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Background: The structure of 2°Q is currently being investigated on both theoretical and experimental fronts. It
is well established that it is unbound and the resonance parameters are fairly well known. The theoretical analysis
may involved two- and three-body interactions as well as correlations with the continuum spectrum of energy.
Purpose: In order to properly assess the structure of the ground and excited states, it is imperative to include a
large single-particle representation with the right asymptotic behavior. The purpose of this paper is to provide
details of the single-particle continuum configurations of the ground and excited 0 states.

Method: We use a large complex energy single-particle basis, formed by resonances and complex energy
scattering states, the so-called Berggren basis, and a separable interaction, which is convenient to solve in a
large model space.

Results: Three 0" states were found in the complex energy plane. Changes in the resonant parameters, i.e.,
energy and width, were analyzed as a function of strength of the residual interaction. It is shown how a subtle
difference in the interaction could change the unbound character of 2°Q into a Borromean nucleus.
Conclusions: Only one of the two excited states can be considered as a candidate for a physical meaningful
resonance. The calculated occupation probabilities are in agreement with other theoretical approaches although

the calculated half-life is three orders of magnitude smaller than the experimental one.

DOI: 10.1103/PhysRevC.102.044330

I. INTRODUCTION

The experimental discovery of the radioactive decay of
the nucleus *Fe [1] triggered the study of the physics of
two-proton decay almost two decades ago. Similarly, 2°0 [2]
ignited the study of the exotic two-neutron radioactive decay
and attracted much attention in the past few years from both
theoretical and experimental sides [3—6].

Nowadays, it is accepted that the drip line of the oxygen
chain occurs at 2*Q [7] since the nuclei 2°0 [8] and 2°0
[3,4,9] are unbound. Experimentally, it has been established
that the energy and half-life of 2°Q are 18 & 4 keV [6] and
4.5 £ 3 ps [5], respectively. Even if better statistics would be
desired, these resonant parameters can be considered reliable.
An excited 27 state is known to lie at the energy 1280fé(1)0 keV
[6], which places the first excited state much closer to the
continuum threshold than the previously known 4225327 keV
[3]. Even where there is no experimental evidence for 0%
excited states, there can be theoretical predictions for them
[10-12].

Many theoretical calculations have been performed regard-
ing the structure of 2°0Q. Some of them predicted it to be
bound, for example, using Gogny [13] and semirealistic [14]
interactions it was found that S», ((°0) > 0, in particular,
Ref. [14] obtained S,, (*°0) =~ 1.5 MeV. Shell-model cal-
culations using the phenomenological “universal” sd (USD)
interaction [15] also predicted it to be bound by approximately
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1 MeV, but it is unbound using the USDA /B parametrization
[16]. In light of these results and the experimental evidence,
some refinements were introduced in the theories, including
three-body forces and continuum coupling. For example, in
Ref. [17], it was shown that a repulsive three-body force
reconciles theory with experiment regarding the location of
the drip line in the oxygen isotopes. The new version of the
continuum shell model [18,19], predicted the ground state of
260 to be unbound by 0.021 MeV and its first exited-state 2+
at 1.870 MeV, close to the experimental observations [6].

Other theoretical approaches were also used to de-
scribe this nucleus. Green’s function formalism [10,20,21],
a continuum-coupled shell model in a spherical well [22], a
three-body model in the hyperspherical harmonics formalism
[11], a Gamow shell model [23], ab initio Gamow shell model
[24], a core plus two valence particles self-consistent model
[25], and the pseudostate method [26]. This paper intends
to address some missing ingredients in the above references,
in particular, the evolution of the resonances on the complex
energy plane. We calculate the half-life of the ground state; the
continuum-continuum contribution of each partial wave up to
the Og shell; and develop a criterion to distinguish between
physically significant excitations 0% [10,11] from those that
are not.

In Sec. II we introduce the three-body model Hamiltonian
and the single- and two-body complex representations. In
Sec. III A we define the mean-field interaction from the exper-
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FIG. 1. Examples for path L™ to build the single-particle Berggren representation.

imental data of the nucleus O, whereas in Sec. III B we study
the trajectory of the OV states in the two-body complex energy
plane. In Sec. III C we compare our results with experiment
and other models. Section IV gives concluding remarks.

II. FORMALISM

The three-body shell-model Hamiltonian, in the single-
particle Berggren basis [27,28], is used to diagonalize the
240 plus two-neutron system. A Woods-Saxon plus spin orbit
is used for the mean field, and a separable force [29,30] is
used for the two-body residual interaction. In this section we
describe the key elements which make possible to track the
three-body poles on the complex energy plane.

A. Single-particle complex-energy representation

Finite well potentials have a continuous spectrum of en-
ergy. It could be the case that some of these continuum states
have physical relevance, such as the ones represented by the
poles of S matrix close to real energy axis [31-33]. Berggren
[27] showed how to incorporate the resonances in a basis in
the style of the usual real energy case [34]. Realistic calcu-
lations using the Berggren representation were first reported
in Ref. [28]. One of the key features of the Berggren basis
is that it incorporates resonant states in the same footing as
bound and nonresonant continuum states and all their possible
combinations in the two-particle basis. In Ref. [27] Berggren
showed that a set of bound, resonant, and continuum complex-
energy scattering states form a representation,

8r—r) =Y un(ryun (') + f u(r, )u(r', )de, (1)
n L+

where the sum runs over all bound states and the resonant
states enclosed by the contour L™ and positive real energy
axis. The norm of the resonant states is between the state and
its time-reversed partner, i.e., the Berggren basis is actually a
biorthonormal basis. Equally, averages are calculated between
a state and its time-reversed partner so that probabilities be-
come complex numbers. The physical interpretation of this
has been discussed in detail in Refs. [35-37]. In particular for
narrow resonances, which tend to be physically relevant, these
probabilities become almost real quantities.

The path L* is not uniquely defined [38] and different
forms can be chosen according to the properties of the system
under study [39], although it must start at the origin and finish
at infinite on the real energy axis as is shown in Fig. 1.

For the numerical application, the integral in Eq. (1) is
discretized

N,

/ u(r, & u(r’, e)ds ~ E hpu(r, ep)u(r', &,), 2)
Lt
p

with ¢, and h, being parameters determined by the Gauss-
Legendre quadrature.

The number of mesh-points N, for each partial wave is
optimized to have the minimum number of scattering states
which give stable solutions for all values of the two-body
interaction strength. In this way we obtain a single-particle
representation {|¢,); [¢,)}, composed by a set of resonances
(rlgn) = uy(r) and scattering states (rlg,) = /hu(r, £,). All
single-particle states are calculated using the code ANTI
[28,40], which provides the continuum and pole states.

B. Two-particle complex-energy representation

In this paper we will make use of the single-particle
Berggren basis to study the trajectories of the 0% states of
260, and we will use a rectangular contour to have an easy
way to identify the physical relevant states [41], i.e., to distin-
guish between the resonant continuum from the nonresonant
continuum.

The two-particle representation is built, as usual, by tak-
ing an antisymmetric and normalized tensor product of the
above single-particle complex energy representation with it-
self, coupled to angular moment J = 0™, |1/Il-(](~))) [41-43]. The
combination of resonant states with the contour L™ of Fig. 1
produces a shifted contour in the complex energy plane,
whereas the combination of states in the contour with itself
covers a wide region as shown in Fig. 2. The set of zeroth-
order energies ¢; + ¢; with ¢; and ¢; both belonging to the
contour LT, may cover the whole complex energy plane of
interest; for instance, Fig. 2(a) shows that the region of interest
is full of nonresonant continuum states when the triangular
contour Fig. 1(a) is used for L*. Then, it could be difficult
to find physically relevant states with the problem becoming
even more acute as the number of mesh points is increased.
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FIG. 2. Examples of two-body complex-energy representation built from the single-particle complex-energy representation of Fig. 1.

From the eigenvalue equation H |V, ) = E,|V,) with the
wave-function |W,) = Zig i Xi j,oz|1/f,‘(jq)> for the 0" states, we
get the following secular equation to obtain the complex en-
ergy E, and the complex coefficients X;; o,

(Ea — & — )Xija — Y (U [V Xura =0, (3)
k<l

where o labels the different 0 states and the tilde is to
reference that the average is performed between time-reversed
states [39]. The label {k, !} means k = {n, I, ji} and [ =
{n;, Iy, ji}, since only the principal quantum number n is dif-
ferent because of the J = 0" coupling.

There is large number of correlated energies which one
gets from the above equation, but only a few will be of
physical interest. In order to easily identify them we choose
a rectangular contour for the path L™ in Eq. (1), defined
by the points Py = (0,0), P = (a,0), P, = (a, —c), s =
(b, —c), Py = (b,0) and Ps =(d,0) (Fig. 1), with d the
single-particle energy cut-off. This path leaves a zone in the
two-particle complex energy plane, between the real energy
values 2a and b and imaginary energy value ¢, almost free of
zeroth order states, where the expected two particle states may
lie (Fig. 2).

For the residual interaction we use a separable force
[29] since it significantly simplifies the secular equation (3)
[30,44,45], by changing the complex-matrix diagonalization
into a complex-root finding,

W V1) =

with My = fuklYolll), fiu = [ drug(r)f(rur).
form factor f(r) is

—GMuM;; (€Y

The

rBU

fr)= { ’

surface interaction,

U(r), volume interaction,

where U (r) = (1 4+ exp ’;—R )_]. The reduced matrix elements
are (k|[¥o||1) = GGt (5 100 ji, —1) [39].

From Eqs. (3) and (4) we obtain the dispersion relation
which will be used to evaluate the correlated energies E,.

Because we are using the Berggren metric, the square of the
matrix element appears instead of the square of the absolute

value,

= —Z )

—¢
k<l ek =&

The strength G is varied from zero to some maximum value
with the aim of following the evolution of each one of the 0"
state of the model space. For each energy E, we calculated the
wave-function amplitude with the equations,

Xija = No—— 21—
s Ea—é‘i—é‘j’

(6)

where N, is the normalization constant such that Zig j

1/01_1

III. RESULTS
A. Mean-field and complex single-particle basis

Since the nucleus 2’0 is unbound there is no bound
state in the single-particle basis, i.e., it only contains con-
tinuum states. The mean-field parameters are fitted using
x? optimization in order to reproduce the resonant pa-
rameters of the ground-state 3/2% of 2O and the gap
with the hole state 1/2*. From Ref. [46] we have ¢y, =
—4.09+0.13 MeV, and from Ref. [6] &oq4y, = (0.749 £
0.010, —0.044 £0.003) MeV, given with respect to the
core 2*Q. Using the diffuseness and reduced radius from
Ref. [10], a =0.72, ro = 1.25 fm, and the above exper-
imental ey, and &oq4,, states, we found (using x? op-
timization), Vo = 44.1 MeV and V,, = 22.84 MeV fm for
the Woods-Saxon and spin-orbit strengths, respectively.
The calculated complex energy are €y5,, = —4.087, g5, =
(0.749, —0.0436) MeV, ¢1,,, = (0.576, —0.812) MeV, and
gof,, = (2.427, —0.102) MeV. Both the mean-field strengths
and energies are very similar to the ones in Ref. [10].

The path LT, Fig. 1(b), is chosen the same for all partial
waves in order to have all three unperturbed resonant energies
280ds,,» 2€1ps,,» and 2&¢y, , within the zone free of nonresonant
continuum-continuum states. Since the ground state of 2°Q is
a threshold state, it is convenient to take the vertex a = 0 and
the other parameters ¢ =2, b =6, and d = 100 MeV. For
the complex energy scattering states we include the partial
waves from zero to four, then there are nine contours. In
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FIG. 3. Trajectory of the correlated poles as a function of the
separable strength. The arrows indicate the direction in which G
increases with 0 < G < 7 MeV. The large starts indicate the ener-
gies at the physical strength Gg,, = 6.06 MeV. The inset shows the
trajectory for the (0Ods /2)2 state for Re(E) < 0.7 MeV.

order to set up the discretization of the contours we take a
strength G which gives a loosely bound state of a few keV.
Even when the basis is fully complex, the energy of the bound
state must be real, so we take the criterion that imaginary
part of the calculated energy be <1078 MeV. Each contour
associated with the three resonances, ds3;, f72, and p3j
were discretized with 200 mesh points, whereas each one of
the other partial waves were discretized by 160 mesh points.
Then, the single-particle basis is form by three resonances and
1560 discrete complex-energy scattering states.

B. Tracking the 260 resonances

The zero-order two-particle states, formed by the ordered
sum of the above complex energies states, cover a big region
of the energy plane with a rectangular region free of contour-
contour states, such as in Fig. 2(b). For G = 0 the pole states
of the three-body system are located at

2¢e04,,= (1.498; —0.087), 2¢1,,,=(1.152;-1.624), and
2¢e0f,, = (4.854, —0.204) MeV. When the interaction is
turned on, these poles will move, and the expectation is
that some of them become physically meaningful states.
The ordered two-particle basis has thousands of states of
which only three are of interest. Here one can appreciate
the advantage of the separable force because finding
roots is easier than diagonalizing a huge complex matrix.
Furthermore, the choice of a rectangular path makes the
identification of the states of interest visually simple.

For the parameters of the residual interaction we adopt
the same as the Woods-Saxon, namely, R = 3.606 and a =
0.72 fm for both the surface and the volume form factors
f(r). Figure 3 shows the trajectory of the three correlated
poles, i.e., the correlated two-body states whose main pole-
pole contribution is one of the zeroth-order configuration
(0d32)%, (1p32)%, or (0f7/2)*. The evolution given by the two
interactions is qualitatively the same. The inset shows details

for the (0d3 /2)2 pole in the transition from resonance to the
bound state.

Figure 3 shows that the first resonance (0d/2)* quickly
moves to the two-particle continuum threshold, decreasing
its real and imaginary parts, until it becomes a Borromean
loosely bound state. Surface and volume pair interactions give
the same result for this narrow resonance as can be seen in the
inset. The trajectories of the poles (0f7,2)* and (1p3/2)* differ
quantitatively but not qualitatively for the two interactions.
Both poles slightly decrease their width when the interaction
is switch on; then, after reaching a minimum (in absolute
value), the width increases. In order to understand this be-
havior we show, in Tables I and II, the occupation numbers
in the vicinity of the minimum. The configurations are sepa-
rated as pole-pole [for example, (0ds2)?], pole-scattering [for
example, (0d3,2)(d3/2)], and scattering-scattering (d3 /2)2. One
observes that as the strength increases, the occupations of the
pole scattering and scattering-scattering increase in detriment
of the pole-pole configuration. As a final observation, the
pole (1p3 /2)2 moves in the opposite direction with respect to
the other poles. This intriguing behavior is a consequence of
the combined effects of the Berggren metric, which replaces
matrix elements |Mj;|> by M}, and the fact that 1ps; is a wide
resonance. As a consequence the real part of M,fl is negative
and so, the effective interaction behaves as repulsive.

C. Physically meaningful resonances

In the previous section we studied the trajectories of the
poles of the three-body Hamiltonian as a function of the
strength. In this section we analyze each one of them for
the physical strength Ggyx, = 6.06 MeV that reproduces the
experimental ground-state energy E keV [6].

Table 111 compares our calculated 07 states for the surface
interaction with the theoretical models of Refs. [10,11]. We
can see a remarkable agreement with Ref. [10]. Our calcula-
tion finds the 05 state close in energy to the one in Ref. [11],
but its width is so wide that it prevents it to be a physical
meaningful resonance.

Experimentally, Ref. [5] finds the first excited state around
2 MeV, whereas Ref. [3] finds it around 4.3 MeV. Both exper-
imental results give a width of approximately 1 MeV, in good
agreement with the imaginary part of the energy for state O;
in Table III.

The energy of the ground and first two excited states at the
physical strength Ggy, are as follows:

Eg = 0.01842 — i0.1635 x 107 MeV,
Ep; = 1.434 —i1.6568 MeV,
Eg; = 3.4560 — i0.3317 MeV.
The ground-state wave function is as follows:
10)gs = (—0.862, 0.060)(0d3,2)*)
+(0.425, —0.033)[(0f7/2)%)
+(0.305, —0.145)[(1p32)%)

+(0.031, 0.052)|(1p32)(c1p3/2))
+(0.028, 0.054)[(1p3/2)(c2p3p2)) + - - -
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TABLE III. Comparison of the calculated energies (MeV) of the
0% states for Ggyp = 6.06 MeV with the models of Refs. [10,11].

State This paper Ref. [10] Ref. [11]

of (0.0184, —0.164 x 107%)  0.018 0.01
0f (1.434, —1.657) 1.7
of (3.460, —0.332) (3.38, -0.366) 2.6

We observe that the most important configurations for the
collective state come from the three pole-pole configurations.
Then, the next most important contributions come from the
P32 shell, with one particle in the pole and the other in the
complex energy scattering states at the energies e(c(p32) =
—10.907 and 8(C2p3/2) = —i0.845 MeV.

The wave function of the first excited state has more single-
particle character with the main configuration (1p3 /2)2. As,
for the ground state, the other pole-pole configurations are
also relevant. The next most important configuration comes
from the d3 > shell with one neutron in the resonant continuum
and the other in the nonresonant continuum at the energies
8(6‘1d3/2) = 0.767 — i2 and 8(Czd3/2) =0.646 — i2 MeV,

0)g; = (—0.306, 0.118)[(0dd3/2)")
+(0.161, 0.156)|(0f2)%)
+(—0.951, —0.004)(1p3/2)%)
+(0.130, —0.018)|(0d3,2)(c1d3,2))
+(0.126, 0.021)[(0d3)2)(cadsn)) 4 - - -
The second excited state is also noncollective, having as

the main configuration the two neutrons in the 07/, resonant
continuum,

°0)g; = (0.409, 0.072)|(0ds3/2)°)

+(0.945, —0.030)(0f72)°)

+ (0.027, 0.160)|(1p3/2)2)

+(0.028, —0.049)|(0d3,2)(c1d32))

+(0.022, —0.052)|(0d3/2)(cad3/2)) + - - - .
The most important amplitude from the nonresonant contribu-
tion comes from the d3 > shell with one particle in the resonant
state and the other in the scattering state. The first two configu-
rations are the ones at the energies e(cid3/) = 2.535 — i2 and
e(cadsp) = 2.720 — i2 MeV. The energies of the complex

energy scattering states that are most important are the ones
which, when summed to the pole energy, give a figure close to

the correlated energy. This is a characteristic of the separable
interaction, which can be seen from Eq. (6); for example,

e(0ds2) + e(c1dzn) = (0.749 — i0.0436) + (2.535 — i2.)
= 3.284 —i2.044 MeV, whereas the correlated energy is
3.456 — i0.332 MeV; the difference with the imaginary part
of the correlated energy is because the remainder contour also
largely contributes to the width.

Tables IV and V compare our calculated occupation prob-
abilities of the two meaningful resonances with those of Refs.
[10,11]. The symbol Y indicates that the summation of the
pole-pole, pole-scattering, and scattering-scattering has been
performed.

For the ground state (Table 1V), the comparison with
Ref. [11] shows that the occupation of s state is on the
same order of magnitude, but they differ appreciably for the
ds > configuration; whereas comparison with Ref. [10] shows
that the main contributions come from the configurations
ds2, f172, and p3jp with an excellent agreement for the oc-
cupation of the f7/, shell. Finally, our model predicts bigger
occupation for the configuration d3,, in detriment of the p3/»
one, giving a somewhat less collective ground state.

The comparison of the Oj state (Table V) with Refs.[10,11]
shows almost the same features as for the ground state with
two differences. First, the great occupation of the s shell in
Ref. [11] and second, the smaller collectivity of our wave
function with respect to that of Ref. [10]. This last feature may
be explained by the structure of the analytic expression of the
wave-function amplitude Eq. (6), which favors the collectivity
of the ground state, whereas it inhibits the collective character
of excited states.

Finally, from the imaginary part of the calculated ground-

state energy we get a half-life 77, = % = 8.766 x

1073 ps, which is three orders of magnitude smaller than the
experimental one 4.5 &£ 3 ps [5]. Since from Table IV we can
argue that [,,x = 4 is large enough, an improvement in the
model may require a better treatment of the N-N residual
interaction, specifically the continuum coupling.

IV. CONCLUSIONS

The structure of the 0% states of the °0O nucleus have
been studied on the complex energy plane with a separable
interaction. Continuum partial waves up to / = 4 have been
used, and their contribution to the ground and excited states
were examined as a function of the pair interaction strength G.
The trajectory of the ground state shows that a little stronger
residual interaction may produce a loosely bound Borromean
nucleus. This subtle balance between the pair interaction and
the continuum makes this nucleus very hard to quantitatively
assess. One of the resonances was discarded because its width

TABLE IV. Occupation probabilities in percentages for the state 0] at the energy E; = 0.01842 — i0.1635 x 10-° MeV.

Model Y (s12)? Y (pip)? Y (p3p)? Y (dsp)? Y (ds)? Y (fsp)? > (f1)? Y (g7)* Y- (g92)*
This paper  (02,0.0)  (0.50.0)  (42,00) (737000  (03.00)  (0700)  (19.000)  (03.00)  (1.1,0.0)
Ref. [11] 0.67 79 19

Ref. [10] 10.5 66.1 18.3
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TABLE V. Like Table IV for state 05 at the energy E; = 3.4560 — i0.3317 MeV.

Model 2(51/2)2 2(1’71/2)2 Z(P}/z)2 2(933/2)2 2(075/2)2 Z(f5/2)2 Z(ﬁ/z)2 X:(ng)2 2(89/2)2
This paper (0.0, 0.1) (0.1, 0.6) (=3.7,-0.1) (15.4,3.7) 0.2,0.1) 0.4,0.1) (86.9, —4.7) (0.1, 0.0) (0.6,0.2)
Ref. [11] 3.8 86 6.1

Ref. [10] 10.4 24.9 62.1

does not decrease significantly with the interaction and the
real part of its energy does not follow the usual behavior of
the resonances. At the physical strength Ggy, = 6.06 MeV,
our wave-function amplitudes are in agreement with that of
Ref. [10], whereas the physically meaningful excited state has
the following resonant parameters 3.46 — i O'—266 MeV, similar
to the result of Ref. [10]. The calculated half-life of the ground
state, obtained from the imaginary part of its complex energy,
is three orders of magnitude smaller than the experimental
one. We interpret this as an indication that some correlations

are still missing and suggest that a more realistic or phe-
nomenological interaction adjusted for the continuum [47]
might be required.
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