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Time-dependent covariant density functional theory in three-dimensional lattice space: Benchmark
calculation for the 16O + 16O reaction
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Time-dependent covariant density functional theory with the density functional PC-PK1 is developed in a
three-dimensional coordinate space without any symmetry restrictions, and benchmark calculations for the
16O + 16O reaction are performed systematically. The relativistic kinematics, the conservation laws of the
momentum, total energy, and particle number, as well as the time-reversal invariance are examined and confirmed
to be satisfied numerically. Two primary applications including the dissipation dynamics and above-barrier
fusion cross sections are illustrated. The obtained results are in good agreement with the ones given by the
nonrelativistic time-dependent density functional theory and the data available. This demonstrates that the newly
developed time-dependent covariant density functional theory could serve as an effective approach for the future
studies of nuclear dynamical processes.
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I. INTRODUCTION

During the past decades, new experimental facilities with
radioactive beams have extended our knowledge of the nu-
clear chart to the very limits of nuclear binding, in particular
to the unstable neutron-rich nuclei. Many novel and striking
features have been found in the structure of neutron-rich nu-
clei, such as the halo phenomenon, and the disappearance of
traditional magic numbers and occurrence of new ones [1,2].
The new observations not only provide us new insights for
nuclear systems, but also challenge the established nuclear
theory.

Enormous efforts have been made to understand the
physics of nuclear many-body systems based on microscopic
approaches. The nuclear density functional theory (DFT) is
one of the most popular approaches in this context [3,4].
Starting from a universal energy density functional, the com-
plicated nuclear many-body problem can be simplified as a
one-body problem [5]. In this way, the DFT can provide a
global description for almost all nuclei in the nuclear chart,
including very neutron-rich nuclei, and a fairly good accuracy
has been achieved with only a few parameters in the energy
density functional.

By taking into account the Lorentz symmetry, the covari-
ant density functional theory (CDFT) has attracted a lot of
attention in nuclear physics [4,6–9]. In this framework, the
nucleons are treated as Dirac particles moving in large scalar
and vector fields of the order of a few hundred MeV [10].
This brings many advantages to describe nuclear systems with
the CDFT, such as the new saturation mechanism of nuclear
matter [11], the natural inclusion of spin-orbit interactions
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[12], and, thus, the relativistic spin and pseudospin symme-
tries [13]. Another important advantage of the CDFT is the
self-consistent treatment of the time-odd fields, which share
the same coupling constants as the time-even ones thanks
to the Lorentz invariance [7,14]. In the nonrelativistic DFT,
while the Galilean invariance also constrains some time-odd
fields, it does not work for those related to the square and the
gradient of spin density [15]. With these advantages, CDFT
has been successfully used to investigate the ground-state
properties of many exotic nuclei [16–19] and also various
nuclear excitation phenomena including rotations [20–23] and
vibrations [24–27].

The time-dependent DFT (TDDFT) is a dynamical ex-
tension of DFT [28] for describing dynamical processes of
many-body systems. In nuclear physics, the development
of TDDFT can be traced back to the mid 1970s [29–36],
which are known under the notation of the time-dependent
Hartree-Fock method [37]. However, the early applications
of the nuclear TDDFT suffered from simplified effective in-
teractions and/or restricted geometric symmetries [38]. With
ever-improving computational capabilities, the TDDFT expe-
rienced a revival during the last twenty years, and unrestricted
three-dimensional (3D) calculations with modern nuclear den-
sity functionals became available [15,39–41]. To date, the
TDDFT in 3D lattice space has been widely applied to
many nuclear dynamical processes, such as the multinucleon
transfer process [42–45], fission [46–49], fusion [50–54], col-
lective vibration [55–57], cluster scattering [58], etc.

The dynamical extension of the CDFT, i.e., the time-
dependent CDFT (TDCDFT), can be traced back to the early
1980s, where the time-dependent versions of the Walecka
model were adopted to describe the dynamics of colliding
nuclear slabs [59] and relativistic heavy ion collisions [60,61].
Later on, the time-dependent relativistic mean-field theory
was used to describe the dynamics of Coulomb excitations
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of nuclei by assuming axial symmetry [62,63]. In the present
work, TDCDFT with the successful density functional PC-
PK1 is developed in a three-dimensional coordinate space
without any symmetry restrictions. This would be helpful to
clarify the ambiguity of the spin-orbit fields and time-odd
fields in the nonrelativistic TDDFTs and, thus, provide a new
framework to investigate the dynamical processes of nuclei.
However, such a development is not simple at all because
of the longstanding difficulties in solving the CDFT in a 3D
lattice [64,65]. Recently, the CDFT has been solved in a 3D
lattice space with the inverse Hamiltonian [66,67] and Fourier
spectral methods [68], and its successful applications include
the studies of nuclear linear-chain [69] and toroidal struc-
tures [70]. This paves the way to develop the corresponding
time-dependent approaches in a full 3D lattice space without
assuming any symmetries.

In our very recent work [71], the TDCDFT was developed
in a 3D lattice space with relativistic density functionals and
applied to investigate the microscopic dynamics of the linear-
chain cluster states. Following the previous work, a systematic
investigation of the 16O + 16O reaction will be reported in
this work with the detailed formalism of the TDCDFT in 3D
lattice space. In Sec. II, the theoretical framework is intro-
duced. The numerical details are given in Sec. III. Section IV
is devoted to the numerical tests. Two primary applications,
including the dissipation dynamics and above-barrier fusion
cross sections, are presented in Secs. V and VI, respectively.
Finally, a summary is given in Sec. VII.

II. THEORETICAL FRAMEWORK

A. Covariant density functional theory

The starting point of the CDFT is a standard Lagrangian
density which, in the point-coupling form, can be written
as [72]

L = Lfree + L4f + Lhot + Lder + Lem

= ψ̄ (iγ μ∂μ − mN )ψ − 1

2
αS (ψ̄ψ )(ψ̄ψ )

− 1

2
αV (ψ̄γ μψ )(ψ̄γμψ ) − 1

2
αTV (ψ̄ �τγ μψ ) · (ψ̄ �τγμψ )

− 1

3
βS (ψ̄ψ )3 − 1

4
γS (ψ̄ψ )4 − 1

4
γV [(ψ̄γ μψ )(ψ̄γμψ )]2

− 1

2
δS∂

ν (ψ̄ψ )∂ν (ψ̄ψ ) − 1

2
δV ∂ν (ψ̄γ μψ )∂ν (ψ̄γμψ )

− 1

2
δTV ∂ν (ψ̄ �τγ μψ ) · ∂ν (ψ̄ �τγμψ )

− 1

4
FμνFμν − e

1 − τ3

2
(ψ̄γ μψ )Aμ. (1)

It includes the Lagrangian density Lfree for free nucleons,
the four-fermion point-coupling terms L4f , the higher-order
terms Lhot accounting for the medium effects, the derivative
terms Lder to simulate the finite-range effects that are crucial
for a quantitative description of nuclear density distributions,
and the electromagnetic interaction terms Lem. Thus, one can

build the energy density functional for a nuclear system,

Etot = Ekin + Eint + Eem

=
∫

d3r

{
A∑

k=1

ψ
†
k (α · p̂ + βmN )ψk + 1

2
αSρ

2
S + 1

3
βSρ

3
S

+ 1

4
γSρ

4
S + 1

2
δSρS�ρS + 1

2
αV jμ jμ + 1

4
γV ( jμ jμ)2

+ 1

2
δV jμ� jμ + 1

2
αTV jμTV ( jTV )μ + 1

2
δTV jμTV �( jTV )μ

+ e jμc Aμ + 1

2
Aμ�Aμ

}
, (2)

where Ekin, Eint, and Eem are the kinetic, interaction, and
electromagnetic energies, respectively. The local densities and
currents ρS , jμ, jμTV , and jμc are given by

ρs =
A∑

k=1

ψ̄kψk, (3a)

jμ =
A∑

k=1

ψ̄kγ
μψk, (3b)

jμTV =
A∑

k=1

ψ̄kγμτ3ψk, (3c)

jμc =
A∑

k=1

ψ̄iγ
μ 1 − τ3

2
ψk, (3d)

where τ3 is the isospin Pauli matrix with the eigenvalues +1
for neutrons and −1 for protons. The time component j0 is
usually denoted as the vector density ρv .

In the static case, the densities and currents in Eq. (3) are
time independent. By means of the variation of energy density
functional Eq. (2) with respect to the densities and currents,
one obtains the Kohn-Sham equation for nucleons,

ĥ(r)ψk (r) = εkψk (r), (4)

where εk is the single-particle energy and ĥ is the single-
particle Dirac Hamiltonian,

ĥ(r) = α · ( p̂ − V ) + V 0 + β(mN + S). (5)

The scalar S(r) and four-vector V μ(r) potentials read

S(r) = αSρS + βSρ
2
S + γSρ

3
S + δS�ρS, (6a)

V μ(r) = αV jμ + γV ( jμ jμ) jμ + δV � jμ + τ3αTV jμTV

+ τ3δTV � jμTV + e
1 − τ3

2
Aμ, (6b)

where the electromagnetic field Aμ is determined by Poisson’s
equation,

−�Aμ = e jμc . (7)

By solving the Dirac equation Eq. (4) self-consistently, one
can obtain the single-nucleon wave functions for a nucleus in
its ground state.
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B. Time-dependent covariant density functional theory

In the dynamical case, the evolution of single-nucleon
wave functions ψk should fulfill the time-dependent Kohn-
Sham equation [28,73],

i
∂

∂t
ψk (r, t ) = ĥ(r, t )ψk (r, t ). (8)

The time-dependent ĥ(r, t ) is purely determined by the
time-dependent densities and currents [28]. With the adia-
batic approximation [40], the time-dependent single-particle
Hamiltonian ĥ(r, t ) in Eq. (8) is taken as the Dirac Hamil-
tonian in Eq. (5), in which the ground-state densities and
currents, Eqs. (3), are obtained with the wave functions
ψk (r, t ) at the time t . This obviously lacks the memory effect,
i.e., ĥ(r, t ) does not depend on the history of the system.

The time-dependent Dirac Eq. (8) has the formal solution

ψk (r, t ) = T̂ exp

[
−i

∫ t

t0

dt ′ ĥ(r, t ′)
]
ψk (r, t0), (9)

where T̂ represents the time-ordering operation and t0 is the
initial time.

For nuclear collisions, the initial wave functions ψk (r, t0)
are composed of the single-particle wave functions of the
two nuclei, which are usually in their ground states, and are
obtained from two separate static CDFT calculations. Subse-
quently, the two nuclei are placed on the mesh of a 3D lattice
space with a large enough distance between them, so that the
overlap between their wave functions is negligible at the initial
time. Moreover, the nuclei are boosted to set them in motion.

As the Dirac equation is Lorentz covariant, the boost of
nuclei can be realized by using the inhomogeneous Lorentz
transformation [74]. Starting from the ground-state single-
particle wave functions ψ

(g.s.)
k (r), the Lorentz boosted ones

ψ ′
k (r) with velocity v read

ψ ′
k (r) = Ŝ(v)ψ (g.s.)

k (r′)eiεkv·r/√1−v2
, (10)

where Ŝ(v) denotes the transformation on the four compo-
nents of a Dirac spinor,

Ŝ(v) =
√

1 + √
1 − v2

2
√

1 − v2
+ [α · (v/v)]

√
1 − √

1 − v2

2
√

1 − v2
, (11)

and r′ represents the transformed coordinate,

r′ = r +
(

1√
1 − v2

− 1

)
(r · v)v

v2
. (12)

Note that here the single-particle energy εk is not shifted by
the nucleon mass mN .

The Lorentz boost in Eq. (10) can be connected with
the Galilean boost used in the nonrelativistic TDDFT by
approaching the nonrelativistic limits [v/c ≈ 0 and (εk −
mN )/mN ≈ 0], under which the Lorentz boosted wave func-
tions in Eq. (10) become

ψ ′
k (r) ≈ ψ

(g.s.)
k (r)eimN v·r. (13)

They are just identical with the Galilean boosted wave func-
tions [75].

Finally, it should be mentioned that the spatial components
of the electromagnetic vector potential A(r) are neglected in
the calculations, since their contributions are extremely small.
Although the center-of-mass correction energy is usually
included a posteriori in the self-consistent static CDFT calcu-
lations, this strategy is disputable in the time-dependent case.
For instance, it involves only the total mass number and does
not account for the masses of the fragments. Therefore, simi-
lar to nonrelativistic TDDFT calculations, the center-of-mass
correction is neglected in the present TDCDFT calculations.

III. NUMERICAL DETAILS

In the present work, the density functional PC-PK1 [72] is
employed to study the 16O + 16O reaction. The Dirac spinors
of the nucleons and the potentials are represented in 3D lattice
space without any symmetry restriction. The mesh sizes along
the x, y, and z axes are identical and chosen as d = 0.8 fm. The
ground state of 16O is calculated in a box with 24 × 24 × 24
grid points, while for the time-dependent calculations a larger
box with 30 × 30 × 50 grid points is used. For the initial
states of the time-dependent calculations, the centers of the
two 16O nuclei are placed in the z axis with a separation dis-
tance 16 fm. The Poisson equation for the Coulomb potential
is solved by Hockney’s method with the isolated boundary
condition [76].

For the numerical implementation of the formal solution
(9), the predictor-corrector strategy [75] is adopted, in which
the evolution time is cut into a series of small time steps �t .
Over each time interval [t, t + �t], the single-particle Hamil-
tonian in Eq. (9) is approximated as the one at the mid-time
ĥ(t + �t/2). Thus, the evolution of the single-particle wave
function from t to t + �t is obtained as

ψk (r, t + �t ) ≈ exp[−iĥ(r, t + �t/2)�t]ψk (r, t ), (14)

which also provides the initial condition for the evolution over
[t + �t, t + 2�t].

In this work, the single-particle Hamiltonian ĥ(t + �t/2)
is determined with a two-step recipe, i.e., first roughly con-
structed and then corrected to be a better one. In the first step,
the densities and currents at time t + �t , denoted generally as
ρ̃ (1)(t + �t ), are estimated from ψ̃

(1)
k (r, t + �t ),

ψ̃
(1)
k (r, t + �t ) = exp[−iĥ(r, t )�t]ψk (r, t ). (15)

The Hamiltonian ĥ(1)(r, t + �t/2) is roughly constructed us-
ing the average densities and currents [ρ(r, t ) + ρ̃ (1)(r, t +
�t )]/2. In the second step, the obtained ĥ(1)(r, t + �t/2) is
used to update the wave functions

ψ̃
(2)
k (r, t + �t ) = exp[−iĥ(1)(r, t + �t/2)�t]ψk (r, t ), (16)

which provide a new estimation for the densities and currents
ρ̃ (2)(t + �t ) at time t + �t . The Hamiltonian ĥ(r, t + �t/2)
in Eq. (14) is then constructed from the average densities and
currents [ρ(r, t ) + ρ̃ (2)(r, t + �t )]/2.

The exponential function of the Hamiltonian operator is
evaluated by the Taylor expansion up to order m,

exp(−iĥ�t )ψ ≈
m∑

n=0

(−i�t )n

n!
ĥnψ. (17)
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FIG. 1. The collective kinetic energy Ecoll. kin. of a boosted 16O
as a function of the boost velocity v. The open circles represent
the collective kinetic energies obtained by TDCDFT. The solid and
dashed lines denote the results of relativistic M/(1 − v2)1/2 − M
and nonrelativistic kinetic Mv2/2 energies (see text for the mass
M), respectively. The inset shows the results after subtracting the
nonrelativistic kinetic energies.

The values of �t = 0.1 fm/c and m = 4 are adopted in
the following calculations if not specified. A truncation
of the Taylor expansion would violate the strict unitarity of
exp(−iĥ�t ) and energy conservation, so the conservation of
particle number and energy should be checked carefully to
preserve the quality of the time evolution.

IV. NUMERICAL TESTS

In this section, the TDCDFT benchmark calculations for
the 16O + 16O reaction are performed in 3D lattice space.
Numerical tests, including the collective kinetic energy as a
function of boost velocity, the conservation of momentum,
total energy, and particle number, as well as the time reversal
invariance, are carefully examined.

The examinations are first focused on the tests involving a
single 16O. In Fig. 1, the collective kinetic energy Ecoll. kin. of
a boosted 16O is shown as a function of the boost velocity v,
whose direction is set along the z axis. For comparison, the
results of relativistic and nonrelativistic kinetic energies, i.e.,
M/(1 − v2)1/2 − M and Mv2/2, are also shown, where the
mass M of 16O is evaluated from the ground-state total energy
Etot in Eq. (2). The TDCDFT results coincide with the rela-
tivistic kinetic energies very well, which is seen more clearly
by subtracting the nonrelativistic kinetic energies (see the
inset of Fig. 1). This shows that the adiabatic approximation
for ĥ(r, t ) in Eq. (8) is quite reasonable. The nonrelativistic
kinetic energies deviate from relativistic ones dramatically
with the velocity above 0.3c. However, one should note that
collisions at such high energies should not be described in
time-dependent DFTs due to the mean-field approximation.

A boosted 16O moves with a constant momentum. In
TDCDFT, the momentum p(t ) is represented by the expec-
tation value of the momentum operator p̂. To examine the
conservation of momentum, the 16O is placed in the origin
point and then is boosted with a collective kinetic energy

FIG. 2. The relative momentum deviation |[pz(t ) − pavg.]/pavg.|
with respect to the average momentum pavg. of a boosted 16O as a
function of the center-of-mass position zc.m.. The abscissa is scaled
by the mesh size d . The collective kinetic energy Ecoll. kin. for the
boosted 16O is set to 50 MeV. Panel (a) shows the results with the
Taylor expansion orders m = 4, 6, 8 and the time evolution step
�t = 0.10 fm/c. Panel (b) shows the results with �t = 0.05, 0.10,
0.20 fm/c and m = 4.

Ecoll. kin. = 50 MeV along the z axis. The system is evolved
for T = 100 fm/c. The average momentum along the z axis is
estimated as

pavg. =
∫ T

0 dt pz(t )∫ T
0 dt

. (18)

Figure 2 shows the evolution of the relative momentum de-
viation |[pz(t ) − pavg.]/pavg.| with Taylor expansion orders m
and time evolution steps �t as a function of the center-of-mass
position zc.m., which is evaluated by

zc.m. =
∫

d3r zρv (r, t )∫
d3r ρv (r, t )

. (19)

The relative momentum deviation is reduced with larger
m and smaller �t . In the case of �t = 0.1 fm/c and m = 4,
the relative momentum deviations are as small as 10−5, which
reveals the accuracy of the momentum conservation. Even so,
it is interesting to note that the relative momentum deviations
oscillate with zc.m., because the space is not exactly transla-
tional invariant but is discretized on the lattices. In fact, the
oscillation period is approximately the mesh size d .

Next, the conservation of total energy and particle
number as well as the time reversal invariance for the
16O + 16O reaction are investigated. The head-on collision
with a center-of-mass energy Ec.m. = 50 MeV is taken as an
example.

In Fig. 3, the time evolutions of the relative energy devi-
ation |[Etot (t ) − Einit.]/Einit.| with different �t and m values
are shown. For �t = 0.1 fm/c, the relative energy deviations
are around 10−4 and 10−5 for m = 4 and 8, respectively.
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FIG. 3. The relative energy deviation |[Etot (t ) − Einit.]/Einit.| with
respect to the initial energy Einit. for the 16O + 16O head-on collision
at the center-of-mass energy Ec.m. = 50 MeV. The rest mass mN

for nucleons has been subtracted from the total energy Etot . Panel
(a) shows the results with the Taylor expansion orders m = 4, 6, 8
and the time evolution step �t = 0.10 fm/c. Panel (b) shows the
results with �t = 0.05, 0.10, 0.20 fm/c and m = 4.

However, the evolutions of the relative energy deviation for
m = 6 are not stable, in particular at longer time. The reason
is not clear at the moment, but a similar phenomenon is also
found in the calculation of nonrelativistic TDDFT [75]. It is
very likely to be a numerical issue. In fact, the instability
of evolution for m = 6 disappears at �t = 0.05 fm/c. One
may generally expect that the evolution becomes more stable
for larger m values, while, for �t = 0.1 fm/c, it is a little
surprising that the evolution with a smaller m = 4 is quite
stable. There seem to be subtle cancellations of numerical
errors during the evolution. This is not a generic conclusion,
and a careful test for the stability of time evolution should
always be made before systemic calculations. For m = 4, the
smaller the time evolution step �t is, the better the total
energy is conserved. This can be understood because the ap-
proximations in Eqs. (14) and (17) are better for smaller �t
values.

In Fig. 4, the evolution of the total energy is shown as
a function of time, where �t = 0.1 fm/c and m = 4 are
adopted. The total energy is conserved along the time evolu-
tion at a precision of about 10−4. The three energy constituents
including the interaction energy Eint, the electromagnetic en-
ergy Eem, and the kinetic energy Ekin [see Eq. (2)], are also
shown in Fig. 4. There are obvious fluctuations up to 70 MeV
for these energy constituents, in particular for the interaction
and kinetic energies, which could correspond to density os-
cillations of the excited composite system. Note that in the
present covariant framework, the interaction energy Eint is
determined by the densities and/or currents in the scalar and
vector channels. The energy fluctuations in each channel are
large and even beyond 1000 MeV. This reveals that the con-
servation of the total energy is indeed achieved by an elegant

FIG. 4. Time evolution of the total energy and its constituents
including the interaction energy Eint , the electromagnetic energy Eem,
and the kinetic energy Ekin, for the 16O + 16O head-on collision at
the center-of-mass energy Ec.m. = 50 MeV. The rest mass mN for
nucleons has been subtracted from the total and kinetic energies.

balance between two large energies in the scalar and vector
channels.

Another important examination associated with the ap-
proximation in Eq. (17) is the conservation of the total particle
number N (t ) with the definition:

N (t ) =
∫

d3r ρv (r, t ). (20)

It reveals the influences of the Taylor expansion on the strict
unitarity of the exponential exp(−iĥ�t ). In Fig. 5, the time
evolution of the relative particle number deviation |[N (t ) −
Ninit.]/Ninit.| is shown with different �t and m values. Similar
to the conservation of the total energy (see Fig. 3), the particle
number is better conserved with smaller �t and larger m
values; except for the unstable evolution with �t = 0.1 fm/c

FIG. 5. Same as Fig. 3 but for the relative particle number
deviation |[N (t ) − Ninit.]/Ninit.| with respect to the initial particle
number Ninit..
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FIG. 6. Time evolution of the quadrupole deformation β20 for the
16O + 16O head-on collision at Ec.m. = 50 MeV. The single-particle
wave functions at time t = 1000 fm/c are replaced by their time-
reversal conjugates.

and m = 6. The particle number is conserved quite well for all
stable evolutions, and the relative particle number deviation
is around 10−7 at 1000 fm/c in the case of �t = 0.1 fm/c
and m = 4. With �t = 0.1 fm/c, the calculations with larger
m = 10, 12, 14 are also performed. Better conservations of
particle number can be reached, and the relative deviation is
as small as 10−14 for m = 14.

All in all, it is found that the momentum, total energy,
and particle number are conserved with high precisions in
the present TDCDFT calculations with �t = 0.1 fm/c and
m = 4. Therefore, they are adopted in the following investi-
gations.

Apart from the conservation laws, another severe test of the
TDCDFT is provided by the time-reversal invariance, which
means that the whole system has the microscopic reversibility
[30,77]. To see this property in 16O + 16O head-on collision at
Ec.m. = 50 MeV, the single-particle wave functions ψk (r, t ) at
t = 1000 fm/c are replaced by their time-reversal conjugates,

T̂ ψk (r, t ) = −iαxαzψ
∗
k (r, t ), (21)

where αx and αz are Dirac matrices. With the time going on,
the system should return to the state at the initial time. In
Fig. 6, the time evolution of the quadrupole deformation β20 is
shown. It is clearly seen that β20 evolves back precisely after
replacing ψk (r, t ) with T̂ ψk (r, t ) at 1000 fm/c. Moreover, the
nucleon density at t = 2000 fm/c is also found to agree quite
well with the initial one. These results demonstrate that the
time-reversal invariance is fulfilled in the present TDCDFT
calculations.

V. DISSIPATION DYNAMICS

The dissipation dynamics plays an important role in heavy-
ion collisions. It is responsible for the irreversible conversion
of the initial collective kinetic energy into intrinsic nuclear ex-
citations. To study the dissipation dynamics in deep-inelastic
collisions, the 16O + 16O head-on collisions with the center-
of-mass energy Ec.m. above the upper threshold of fusion
are calculated. A measure of the dissipation is given by the

FIG. 7. Percentage of energy dissipation for the 16O + 16O head-
on collisions as a function of the center-of-mass energy Ec.m.. For
comparison, the nonrelativistic TDDFT results (circle) and the ones
with further inclusion of the time-odd spin-orbit terms (triangle),
taken from Ref. [78], are also shown.

percentage of energy dissipation Pdis = 1 − Efin/Ec.m., where
Ec.m. and Efin represent the initial and final collective kinetic
energies, respectively.

In Fig. 7, the percentage of energy dissipation Pdis calcu-
lated with the TDCDFT is depicted as a function of Ec.m. in
comparison with the nonrelativistic TDDFT results, which are
taken from Ref. [78]. The spin-orbit interaction has significant
effects on the dissipation, since it couples the spatial motion
of the nucleons with the spin degree of freedom, and gives
a mechanism for the collective kinetic energy to excite the
internal spin degrees of freedom [15]. It is well known that the
spin-orbit interaction is from relativistic dynamics, and it is
naturally taken into account in a covariant density functional.
One can see from Fig. 7 that the energy dissipations Pdis in
nonrelativistic TDDFT are much lower than the relativistic
ones. The discrepancies are significantly reduced with further
inclusion of the time-odd spin-orbit terms in the nonrelativis-
tic TDDFT calculations. This reveals the fact that a covariant
density functional automatically contains both time-even and
time-odd spin-orbit interactions.

The features of energy dissipation could be seen more
clearly through the density distributions. Figure 8 shows
the density distributions of the separating ions at a given
relative distance R = 8.3 fm for the 16O + 16O head-on col-
lisions with three center-of-mass energies, i.e., Ec.m. = 90,
130, and 170 MeV. With increasing Ec.m., the density dis-
tribution becomes less diffused. This is due to the fact that
the collective motion becomes faster for larger Ec.m. and,
thus, the mean field has less time to rearrange itself and
more likely keeps its identity as the incident nucleus. This
is also consistent with the decreased trend of the percentage
of energy dissipation Pdis in Fig. 7, and, for the present three
center-of-mass energies, the corresponding Pdis are respec-
tively 84.5%, 70.9%, and 54.2% in the TDCDFT calculations.
Similar features were also obtained in the nonrelativistic
TDDFT calculations with the time-odd spin-orbit terms [78],
while here the density distributions are more diffused in the
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FIG. 8. Density distributions of the separating ions at a given
relative distance R = 8.3 fm for the 16O + 16O head-on collisions
with the center-of-mass energies Ec.m. = 90 MeV (top), 130 MeV
(middle), and 170 MeV (bottom). The isolines correspond to multi-
ples of 0.02 fm−3.

TDCDFT due to the slightly larger energy dissipation Pdis

(see Fig. 7).

VI. ABOVE-BARRIER FUSION CROSS SECTION

The fusion of 16O + 16O at above Coulomb barrier ener-
gies is one of the most important benchmarks for the early
applications of TDDFT [31–36]. The primary reason is that
16O is a light double-magic nucleus, and there are abun-
dant data for the 16O + 16O fusion cross section [79–83].
The early calculations of TDDFT gave conspicuous trans-
parency for the collisions with low angular momenta, which
was, however, not observed in experiment. This problem is
known as the “fusion window anomaly,” and was later re-
solved by the inclusion of spin-orbit interactions [84,85].
Here, the above-barrier fusion cross section of 16O + 16O is
investigated with the newly developed TDCDFT in 3D lattice
space.

In the present work, the fusion cross section is
calculated by

σfus(Ec.m.) = π

2μEc.m.

∞∑
L=0

(2L + 1)Pfus(L, Ec.m.), (22)

where μ is the reduced mass of the system, and Pfus(L, Ec.m.)
is the fusion probability for the partial wave with orbital an-
gular momentum L at the center-of-mass energy Ec.m.. Since

FIG. 9. Total density evolutions for the 16O + 16O reactions with
the orbital angular momentum L = 20h̄. The first and second rows
depict the results at the center-of-mass energies Ec.m. = 26.7 and
26.8 MeV, respectively. The isolines correspond to multiples of
0.02 fm−3.

16O + 16O is a system composed of two identical spin-zero nu-
clei, the cross section must be multiplied by a factor of 2 and
the sum over angular momenta in Eq. (22) is restricted to even
values of L. Due to the mean-field approximation in TDCDFT,
the sub-barrier tunneling of the many-body wave function is
not included, i.e., Pfus = 0 or 1. Such a sharp change can be
smoothed by the well-known Hill-Wheeler formula [86] with
a Fermi function,

Pfus(L, Ec.m.) = exp(xL )

1 + exp(xL )
, (23)

with xL = [Ec.m. − B(L)]/ε0. Here, the decay constant ε0 is
chosen as 0.4 MeV [87], and B(L) is the position of the
angular-momentum-dependent barrier.

To obtain the barriers B(L) with the TDCDFT, the fusion
dynamics are examined in terms of semiclassical trajecto-
ries. As an example, the total density evolutions for the
16O + 16O reactions with L = 20h̄ are shown in Fig. 9. The
first and second rows depict the total density evolutions at the
center-of-mass energies Ec.m. = 26.7 and 26.8 MeV, respec-
tively. For both energies, the two incident nuclei first form
a compound system with a neck [see Figs. 9(b), 9(c), 9(f),
and 9(g)]. The compound system then reseparates in a short
time at Ec.m. = 26.7 MeV [see Fig. 9(d)], while it fuses to a
more compact system at Ec.m. = 26.8 MeV [see Fig. 9(h)].
This indicates that the barrier B(L = 20h̄) is in the range of
26.7–26.8 MeV and, thus, is taken as 26.75 MeV approxi-
mately in this work. The barriers B(L) for other L values can
be obtained in the same way, and for a given angular momen-
tum L the center-of-mass energy Ec.m. is altered with a step
0.1 MeV until the transition between not-fusion and fusion is
found.

With the obtained barriers B(L), the fusion probability
Pfus(L, Ec.m.) can be further calculated via the Hill-Wheeler
formula, Eq. (23). The above-barrier fusion cross sections
σfus in turn obtained are shown in Fig. 10, in comparison
with the data [79–83] and the nonrelativistic ones. There
is an overall overestimation of the data of Fernandez et al.
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FIG. 10. Above-barrier fusion cross sections as a function of
the center-of-mass energy Ec.m. for 16O + 16O reactions. The non-
relativistic TDDFT results with the time-odd spin-orbit terms are
taken from Ref. [88], and the experimental data are taken from
Refs. [79–83].

[79] by around 16%. Note that the TDCDFT calculations are
based on a universal functional fitted to the bulk properties
of the finite nuclei, and have no free parameters coming
from the reaction mechanism, so this systematic discrepancy
remains small. Due to the quantization of the angular mo-
mentum L, the cross sections of the TDCDFT calculations
exhibit oscillations with respect to Ec.m.. Similar oscillations
can also be found in the data. Therefore, one can con-
clude that the newly developed TDCDFT in 3D lattice space
is an effective approach to investigate the nuclear fusion
processes.

For comparison, the nonrelativistic TDDFT results with the
time-odd spin-orbit terms [88] are also shown in Fig. 10, and
they are very close to the TDCDFT ones. Since the spin-orbit
interactions are automatically included in the TDCDFT, here
the problem of the fusion window anomaly is resolved natu-
rally; otherwise the fusion cross section would be suppressed
significantly [15].

VII. SUMMARY

In summary, time-dependent covariant density functional
theory with the successful density functional PC-PK1 has
been developed in a three-dimensional coordinate space with-
out any symmetry restrictions, and benchmark calculations
for the 16O + 16O reaction have been performed systemati-
cally. Numerical tests and two primary applications including
the dissipation dynamics and the above-barrier fusion cross
sections are performed. For a boosted 16O, the collective ki-
netic energy with respect to the boost velocity agrees well
with the relativistic kinetic energy, and the total momentum
is conserved with a relative deviation around 10−5 during
the time evolution. For the 16O + 16O head-on collision with
the center-of-mass energy Ec.m. = 50 MeV, the total energy
and particle number are conserved precisely with the relative
deviations respectively of around 10−4 and 10−7 within a
time evolution of 1000 fm/c, and the time-reversal invari-
ance is fulfilled quite well. The dissipation dynamics have
been investigated for the deep-inelastic head-on collisions
of the 16O + 16O system. It is revealed that the obtained
percentages of the energy dissipation are reasonable and sim-
ilar to the nonrelativistic TDDFT results with the time-odd
spin-orbit terms. The above-barrier fusion cross section of
16O + 16O is taken as another benchmark, and the experimen-
tal data are well reproduced. These systematic investigations
demonstrate that the TDCDFT in a 3D lattice can be an ef-
fective approach for the future studies of nuclear dynamical
processes.
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