width in relative rapidity, as described in Ref. [19]. The initial
spread of the correlation was given a Gaussian form with
a width of σ0 = 0.5 units of spatial rapidity. Even though
less than 1 fm/c has transpired at this time, this longitudinal
spread is significant due to the large longitudinal velocity
gradients at early times. This affects the width of the balance
function when binned by rapidity, and in Ref. [19] the sensi-
tivity to σ0 was analyzed. When viewing the balance function
binned in rapidity, it is difficulty to discern whether a broader
balance function was due to a larger initial spread, or a larger
diffusivity. In contrast, there should be little transverse flow at
such early times, at least for central collisions. Thus, the width
of the balance function in relative angle should by comparison
be much less sensitive to the choice of the starting time or any
initial spread of C′, meaning that balance functions binned by
relative angle should provide a cleaner signal from which to
infer the diffusivity.

Correlations are manifested as charge balance functions,

B(	φ) ≡ 〈N+−(	φ) + N−+(	φ)

− N++(	φ) − N−−(	φ)〉/(N+ + N−). (11)

Here, Nqq′ (	φ) denotes the sum over all pairs of charges qq′
separated by azimuthal angle 	φ, Nq is the number of charges
of type q, and the average covers all events of a given cen-
trality class. Charge balance functions have been measured as
a function of relative rapidity, pseudorapidity, and azimuthal
angle, and the charges restricted to specific hadron species.
Data from both RHIC and from the LHC have been analyzed
[22–30].

Not surprisingly, BK+K− focuses on the correlation between
strange quarks [21]. The source function for strangeness, Sss,
is dominated by the first surge of charge production as
the system is initially equilibrated in the first �1 fm/c of
the collision. During the evolution of an idealized QGP of
massless quarks and gluons, entropy conservation maintains
the number of quarks and Sab vanishes. Once hadrons form the
source function again becomes strong, both because hadrons
carry multiple quarks and because, by entropy conservation,
the number of hadrons roughly equals the number of quarks
in the QGP [31,32]. In contrast to the source functions for
up and down quarks, the source function for strangeness
remains small during hadronization [8,21] due to the larger
mass of strange hadrons, which suppresses the production of
strange quarks once the hadron phase is realized. The one
exception to this comes from the decay of the phi meson,
φ → K+K−, but given that the phi peak is narrow, 4.3 MeV,
their contribution can be separated from the analysis to better
focus on the contributions to the correlation from charge
generated during the QGP stage. Indeed, STAR analyses of
kaon balance functions features a subtraction of the φ meson,
and contributions from φ mesons are also subtracted from
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FIG. 2. Model calculations of charge balance functions binned by relative rapidity [panels (a)–(c)] or by relative azimuthal angle [panels
(d)–(f)] for four choices of the diffusion constant. Balance functions created (a) using only p, p̄ or (b) using only K+, K− are binned by rapidity
	y, whereas results (c) using all charged particles are binned by pseudorapidity 	η. Calculations using the diffusivity from lattice calculations
[12] are represented by black lines, while using half (red dashes), double (green dotted) and quadruple (blue dot-dashed) the lattice results
illustrate how the balance function broadens for increasing diffusivity. Results for (a), (d) pp̄ and (b), (e) K+K− are especially sensitive to
diffusion because the source terms for the baryon-baryon and strange-strange correlation functions are concentrated on early times, which
gives diffusion more opportunity to separate balancing charges. The balance functions in the left-side panels, which are binned by rapidity, are
also significantly sensitive to how charges are separated at the initial time when hydrodynamics is instantiated, or equivalently to the time at
which chemical equilibrium occurs due to the large initial longitudinal flow. In contrast, in the right-side panels, which are binned by relative
angle, results are less sensitive to the specifics of the physics before one fm/c because transverse flow requires time to develop.

the numerator of the balance functions calculated in this
study. Even though up and down quarks are copiously created
during hadronization, the effective source function for baryon
number is small during hadronization, and even becomes
negative below Tc [21], due to baryon annihilation in the
hadronic stage, which is driven by the high mass of baryons.
Thus, the K+K− and pp̄ balance functions should be more
sensitive to the diffusivity because the source functions that
drive them are concentrated at early times, allowing diffusion
to play the main role in their separation.

III. RESULTS AND DISCUSSION

Figure 2 shows balance functions for three cases: all
charged particles, K+K− and pp̄. The methods are the same as
described above and applied in Ref. [19]. In the hydrodynamic
stage, during which the matter is largely in the QGP phase,
the charge-charge correlations were evolved according to four
different choices for the diffusivity. First, they were evolved

according to D(T ) reported from lattice calculations [12], ex-
actly as in Ref. [19]. Then, the calculations were repeated with
half that value, double that value, and, finally, four times the
lattice diffusivity. The analysis was restricted to very central
events, 0%–5% centrality. In each case the balance functions
are broader for the larger diffusivities. The balance function
for all charges is least sensitive because it is dominated by
later-stage production of charge associated with hadroniza-
tion. In contrast, the K+K− and pp̄ balance functions broaden
significantly. Unfortunately, experimental results for K+K−
and pp̄ balance functions have only been reported binned by
relative rapidity thus far. Preliminary results for all charges
have been reported by STAR [22] but are marred by the effects
of experimental sector boundaries.

The results of Fig. 2 suggest that both K+K− and pp̄ are
promising for constraining the diffusivity of the QGP. This
was expected, given that the source functions driving the those
balance functions were concentrated at early times. However,
the pp̄ results are strongly sensitive to the choice of the QGP
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to hadron phase-transition temperature. Because of the large
baryon mass, the equilibrium number of baryons falls rapidly
with falling temperature once one enters the hadronic phase,
which corresponds to the introduction of negative source func-
tions. Equivalently, in the hadron stage the effects of baryon
annihilation can significantly alter the shape of the pp̄ balance
function, leading to a dip of the balance function at small
relative angle, as well as (due to normalization constraints) an
accompanying increase at large relative angle. A careful anal-
ysis of annihilation effects requires consistently accounting
for regeneration [33–35] and, until such a consistent analysis
is performed, one must remain cautious in interpreting pp̄
balance function results.

To most clearly constrain the diffusivity, it is better to focus
on balance functions binned by relative angle. As mentioned
above, balancing charges produced in the first 1 fm/c might
separate significantly along the beam direction by the time
the hydrodynamic description is instantiated. Due to the large
velocity gradient along the beam axis at early times, dvz/dz ≈
1/τ , a separation of 1/2 fm at a time τ = 1/2 fm/c translates
to a separation of an entire unit of spatial rapidity. Disentan-
gling the longitudinal separations related to pre-equilibrium
dynamics from the effects of diffusion could therefore be
problematic. Because there are no large transverse velocity
gradients at early times, the transverse separation should be
dominated by the effects of diffusion, especially for the large
sources in central collisions.

Of the several balance functions, the K+K− balance func-
tion binned by relative angle holds the most promise for
robustly constraining the diffusivity of the QGP. Because the
source functions that contribute to the K+K− balance func-
tions are dominated by the initial thermalization of the QGP,
the spread of the balance function in relative angle will be
dominated by diffusion. Nonetheless, uncertainties remain.
First, there are contributions from later times through φ meson
decays. The φ contribution does not affect the number of
balancing pairs at relative large angle, but it does affect the
normalization. Fortunately, even if this affects the normal-
ization by several tens of percent, careful measurement of
φ mesons can ensure that this is taken into account so that the
normalizations are uncertain at the five percent level. Viscous
effects can increase entropy at the ten percent level and should
be accompanied by a corresponding increase in multiplicity,
including the multiplicity of strange-antistrange quark pairs.
If viscous effects are understood at a factor-of-two level,
and if the effects are �10%, this also represents roughly a
five percent uncertainty to the balance function. Finally, the
calculations here assume that chemical equilibrium has taken
hold by one fm/c into the collision. If equilibrium, and the
corresponding production of strange quarks, were to take hold
at later times, the charge balance function would narrow. The
best way to test whether quark production takes place early is
to analyze the balance functions, especially the pp̄ and K+K−
balance functions, in terms of relative rapidity. Balancing
charges that are separated by more than a unit of rapidity
are indicative of early production. Current experiments at the
LHC and at RHIC have difficulty measuring identified pairs
separated by 	y > 1 due to the limited acceptance, but given
that the normalization of the balance functions are constrained

FIG. 3. The tail of the K+K− charge balance function binned by
relative momentum from Fig. 2 is magnified to better illustrate the
sensitivity to the diffusivity. If the various sources of uncertainty that
affect the normalization of the balance function can be reduced to the
15% level, this should enable constraint of the diffusivity to better
than a factor of two.

by chemistry and charge conservation, one can infer that the
overall strength of the balance functions outside the accep-
tance. Comparison with simple parametrized thermal models
have made it clear that there is significant early production.
The facts that the K+K− balance function is significantly
broader than the π+π− balance functions [2,22], and that
the width of the K+K− balance function, unlike the width of
the π+π− balance function, does not narrow with increasing
centrality, make it clear that strange quark production is early.
However, quantifying exactly how early can be difficult. For a
central collision, the width of the K+K− balance functions in
relative rapidity depend sensitively on whether the quarks are
produced at 0.5 or 1.5 fm/c and can represent a factor-of-two
difference in the spatial separation of quarks along the beam
axis. However, for transverse separation, a difference of one
fm/c out of the ≈5 fm/c duration of the QGP phase should
affect the separation at the 10% level. Thus, if careful analysis
of all the balance functions, binned in both relative rapidity
and relative angle can pinpoint the initial thermalization to
τ � 1 fm/c, the uncertainties associated with the creation
time should be at the ten percent level.

The sum of the uncertainties could therefore realistically
attain the 15% level if the various complementary considera-
tions listed above were all analyzed. Figure 3 expands the tail
of the K+K− balance functions from Fig. 2. The height of the
balance function varies by a factor of two when varying the
diffusivity from one half to four times the lattice value. If the
height of the experimental balance functions were changed by
15%, the extracted diffusivity would be modified by roughly
50%. Thus, a combination of improved experimental statistics
and careful theoretical analysis might constrain the diffusivity
of strange quarks to better than a factor of two. This resolution
would be similar to how well the shear viscosity, another fun-
damental transport coefficient of the QGP, has been extracted
from experiment.
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