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Charm quark dynamics in quark-gluon plasma with 3 + 1D viscous hydrodynamics
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The drag and diffusion coefficients are studied within the framework of Fokker-Planck dynamics for the case
of a charm quark propagating in an expanding quark-gluon plasma. The space-time evolution of the nuclear
matter created in the relativistic heavy-ion collision is modeled using MUSIC, a 3 + 1D relativistic viscous
hydrodynamic approach. The effect of viscous corrections to the heavy quark transport coefficients is explored
by considering scattering processes with thermal quarks and gluons in the medium. It is observed that the
momentum diffusion of the heavy quarks is sensitive to the shear and bulk viscosity to entropy ratios. The
collisional energy loss of the charm quark in the viscous quark-gluon plasma is analyzed.
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I. INTRODUCTION

The heavy-ion collision experiments pursued at the Rela-
tivistic Heavy Ion Collider (RHIC) at Brookhaven National
Laboratory and at the Large Hadron Collider (LHC) at CERN
have confirmed the existence of a new state of matter: the
quark-gluon plasma (QGP) [1,2]. The success of hydrody-
namics in describing the space-time evolution of the QGP
opened new horizons in the study of relativistic heavy-ion
collisions [3]. Early works focused on ideal hydrodynamics
[4], and later the dissipative effects in the QGP evolution were
incorporated and helped to explain the quantitative behav-
ior of experimental observables in the heavy-ion collisions
[5,6]. Several studies have been done in the determination
of shear viscosity to entropy ratio η/s from the final hadron
data. Recently, the significance of nonzero bulk viscosity to
entropy ratio ζ/s in the evolution of the QGP has also been
emphasized [7].

Heavy quarks (HQs), namely, charm and bottom, serve
as effective probes to investigate the properties of the QGP
[8–10] because they are mostly created in the initial moments
of the collision via hard scattering. The thermalization time
of HQs is estimated to be on the order of 10–15 fm/c for the
charm and 25–30 fm/c for bottom quarks created at RHIC and
the LHC [11–13]. This means that the HQs can report on the
QGP evolution, as the lifetime of the QGP is expected in the
order of 4–5 fm/c at the RHIC [14] and about 10–12 fm/c
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at the LHC [15]. The HQs are propagating through the QGP
while interacting with the constituent particles and can be
treated with Boltzmann transport. Because of their large mass
as compared with the QGP temperature scale, the scattering
of HQs is amenable to a treatment in terms of Brownian
motion [16,17]. The relativistic Boltzmann equation reduces
to the Fokker-Planck equation under the constraint of soft
momentum transfer in the HQ-thermal particle interactions
and has been used to describe the propagation of HQ in the
QGP [18–21]. The interactions of the HQs with other quarks
and gluons can be incorporated in the drag and diffusion co-
efficients. The HQ drag force can be related to the collisional
energy loss in the medium in the formulation of the Fokker-
Planck equation [22]. There have been several attempts to
study the dynamics of HQs within the scope of Brownian
motion and to interpret related physical observables such as
nuclear suppression factor RAA, heavy-baryon-to-meson ra-
tio, and elliptic flow [23–33]. However, many calculations
supposed the QGP is a static and thermalized medium. In
Ref. [34], propagation of the charm quark in the equilibrating
medium is investigated by considering a purely longitudinal
boost-invariant expansion of the system. Recently, the radia-
tive energy loss of the HQ is further studied in the longitudinal
expansion [35]. It is therefore an interesting task to investigate
the HQ dynamics with a realistic description of the viscous
QGP evolution.

The focus of the current analysis is to investigate the HQ
drag and momentum diffusion in the expanding viscous QGP,
and explore the sensitivity of HQ transport coefficients and
collisional energy loss to a nonzero viscosity to entropy ra-
tio. This requires relativistic hydrodynamical modeling of the
evolution of the medium created in the relativistic heavy-ion
collision. The viscous hydrodynamic equations up to sec-
ond order in flow velocity gradients are the standard input
to characterize the bulk medium created in the collisions
[36–38]. This investigation incorporates the viscous effects
in the HQ dynamics in the QGP that enters through the
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momentum distribution of constituent particles in the medium
and through the screening mechanism. A collision integral
that takes account of the 2 → 2 elastic HQ-thermal particle
collisions in the QGP medium is considered in the analysis.
The significance of viscous coefficients of the QGP medium
has already been discussed in dilepton emission, photon pro-
duction, heavy quarkonia, anisotropic flow, and other relevant
observables of heavy-ion collisions at the RHIC and the LHC
[39–45].

The rest of the article is organized as follows: In Sec. II,
a brief description of HQ drag and momentum diffusion is
presented within the framework of Fokker-Planck dynamics.
Section III is devoted to the details of the relativistic hydrody-
namical modeling to calculate the evolution of the background
QGP, followed by the description of viscous corrections to the
HQ transport coefficients. The results are discussed in Sec. IV
and, finally, we conclude in Sec. V.

II. HEAVY QUARK DRAG AND DIFFUSION

In the present analysis, we adopt the formalism developed
by Svetitsky [18] to investigate the HQ dynamics in the QGP
medium. The dynamics of HQ can be described by the rela-
tivistic Boltzmann equation as

pμ∂μ fHQ =
(∂ fHQ

∂t

)
c
, (1)

where fHQ is HQ momentum distribution function. The term
( ∂ fHQ

∂t )c denotes the collision term that quantifies the rate
of change of fHQ due to the interactions or scattering with
thermal quarks and gluons in the medium. The relativistic
collision integral for the two-body collision takes the form

(∂ fHQ

∂t

)
c
=

∫
d3k[ω(p + k, k) fHQ(p + k)

− ω(p, k) fHQ(p)], (2)

where ω(p, k) is the collision rate per unit momentum phase-
space of the HQ with quarks and gluons that change its
momentum from p to p − k. The collision integral can
be simplified by employing the Landau approximation [46]
which assumes small momentum transfer in the HQ-thermal
particles scattering, p � k, where k = p − p′. Using the ex-
pansion of ω(p + k, k) fHQ(p + k) up to the second order of
momentum transfer,

ω(p + k, k) fHQ(p + k) ≈ ω(p, k) fHQ(p)

+ k · ∂

∂p
[ω fHQ] + 1

2
kik j

∂2

∂ pi∂ p j
[ω fHQ], (3)

the relativistic Boltzmann equation can be simplified to
Fokker-Planck dynamics,

∂ fHQ

∂t
= ∂

∂ pi

[
Ai(p) fHQ + ∂

∂ p j
[Bi j (p) fHQ]

]
, (4)

where Ai and Bi j are the drag force and momentum diffusion
of the HQs in the QGP medium. Here, i, j = 1, 2, 3 denote
the spatial components of the three-vectors. The HQ drag and
momentum diffusion take the following forms for the process

HQ(p) + l (q) → HQ(p′) + l (q′), where l represents quarks
or gluons in the medium, as

Ai = 1

γc

1

2P0

∫
d3q

(2π )32Q0

∫
d3p′

(2π )32P′0

∫
d3q′

(2π )32Q′0

× (2π )4δ4(P + Q − P′ − Q′)
∑

|MHQ,g,q|2

× fg,q(Q)[1 ± fg,q(Q′)](p − p′)i

≡ 〈〈(p − p′)i〉〉, (5)

and

Bi j = 1

2γc

1

2P0

∫
d3q

(2π )32Q0

∫
d3p′

(2π )32P′0

∫
d3q′

(2π )32Q′0

× (2π )4δ4(P + Q − P′ − Q′)
∑

|MHQ,g,q|2

× fg,q(Q)[1 ± fg,q(Q′)](p − p′)i(p − p′) j

≡
〈〈

1

2
(p − p′)i(p − p′) j

〉〉
, (6)

where γc is the statistical degeneracy of the HQ and fg,q

is the momentum distribution of the thermal particles in
the bulk medium. Here, P = (Ep, p), Q = (Eq, q) denote the
energy-momenta of the HQ and thermal particles in the en-
trance channel and P′ = (Ep′ , p′), Q = (Eq′ , q′) represent the
energy-momenta after scattering. The HQ-thermal particles
2 → 2 scattering matrix element, |MHQ,g,q|, can be obtained
from Feynman diagrams as described in Ref. [18]. The drag
force and momentum diffusion respectively measure the ther-
mal average of the momentum transfer and its square, due
to the HQ-thermal particles scattering in the QGP medium.
Since Ai and Bi j depend only on p, they can be decomposed
as follows:

Ai = piA(p2, T ), (7)

Bi j =
(

δi j − pi p j

p2

)
B0(p2, T ) + pi p j

p2
B1(p2, T ), (8)

with p2 = |p|2. Here, A is the HQ drag coefficient and Bi j

follows longitudinal-transverse decomposition where B0 and
B1 denotes the independent transverse and longitudinal diffu-
sion coefficients. The coefficients can be defined in terms of
interaction amplitude as follows:

A = 〈〈1〉〉 − 〈〈p · p′〉〉/p2, (9)

B0 = 1
4 [〈〈p′2〉〉 − 〈〈(p · p′)2〉〉/p2], (10)

B1 = 1
2 [〈〈(p · p′)2〉〉/p2 − 2〈〈p · p′〉〉 + p2〈〈1〉〉]. (11)

The integrals can be simplified by solving the kinematics
in the center-of-momentum frame of the colliding particles
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[34],

〈〈F (p′)〉〉 = 1

512π4γc

1

Ep

∫ ∞

0

q2

Eq
dq

∫ 1

−1
d cos χ

× fg,q(Eq)

√(
s + m2

c − m2
g,q

)2 − 4sm2
c

s

×
∫ 1

−1
d cos θc.m.

∑
|MHQ,g,q|2

×
∫ 2π

0
dφc.m.e

βEq′ fg,q(Eq′ )F (p′), (12)

where s = (Ep + Eq)2 − (p + q)2, Eq′ = Ep + Eq − Ep′ , and
p′ can be represented in terms of p, q, θc.m., and φc.m.. Here,
mc and mg,q are the mass of charm quark and thermal mass of
the gluons or quarks, respectively.

III. HYDRODYNAMICAL MODELING AND VISCOUS
CORRECTIONS TO HEAVY QUARK DYNAMICS

A. Hydrodynamical evolution of the quark-gluon plasma

For the purpose of this study, we consider the realistic bulk
evolution history of a Pb + Pb collision event at 2.76 TeV. To
illustrate the viscous effects on the charm quark dynamics, we
use one event with the IP-Glasma initial state [47,48]. The
hydrodynamic phase is evolved by using MUSIC, a 3 + 1D
hydrodynamical approach [49].

The shear tensor πμν and bulk-viscous pressure � consti-
tutes the dissipative part of the energy-momentum tensor of
the QGP,

δT μν = πμν − �μν�, (13)

where �μν = gμν − uμuν is the projection operator orthogo-
nal to the fluid velocity uμ and gμν = diag(1,−1,−1,−1) is
the metric tensor. It is established that the dynamics of the
bulk QGP is sensitive to the viscous transport (both shear
and bulk viscosity) of the medium [50–52]. The stress tensor
and bulk-viscous pressure satisfy relaxation-type equations as
follows [53–55]:

τπ π̇ 〈μν〉 + πμν = 2ησμν − δπππμνθ + φ7π
〈μ
β πν〉β

− τπππ
〈μ
β σ ν〉β + λπ��σμν, (14)

τ��̇ + � = −ζθ − δ���θ + λ�ππμνσμν, (15)

with θ = ∂μuμ as the expansion parameter and σμν =
�

μν

αβ∂αuβ where �
μν

αβ ≡ 1
2 (�μ

α�ν
β + �

μ

β�ν
α ) − 1

3�μν�αβ de-
fines the traceless, symmetric, projection operator. We use the
notation X 〈μν〉 = �

μν

αβX αβ in the viscous evolution equations.
The values of shear and bulk viscosities are fixed to match the
measured transverse momentum integrated anisotropic flow
coefficients and the spectra of charged particles. The shear
viscosity over entropy density is chosen as η/s = 0.13. A
temperature dependent bulk viscosity profile parametrized in
Ref. [56] and used in Refs. [7,39] is used in the current analy-
sis. The second-order coefficients δππ , φ7, τππ , λπ�, τπ , δ��,
λ�π , τ� are related to the first-order transport coefficients,
shear and bulk viscosities, η and ζ , respectively [54]. As the

space-time evolution of the QGP is described by the viscous
hydrodynamics, it is understood that the system is not exactly
in thermal equilibrium. To that end, one needs to obtain the
viscous corrections to the momentum distribution function of
quarks and gluons while estimating the HQ transport coeffi-
cients in the viscous medium.

B. Shear-viscous correction

For a given HQ-thermal particle collision process, one
can include the viscous corrections to the local momentum
distribution of the thermal particles and thereby to the screen-
ing Debye mass in the medium. The first step towards the
estimation of the dissipative effects in the HQ evolution in
the QGP is to include the viscous correction to the quark
and gluons distribution function. We linearize the viscous
correction in the HQ drag and momentum diffusion in the
shear-stress tensor πμν , yielding a leading-order result in πμν

ε+P .
The distribution function takes the following form [39]:

fg,q(Q, X ) = f 0
g,q(Q) + δ fg,q(Q, X ), (16)

with

δ fg,q(Q, X ) = πμνQμQν
∑

j

S j
X (X )S j

M (Q, T ). (17)

Equation (17) is the general form of the nonequilibrium part of
the distribution function. Note that the sum over the index j is
necessary only when space- and momentum-dependent terms
cannot be factorized directly; see the discussions in Ref. [39].
For the parton distribution function, the functions SX and SM

respectively take the form

SX = 1

2(ε + P )
, SM = f 0

g,q(q)
[
1 ± f 0

g,q(q)
]

T 2
, (18)

where ε and P are the energy density and pressure of
the medium. These thermodynamical quantities are related
through the equation of state (EoS) of the QGP. Linearizing
in δ fg,q, Ai in Eq. (5) that defines the thermal average of
momentum transfer becomes,

Ai 
 A(0)
i + Ashear

i , (19)

in leading order, where

Ashear
i = 1

γc

1

2P0

∫
d3q

(2π )32Q0

∫
d3p′

(2π )32P′0

∫
d3q′

(2π )32Q′0

× (2π )4δ4(P + Q − P′ − Q′)
∑

|MHQ,g,q|2

× {
δ fg,q(Q)

[
1 ± f 0

g,q(Q′)
] ± f 0

g,q(Q)δ fg,q(Q′)
}

× (p − p′)i. (20)

The first-order correction to the distribution function is de-
scribed in Eq. (16). Using Eq. (17), the effect of shear
viscosity on HQ drag Eq. (20) can be written as follows:

Ashear
i = πμνPμPν

∑
j

S j
X (X )S̄ j

M (P, T ), (21)

where πμνgμν = πμνuμ = 0 were employed to constrain the
coefficient multiplying πμν . Following the same prescriptions
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as in Ref. [39], we obtain

S̄ j
M (P, T ) = 1

2[(u · P)2 − P2]

[
gμν + P2 + 2(u · P)2

[(u · P)2 − P2]
uμuν

+ 3
PμPν

[(u · P)2 − P2]
− 3

(u · P)

[(u · P)2 − P2]
(Pμuν

+ Pνuμ)

]
1

γc

1

2P0

∫
d3q

(2π )32Q0

∫
d3p′

(2π )32P′0

×
∫

d3q′

(2π )32Q′0 (2π )4δ4(P + Q − P′ − Q′)

× (p − p′)i

∑
|MHQ,g,q|2

{
QμQνS j

M (Q, T )

× [
1 ± f 0

g,q(Q′)
] ± f 0

g,q(Q)Q′μQ′νS j
M (Q′, T )

}
.

(22)

The term S̄M (P, T ) is a scalar that depends on the HQ mo-
mentum, and one can evaluate this scalar in the fluid rest
frame. The shear-viscous part of the HQ drag, Ashear

i , follows
the same decomposition as Eq. (7), and we can simplify the
integral in the center-of-mass frame. Similarly, we can esti-
mate the shear-viscous correction to the momentum diffusion
of the HQ in the QGP medium using Eq. (16) in Eq. (6). To
proceed further, the shear-viscous correction to the general
term 〈〈F (p′)〉〉 needs to be done. The viscous correction to
the integral in the center-of-mass frame can be defined as

〈〈F (p′)〉〉shear = πμνPμPν 1

(ε + P)

1

T 2512π4γc

× 1

4Ep p2
[�1(p, T ) ± �2(p, T )], (23)

where �1(p, T ) and �2(p, T ) take the forms

�1 =
∫ ∞

0

q2

Eq
dq

∫ 1

−1
d cos χ

√(
s + m2

c − m2
g,q

)2 − 4sm2
c

s

× f 0
g,q(Eq)

[
1 ± f 0

g,q(Eq)
][

m2
g,q + 3q2 cos2 χ − E2

q

]

×
∫ 1

−1
d cos θc.m.

∑
|MHQ,g,q|2

∫ 2π

0
dφc.m.e

βEq′

× fg,q(Eq′ )F (p′), (24)

and

�2 =
∫ ∞

0

q2

Eq
dq

∫ 1

−1
d cos χ

√(
s + m2

c − m2
g,q

)2 − 4sm2
c

s

× f 0
g,q(Eq)

∫ 1

−1
d cos θc.m.

∑
|MHQ,g,q|2

∫ 2π

0
dφc.m.

× [
1 ± fg,q(Eq′ )

]
fg,q(Eq′ )

{
m2

g,q + 3

p2
[p2 + pq cos χ

− (p · p′)]2 − E2
q′

}
F (p′). (25)

Note that, here, p′ is a function of p, q, cos χ , and scattering
angles in the center-of-mass frame, θc.m. and φc.m., respec-
tively.

Viscous corrections to the distribution functions of quarks
and gluons modify the gluon self-energy and hence the screen-
ing mass in the medium. The bulk-viscous correction to the
retarded gluon self-energy and Debye screening mass μ2 →
μ2 + δμ2 is investigated in Ref. [57]. The Debye mass can
be defined by using the gluon self-energy, μ2 = �00(q0 =
0, | �q| −→ 0), and takes the following form

μ2 = 4παsβ

∫
d3q

(2π )3 [2Nc fg(1 + fg) + 2Nf fq(1 − fq)],

(26)

where αs = g2/4π is the coupling constant, Nf is the number
of flavors and Nc denotes the number of colors. The viscous
corrections to the screening mass can be defined from Eq. (26)
as

δμ2 = 4παsβ

∫
d3q

(2π )3

[
2Ncδ fg

(
1 + 2 f 0

g

)

+ 2Nf δ fq
(
1 − 2 f 0

q

)]
. (27)

The first-order shear-viscous correction for the Debye screen-
ing mass can be obtained by substituting Eq. (17) into Eq. (27)
and we have

δμ2 = 4παsπμνQμQν 1

(ε + P)

1

T 3

∫ ∞

0

q2

(2π )2 dq
∫ 1

−1
d cos χ

× {
2Nc

[(
m2

g + 3q2 cos2 χ − E2
q

)
f 0
g (Eq)

[
1 + f 0

g (Eq)
]

× [
1 + 2 f 0

g (Eq)
]] + 2Nf

[(
m2

q + 3q2 cos2 χ − E2
q

)
× f 0

q (Eq)
[
1 − f 0

q (Eq)
][

1 − 2 f 0
q (Eq)

]]}
. (28)

The integral in Eq. (28) consists of gluonic and quark contri-
butions. While performing the cos χ integral, the term (m2

g +
3q2 cos2 χ − E2

q ) vanishes (within the integration limits) as
m2

g,q + q2 = E2
q for both quarks and gluonic terms. We con-

clude that shear-viscous correction of the screening mass of
the QGP is not directly affecting the HQ drag and diffusion in
leading order.

C. Bulk-viscous correction

1. Distribution function

In this section, we focus on the bulk-viscous correction to
the HQ transport coefficients, considering the viscous correc-
tions through the distribution function and screening mass in
the QGP medium. For the quantitative analysis, we utilize the
leading order bulk-viscous correction to the distribution func-
tion obtained from the Chapman-Enskog expansion within
the relaxation-time approximation, and it takes the following
form:

δ fg,q(Q, X ) = − β f 0
g,q(Q)

[
1 ± f 0

g,q(Q)
](

Eq − m2
g,q

Eq

)

×
(

c2
s − 1

3

)
�(X )

(ζ/τR)
, (29)

where

ζ

τR
≈ 15

(
1

3
− c2

s

)2

(ε + P ), (30)
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with τR as the thermal relaxation time and c2
s as the square

of the speed of sound in the medium. It is important to note
that the effect of the running of coupling is not considered
in the above expression of δ fg,q. For the general expression
of bulk-viscous correction to the distribution function while
considering the running coupling and its reduction to the
non-running-coupling limit, see the discussion in Ref. [39].
Equation (29) can be written as

δ fg,q(Q, X ) = �
∑

j

B j
X (X )B j

M (Q, T ), (31)

where BX (X ) and BM (Q, T ) for partons respectively take the
forms

BX (X ) = 1

15
(

1
3 − c2

s

)
(ε + P )

, (32)

BM (Q, T ) = 1

T
f 0
g,q(Q)

[
1 ± f 0

g,q(Q)
](

Eq − m2
g,q

Eq

)
. (33)

Employing Eqs. (5) and (31), the effect of bulk viscosity on
HQ drag can be defined as

Abulk
i = �

∑
j

B j
X (X )B̄ j

M (P, T ), (34)

where

B̄ j
M (p, T )

= 1

γc

1

2P0

∫
d3q

(2π )32Q0

∫
d3p′

(2π )32P′0

∫
d3q′

(2π )32Q′0

× (2π )4δ4(P + Q − P′ − Q′)(p − p′)i

∑
|MHQ,g,q|2

× {
B j

M (Q, T )
[
1 ± f 0

g,q(Q′)
] ± f 0

g,q(Q)B j
M (Q′, T )

}
.

(35)

The drag coefficient A can be described from Eq. (9) by
following the decomposition. The bulk-viscous correction to
the simplified integral in the center-of-mass frame takes the
following form:

〈〈F (p′)〉〉bulk = �BX (X )

512π4γc

1

Ep
[�1(p, T ) ± �2(p, T )], (36)

where

�1 =
∫ ∞

0

q2

Eq
dq

∫ 1

−1
d cos χ

√(
s + m2

c − m2
g,q

)2 − 4sm2
c

s

×BM (Q, T )
∫ 1

−1
d cos θc.m.

∑
|MHQ,g,q|2

∫ 2π

0
dφc.m.

×eβEq′ fg,q(Eq′ )F (p′), (37)

and

�2 =
∫ ∞

0

q2

Eq
dq

∫ 1

−1
d cos χ

√(
s + m2

c − m2
g,q

)2 − 4sm2
c

s

× f 0
g,q(Eq)

∫ 1

−1
d cos θc.m.

∑
|MHQ,g,q|2

∫ 2π

0
dφc.m.

× BM (Q′, T )F (p′). (38)

2. Bulk-viscous correction to screening mass

The bulk-viscous correction to the distribution function of
quarks and gluons in the QGP medium modifies the Debye
screening mass [57], which in turn affects the collision matrix
element for the 2 → 2 HQ–gluon-quark scattering process.
For the t-channel HQ-quark or antiquark scattering process,
the matrix element takes the following form [18]:

|MHQ,q|2 = 256Nf π
2α2

s

(
m2

c − s
)2 + (

m2
c − u

)2 + 2m2
ct

(t − μ2)2
,

(39)

where s, u, t are Mandelstam variables. Incorporating the
effect of leading order bulk-viscous correction to the Debye
screening mass in matrix element, Eq. (39) takes the following
form:

|M̄HQ,q|2 = |MHQ,q|2 + |MHQ,q|2(1)
, (40)

with

|MHQ,q|2(1) = 512Nf π
2α2

s δμ
2

×
(
m2

c − s
)2 + (

m2
c − u

)2 + 2m2
ct

(t − μ2)3
. (41)

Here, δμ2 denotes the bulk-viscous corrections to the screen-
ing mass in the QGP medium. The bulk-viscous correction
to the screening mass can be explicitly calculated from the
Eq. (27) by employing Eq. (31). Defining |MHQ,q|2(1) =
|M2|2δμ2 and following the same prescriptions as earlier, we
have

〈〈F (p′)〉〉bulk(2) = �BX (X )
1

512π4γc

1

Ep
�3(p, T ), (42)

where

�3 = 2αs

πT

∫ ∞

0

q2

Eq
dq

∫ 1

−1
d cos χ

√(
s + m2

c − m2
q

)2 − 4sm2
c

s

× f 0
q (Eq)

∫ 1

−1
d cos θc.m.|M2|2

∫ 2π

0
dφc.m.e

βEq′ fq(Eq′ )

× F (p′)
∫ ∞

0
r2dr

{
2Nc/ f BM (R, T )

[
1 ± 2 f 0

g,q(Er )
]}

.

(43)

The net bulk-viscous correction to the quark contribution to
the HQ drag and diffusion can be described from Eqs. (36)
and (43). Similarly, we incorporate the effect of bulk correc-
tions to the screening mass into the HQ-gluon processes. In
general, these corrections due to the screening mass to the
HQ transport coefficients are higher order in αs. Now, from
Eqs. (9)–(11), we can define the viscous corrections to the HQ
transport coefficients in the medium.

IV. RESULTS AND DISCUSSIONS

A. Heavy quark transport coefficients in the
evolving quark-gluon plasma

We initiate the discussion with the space-time evolution
of the temperature in Pb + Pb collision at 2.76 TeV, using
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FIG. 1. Temperature evolution of QGP along the y = 0 axis at
midrapidity. White arrows denote the size and direction of velocity
fields. Curved lines indicate constant-temperature contours.

the viscous hydrodynamical model MUSIC. For this study, we
have used one event from the 0%–5% centrality class. We
use the lattice-QCD-based EoS from the HotQCD collabo-
ration [58,59]. Viscous effects, more specifically, terms up
to the second-order gradient expansion, are incorporated in
the hydrodynamical evolution. We choose y = 0, midrapidity,
to illustrate the result of our calculations. Figure 1 is the
temperature-evolution profile of our system where vectors de-
note the size and direction of velocity fields. As expected, the
flow is larger towards the edge of the system and grows with
time. For the quantitative estimation of HQ drag and diffusion
coefficients, we consider the mass of the charm quark to be
mc = 1.5 GeV with the effective number of degrees of free-
dom Nf = 2.5 and the coupling constant αs = 0.3. The drag
coefficient of the HQ with a given momentum p = 5 GeV, at
any space-time (τ, x) is shown in Fig. 2. This is the drag co-
efficient if a charm quark with pμ = ((m2

c + p2)1/2, p, 0, 0)
with p = 5 GeV is present at that space-time point. We ob-
serve that the drag coefficient drops as the QGP expands
in space-time. This implies that the QGP offers less resis-
tance to the HQ motion at low-temperature regimes. The
HQ experience more random forces in the early stage of the
evolution of the QGP as compared with its equilibrated stage
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FIG. 2. Drag coefficient of a charm quark with momentum
p= 5 GeV at different space-time points. Curved lines indicate
constant-A contours.
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FIG. 3. Diffusion coefficients B0 (top) and B1 − B0 (bottom) of
a charm quark with momentum p = 5 GeV at different space-time
points. Curved lines are constant value contours of plotted quantities.

and hence the motion of HQ becomes more random in the
medium. This observation is qualitatively consistent with the
result of Ref. [34]. The diffusion coefficients of the HQ with
momentum p = 5 GeV in the expanding medium is plotted in
Fig. 3 as a function of space and time. Similar to the drag
coefficient, the momentum diffusion of the HQ goes down
in the low-temperature regime. Furthermore, we observe that
the diffusion is larger when the charm quark is moving in the
same direction as the background fluid, whereas the drag is
larger for the charm quark moving opposite to fluid. Clearly,
the details of the dynamics will play an important role.

B. Effect of shear and bulk-viscous corrections
to drag and diffusion

We have incorporated the shear and bulk-viscous cor-
rections through the momentum distribution function and
screening mass of the QGP. The HQ drag and momentum
diffusion coefficients are sensitive to the nonzero η/s, i.e.,
variation up to 10% for η/s = 0.13. The shear-viscous effects
to the HQ drag and diffusion coefficients are studied by esti-
mating

Ashear

A(0)
,

Bshear
0

B(0)
0

, and
Bshear

1 − Bshear
0

B(0)
1 − B(0)

0

,
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FIG. 4. Ratio of shear correction to equilibrium value for drag
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as shown in Fig. 4. The terms Bshear
1 and Bshear

0 respectively
define the first-order shear-viscous correction to the longitu-
dinal and transverse diffusion coefficients of the HQ, whereas
B(0)

1 and B(0)
0 denote the corresponding equilibrium values.

The inclusion of shear viscosity quantitatively affects the HQ
transport coefficient and the effect is more pronounced for
the momentum diffusion of HQs in the QGP medium. We
observe that the shear-viscous effects to the drag and diffusion
coefficients are negligible in the very later stage of the QGP
evolution. The bulk-viscous correction to the HQ transport
coefficients is depicted in Fig. 5. The correction is largest
when ζ/s is large. The inclusion of bulk-viscous pressure
considerably modifies the HQ drag and diffusion coefficients,
up to 30%, in the QGP medium. This observation of the
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FIG. 5. Ratio of bulk correction to equilibrium value for drag
coefficient A (top), B0 (middle) and B1 − B0 (bottom).

significance of bulk viscosity is consistent with the recent
study [7] that highlights the large effect of the temperature
dependent ζ/s in the hadronic observables in the heavy-ion
collisions.

The spatial diffusion coefficient Ds is defined in the limit
p → 0 from the fluctuation-dissipation theorem with the form
Ds = T

mcA(p→0,T ) . The temperature behavior of Ds in the vis-
cous QGP is depicted in Fig. 6. In the current analysis,
we are only focusing on the elastic 2 → 2 scattering (per-
turbative interactions) of HQs with thermal particles in the
medium via s, t, u channels, and the interferences terms. Our
results are consistent with those of leading-order pQCD es-
timates in Ref. [60]. However, the Ds consists of two parts,
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FIG. 6. Spatial diffusion coefficient at the limit p → 0 as a func-
tion of temperature and comparison of the results with perturbative
QCD (pQCD) [60], lattice [61], and QPM [62] estimations.

the soft component and the pQCD part, in which soft com-
ponent accounts for the nonperturbative effects [33]. The
nonperturbative effects to the Ds can be estimated from lat-
tice QCD [61] and quasiparticle model (QPM) [62] results.
The QPM incorporates the nonperturbative dynamics with a
temperature-dependent background field, bag constant, and
with the temperature-dependent quasiparticle mass. Note that
nonperturbative effects, along with the radiation of color
charges, need to be considered in the estimation of HQ ob-
servables such as nuclear suppression factor, flow coefficients,
etc. This can be done by solving the Fokker-Plank equation
stochastically by employing Langevin simulations, and we
intend to explore this aspect in the near future. The current
focus lies in the study of viscous effects to Ds considering
the perturbative interactions, and we observe that the viscous
effects are more prominent in the temperature regime near to
the transition temperature.

C. Heavy quark energy loss in the expanding viscous medium

HQs execute Brownian motion in the QGP medium and
may lose energy by elastic collisions with quarks and gluons.
The drag force which accounts for the resistance to the HQ
motion, leads to its energy loss in the QGP medium. The
differential collisional energy loss of the HQ in the QGP is
related to the drag coefficient as

−dE

dL
= A(p2, T )p, (44)

where dL is the length traveled by the HQ in the medium
in the direction of x axis within the time interval dτ . The
energy lost by the HQ goes into the medium and could be
accounted for by introducing a source term in the hydro-
dynamic energy-momentum conservation equation. We have
neglected such a source term in our analysis. A comparative
study of the energy loss of the HQ from the drag force with
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FIG. 7. Different trajectories for different initial charm quark
momentum (top). The charm quark momentum loss as a function
of the local temperature along the trajectory (middle). The charm
quark fractional momentum loss with proper time in the viscous
medium for these trajectories (bottom). The color of trajectories in
the top plot corresponds to the color of momentum curves in the
middle and bottom plots. The numbers in the labels correspond
to the initial charm quark momentum in the x direction in GeV.
Momentum in the y and longitudinal direction are taken to be
zero.

the results of Ref. [63] with hard and soft collision process
is done in Ref. [34] and the observation confirms that the
result from Eq. (44) is consistent with that of Ref. [63]. To
quantify the energy loss, we choose different initial momenta
for the charm quark while propagating in the viscous QGP
medium. Different trajectories of motion of the charm quark
for different initial momentum is depicted in Fig. 7 (top). The
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curves almost overlap as the effect of shear correction on energy
loss is negligible. Difference in charm quark momentum between
evolution runs with and without viscous corrections (bottom panel).

effects of viscous coefficients will reflect on HQ transport
in the medium and also on the space-time evolution of the
system. Note that the shear and bulk viscous effects on the
HQ momentum loss can be quantified in terms of the drag co-
efficient A 
 A(0) + Ashear + Abulk, whereas the viscous effects
in the space-time evolution of the medium are incorporated
in the temperature evolution of the QGP. The energy loss
of the charm quark can be demonstrated by analyzing its
momentum evolution in the QGP medium. The energy loss
of the HQ depends on the temperature dependence of each
trajectory and initial momentum of the HQ in the medium.
The temperature dependence of the charm quark momentum
loss in the medium is plotted in Fig. 7 (middle panel). The tra-
jectories traverse different high- and low-temperature regions
of the QGP, which results in the unusual temperature profiles
in the middle panel. We observe that the charm quark loses
its momentum as the QGP cools down, and the momentum
loss depends on the value of initial momentum in the medium.
This can be understood from Eq. (44) because the drag coef-
ficient depends on the HQ momentum and temperature of the
medium [18,34]. The percentage of charm quark momentum
loss for different trajectories (with different initial momenta)
is demonstrated in Fig. 7 (bottom). It is observed that the
charm quark loses up to 10%–30% of the initial momentum
while propagating through the QGP for the duration with time
interval up to τmax = 14 fm due to the collisions with thermal
particles in the medium. The charm quark with initial mo-
mentum p = 2 GeV loses up to 30% of its momentum while
propagating in the viscous QGP whereas the charm quark with
p = 5 GeV has 20% of momentum loss in the QGP evolution.
The viscous effects to the momentum evolution of the charm
quark, with initial momentum p = 5 GeV, is plotted in Fig. 8.

The viscous corrections have small effects on the momentum
evolution of HQ in the medium.

V. CONCLUSION AND OUTLOOK

In this article, we have studied the HQ dynamics in the
expanding QGP medium using a realistic 3 + 1D hydrody-
namical modeling—MUSIC. The model describes the QGP
expansion by considering the second-order evolution equa-
tions for shear tensor and bulk-viscous pressure, along with
the realistic initial conditions and lattice EoS. We have de-
scribed the HQ transport within the Fokker-Planck dynamics.
We observe that the HQ drag and momentum diffusion coef-
ficients drop in the later stage of the evolution of the medium.
We have conducted a systematic analysis in the shear and
bulk-viscous corrections to the HQ transport coefficients.
The viscous corrections are incorporated through the quark
and gluon phase-space distribution functions and through the
HQ-thermal particle scattering matrix element via screening
mass in the analysis. The coefficients of drag and momentum
diffusion of the HQ in the viscous QGP are estimated and
compared with the HQ coefficients obtained in a fully ther-
malized medium.

Results showed that the effects of shear and bulk-viscous
dynamics to the drag and diffusion are non-negligible and the
variation ranges from to 0%–30% for different temperature
regimes. These viscous corrections are essential to maintain
consistency in the theoretical description of HQ dynamics
in the QGP medium which is away from the equilibrium.
Furthermore, we have computed the collisional energy loss
of the charm quark in the expanding medium at the LHC.
The HQ drag force accounts for the energy loss due to the
charm quark collisions with thermal particles. The energy loss
of the HQ is reflected in the evolution of HQ momentum in
the viscous QGP medium. We observe that the energy loss is
sensitive to the initial charm quark momentum. In addition,
we have investigated the effects of shear and bulk viscosities
to the charm quark momentum evolution. The viscous effects
are seen to have weaker dependence on the momentum evo-
lution of the charm quark in the QGP, especially in the initial
stages of the collision. A similar analysis will hold for bottom
quarks, and the effects will be less pronounced because of
their larger mass. The current analysis is important for the
understanding of dilepton signals stemming from the decay
of open charm and bottom mesons. In particular, the energy
loss of the charm (bottom) quark causes a reduction in the
number of high-invariant-mass dileptons from the decay of
open charm (bottom) mesons.

The analysis presented in the article is the first step to-
wards the investigation of the phenomenological implications
of the HQ propagation in the viscous expanding medium with
3 + 1D relativistic hydrodynamics. The viscous corrections
to HQ transport coefficients determined in this work could
affect the experimental signals such as nuclear suppression
factor, elliptic flow, etc. The hydrodynamic description of
the pT spectra and flow of heavy baryons could be modified
by incorporating the realistic temperature dependence. We
intend to work on these interesting aspects in the near future.
Investigating the radiative energy loss that is almost the same
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order of collisional energy loss at high energy scales of HQ
(6–10 GeV), and the effects of electromagnetic fields on HQ
transport while including the nonequilibrium corrections, are
other interesting directions to follow.
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