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Background: Recently, variational Hartree-Fock-Bogoliubov (HFB) mean-field equations were shown to pos-
sess a mathematically well-defined zero-pairing limit, independently of the closed- or open-shell character of the
system under consideration. This limit is nontrivial for open-shell systems such that HFB theory does not reduce
to the Hartree-Fock (HF) formalism in all cases.
Purpose: The present work extends this analysis to finite-temperature HFB (FTHFB) theory by investigating the
behavior of this more general formalism in the combined zero-temperature and zero-pairing limits.
Methods: The zero-pairing and zero-temperature limits of the FTHFB statistical density operator constrained to
carry an arbitrary (integer) number of particles A on average is worked out analytically and realized numerically
using a two-nucleon interaction.
Results: While the FTHFB density operator reduces to the projector corresponding to a pure HF Slater
determinant for closed-shell nuclei, the FTHFB formalism does not reduce to the HF theory in all cases in
the zero-temperature and zero-pairing limits, i.e., for open-shell nuclei. However, the fact that a nucleus can be
of open-shell character in these joint limits is necessarily the result of some symmetry restrictions. Whenever it
is the case, the nontrivial description obtained for open-shell systems is shown to depend on the order with which
both limits are taken, i.e., the two limits do not commute for these systems. When the zero-temperature limit is
performed first, the FTHFB density operator is demoted to a projector corresponding to a pure state made out of a
linear combination of a finite number of Slater determinants with different (even) numbers of particles. When the
zero-pairing limit is performed first, the FTHFB density operator remains a statistical mixture of a finite number
of Slater determinants with both even and odd particle numbers. While the entropy (pairing density) is zero in
the first (second) case, it does not vanish in the second (first) case in spite of the temperature (pairing) tending
towards zero. The difference between both limits can have striking consequences for the (thermal) expectation
values of observables. For instance, the particle-number variance does not vanish in either case and has limiting
values that differ by a factor of two in both cases.
Conclusions: While in the textbook situation associated with closed-shell nuclei Hartree-Fock-Bogoliubov
(finite-temperature Hartree-Fock) theory reduces to Hartree-Fock theory in the zero-pairing (zero-temperature)
limit, the present analysis demonstrates that a nontrivial and unexpected limit is obtained for this formalism
in open-shell systems. This result sheds a new light on certain aspects of this otherwise very well-studied
many-body formalism.

DOI: 10.1103/PhysRevC.102.044328

I. INTRODUCTION

Hartree-Fock-Bogoliubov (HFB) theory [1] provides a
variational mean-field approximation method to tackle pairing
correlations in superfluid systems at the price of breaking
U(1) global gauge symmetry associated with particle-number
conservation. When searching for the HFB solution, the par-
ticle number A is constrained on average to equate to the
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physical value. In Ref. [2], the zero-pairing limit of the
HFB formalism was investigated analytically and realized
numerically. While in the textbook situation associated with
closed-shell nuclei HFB theory reduces to Hartree-Fock (HF)
theory, it was demonstrated that a nontrivial and unexpected
solution is obtained in the limit for open-shell systems.

While many extensions of HFB theory exist to tackle low-
lying excited states, the concept of discrete states loses its
meaning at high excitation energy where the level density
grows exponentially. In this regime, a statistical treatment of
the system is more appropriate. The formalism extending HFB
theory within the frame of statistical quantum mechanics is
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the so-called finite temperature HFB (FTHFB) formalism.1 In
this context, and with the goal to generalize the analysis of
Ref. [2], it is of interest to investigate the FTHFB formalism in
the zero-pairing and zero-temperature limits, both separately
and jointly. While FTHFB theory trivially reduces to HF in
the textbook case of closed-shell systems, the combined limits
are presently shown to lead to a nontrivial and unexpected
situation for open-shell systems. We note from the start that no
system ends up being of open-shell character in the combined
limits if the calculation is completely symmetry-unrestricted.
The nontrivial situation we discuss in this paper is only en-
countered whenever one or more symmetry restrictions are
imposed, which is very often the case in practical calculations.
As a minimal symmetry restriction, we assume time-reversal
invariance in all that follows. Eventually, further symmetry
restrictions, e.g., rotational invariance, are considered.

This paper is organized as follows: Section II provides
basic ingredients, including a short summary of the FTHFB
formalism. While Sec. III stipulates the definition of the zero-
temperature and zero-pairing limits and how they are to be
formally implemented, these limits are actually applied to
the FTHFB formalism, first separately in Sec. IV, and then
jointly in Sec. V. Next, Sec. VI displays the results of the
numerical calculations illustrating the analytical conclusions
reached in the previous sections. Eventually, Sec. VII provides
the conclusions of the present work and a short Appendix
complements the paper.

II. MANY-BODY FORMALISM

A. Hamiltonian

We start from a Hamiltonian whose second-quantized form
is given by2

H ≡
∑

i j

ti jc
†
i c j + 1

4

∑
i jkl

v̄i jkl c
†
i c†

j cl ck . (1)

In Eq. (1), H is expressed in terms of matrix elements of the
one-body kinetic-energy operator {ti j} and of the two-body in-
teraction operator {vik jl} in an arbitrary basis of the one-body
space to which is associated a set of single-particle creation
(annihilation) operators {c†

i } ({ci}).
B. Finite-temperature framework

The relevant thermodynamic potential to describe a nu-
cleus at constant temperature T and chemical potential λ is
the grand potential [3–5]

� ≡ E − TS − λA, (2)

which is defined in terms of the average energy E, entropy
S, and particle number A.3 Both the energy and the average

1Throughout the paper, HFB theory is referred to as straight HFB
to a priori distinguish it from the zero-temperature limit of FTHFB.
Similarly, finite-temperature HF (FTHF) is considered to be possibly
different from the zero-pairing limit of FTHFB.

2Three-nucleon forces are presently omitted for simplicity given
that none of the conclusions depend on their inclusion.

3In actual applications, one Lagrange multiplier relates to con-
straining the neutron number N and one Lagrange multiplier is used

particle numbers are defined as thermal expectation values
with respect to the (normalized) density operator4 D of the
system5

ED ≡ Tr[DH], (3a)

AD ≡ Tr[DA], (3b)

while the entropy is calculated as

SD ≡ −Tr[D lnD]. (4)

Requiring that the system is in thermal equilibrium is
equivalent to minimizing the grand potential. Using the chem-
ical potential as a Lagrange parameter to ensure the correct
particle number on average, the minimization of � provides
the formal solution

D = 1

Z e−β(H−λA), (5)

where β ≡ 1/T is the inverse temperature and where Z de-
notes the grand-canonical partition function

Z = Tr[e−β(H−λA)] (6)

ensuring the normalization of D.

C. Hartree-Fock-Bogoliubov approximation

Given that the exact solution (5) is intractable for any real-
istic Hamiltonian, approximations must be formulated. The
mean-field FTHFB approximation consists of using a trial
density operator of the form6

D ≡ 1

Z
e−βK , (7a)

Z ≡ Tr[e−βK ]. (7b)

where K denotes a general (i.e., particle-number breaking)
one-body operator

K ≡ 1

2

∑
i j

[
k11

i j (c†
i c j − c jc

†
i ) + k20

i j c†
i c†

j + k02
i j c jci

]

≡ 1

2

(
c
c†

)†

K
(

c
c†

)
, (8)

to constrain the proton number Z . In our discussion, A stands for
either one of them.

4The use of a statistical density operator relates to an intrinsic lack
of knowledge about the quantum state of the system. In the present
case, the use of the grand potential corresponds to only knowing
about the average energy and particle number of the system. In case
a complete knowledge about the quantum state of the system can be
assessed, the description is formulated in terms of a pure state.

5In Eqs. (3) and (4), the uppercase Tr indicates a many-body trace
over Fock space, while the lower case tr will be used to indicate
traces over the one-body Hilbert space.

6A partition function associated with D can be defined but it is
not equal to Z given that the derivatives of the latter do not satisfy
thermodynamic consistency relations [4,6].
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with

K =
(

k11 k20

−k02 −k11∗

)
. (9)

Using Wick’s theorem for statistical mixtures [7], the min-
imization of � with respect to the (independent) matrix
elements defining K can be shown to lead to [3,4]

K = H ≡
(h − λ �

−�∗ −h∗ + λ

)
, (10)

where the one-body fields h and � making up the FTHFB
Hamiltonian H are defined through

hi j ≡ ti j +
∑

kl

v̄il jkρkl ≡ ti j + �i j, (11a)

�i j ≡ 1

2

∑
kl

v̄i jklκkl . (11b)

In Eqs. (11), the finite-temperature Hartree-Fock and Bogoli-
ubov fields reads formally as in straight HFB theory but are
expressed in terms of the finite-temperature normal (ρ) and
anomalous (κ) one-body density matrices associated with D

ρi j ≡ Tr(Dc†
j ci ), (12a)

κi j ≡ Tr(Dcjci ). (12b)

Finally, the FTHFB average particle number, total energy, and
particle-number variance can be written, via the application of
Wick’s theorem, as traces over the one-body space

AD ≡ Tr[DA]

= trρ, (13a)

ED ≡ Tr[DH]

= tr(tρ) + 1
2 tr(�ρ) − 1

2 tr(�κ∗), (13b)

�AD ≡ Tr[DA2] − Tr[DA]2

= tr[ρ(1 − ρ)] + tr[κ†κ]. (13c)

In what follows, the last term in Eq. (13b) will be denoted the
pairing or Bogoliubov energy EB

D .

D. Quasiparticle basis

It is most convenient to formulate the FTHFB formalism in
the quasiparticle basis diagonalizing H according to

H
(Uk

Vk

)
= Ek

(Uk

Vk

)
, (14)

where the eigenvalues {Ek} denotes the so-called FTHFB
quasiparticle energies. The eigenvectors in Eq. (14) define
a set of quasiparticle creation and annihilation operators
through the unitary Bogoliubov transformation [1]

βk ≡
∑

i

U ∗
ikci +

∑
i

V ∗
ik c†

i , (15a)

β
†
k ≡

∑
i

Uikc†
i +

∑
i

Vikci. (15b)

In matrix form, the transformation can be written as(
β

β†

)
= W†

(
c
c†

)
, (16)

with the Bogoliubov matrix reading as

W ≡
(U V ∗

V U ∗
)
. (17)

The unitarity of W ensures that the quasiparticle operators
fulfill standard fermionic anticommutation rules.

Limiting the present study to time-reversal invariant sys-
tems, the FTHFB generalized density matrix is built from the
eigenvectors of H with positive eigenvalues according to

R ≡
(

ρ κ

−κ∗ 1 − ρ∗
)

= W
( f 0

0 1 − f

)
W†, (18)

where the matrix f is diagonal and composed of the quasipar-
ticle occupation factors [4]

fkl ≡ Tr(Dβ
†
l βk )

= 1

1 + eβEk
δkl

≡ fkδkl . (19)

Contrary to the situation encountered in straight HFB theory,
the FTHFB generalized density matrix is not idempotent, i.e.,
R2 �= R. Given Eq. (18), the one-body density matrices in
Eq. (12) are obtained according to [4]

ρi j ≡ (V ∗(1 − f )V T )i j + (U f U †)i j, (20a)

κi j ≡ (V ∗(1 − f )U T )i j + (U f V †)i j, (20b)

in terms of which the average particle-number constraint is
written as

AD =
∑

i

ρii = A. (21)

Given W , the even-number-parity Bogoliubov reference
state |
〉 is introduced as the vacuum of the quasiparticle oper-
ators, i.e., as the many-body state defined through βk|
〉 = 0
for all k. This state breaks U(1) global gauge symmetry as-
sociated with the conservation of particle number, i.e., it is
typically not an eigenstate of the particle number operator A.
Combining |
〉 with the set of many-body states generated via
the creation of an arbitrary (even or odd) number of quasipar-
ticle excitations on top of it

|
k1k2···〉 ≡ β
†
k1
β

†
k2

· · · |
〉, (22)

a complete basis of Fock space is obtained.
Employing Eqs. (14)–(16), the operator K is easily reex-

pressed as

K = −1

2

∑
k

Ek +
∑

k

Ekβ
†
k βk, (23)

where the sums run over positive eigenvalues of H. Introduc-
ing

Z1 ≡ Ze− β

2

∑
k Ek = Tr[e−β

∑
k Ekβ

†
k βk ], (24)

044328-3



T. DUGUET AND W. RYSSENS PHYSICAL REVIEW C 102, 044328 (2020)

the FTHFB density operator takes the simplified form

D = 1

Z1
e−β

∑
k Ekβ

†
k βk . (25)

With Eq. (25) at hand, elementary commutation relations and
the application of Baker-Campbell-Hausdorff’s identity allow
one to prove that

D|
〉 = 1

Z1
|
〉, (26a)

Dβ
†
k D−1 = ξkβ

†
k , (26b)

DβkD−1 = ξ−1
k βk, (26c)

where the statistical weight of a quasiparticle excitation is
given by

ξk ≡ e−βEk . (27)

Using the completeness relation associated with the many-
body basis of Fock space introduced in Eq. (22) and
employing Eqs. (26a) and (26b) repeatedly, one obtains

D = 1

Z1

(
|
〉〈
| +

∑
k1

ξk1 |
k1〉〈
k1 |

+ 1

2!

∑
k1k2

ξk1ξk2 |
k1k2〉〈
k1k2 |

+ 1

3!

∑
k1k2k3

ξk1ξk2ξk3 |
k1k2k3〉〈
k1k2k3 | + · · ·
)

, (28)

where

Z1 =
∏

k

(1 + ξk ). (29)

One observes that, even for systems characterized by time-
reversal invariance, the FTHFB density operator involves
Bogoliubov states carrying both even and odd number-parity.

Finally, the entropy can also be conveniently rewritten as

SD = −
∑

k

[ fk ln fk + (1 − fk ) ln (1 − fk )]. (30)

E. Canonical basis

As in straight HFB theory, the Bogoliubov vacuum can be
most conveniently written in its canonical, i.e., BCS-like, form
[1]

|
〉 ≡
∏
k>0

[uk + vka†
ka†

k̄
]|0〉. (31)

In Eq. (31), operators {a†
k, ak} characterize the so-called

canonical one-body basis in which pairs of conjugate states
(k, k̄) are singled out by the Bogoliubov transformation.
Conventionally, the two members of such a pair are distin-
guished as k > 0 and k̄ < 0, effectively splitting the basis
into two halves. The coefficients uk = +uk̄ and vk = −vk̄ are
BCS-like occupation numbers making up the canonical part
of the full Bogoliubov transformation obtained through the
Bloch-Messiah-Zumino decomposition [1] of the latter. The
canonical Bogoliubov transformation is 2 × 2 block diagonal

and only couples conjugate single-particle states to generate
conjugate quasiparticle operators according to

α
†
k = uka†

k − vkak̄, (32a)

α
†
k̄

= uka†
k̄
+ vkak, (32b)

whose Hermitian conjugates annihilate |
〉. The BCS-like
occupation numbers can be chosen real, satisfy the identity
u2

k + v2
k = 1 and take the explicit form

v2
k ≡ 1

2

⎛
⎝1 − εk − λ√

(εk − λ)2 + �2
k

⎞
⎠, (33)

where εk ≡ hkk = hk̄k̄ and �k ≡ �kk̄ = −�k̄k .

III. ZERO-TEMPERATURE AND -PAIRING LIMITS

The objective of the present work is to study the FTHFB
formalism in the combined limits of vanishing pairing and
temperature, while keeping the average particle number fixed
to an integer value A. The present analysis extends the detailed
study of the zero-pairing limit within the HFB formalism
given in Ref. [2].

While each individual limit of the FTHFB formalism is
straightforward, the main outcome of the present study is the
fact that both limits do not commute in general when taken
together: a well-defined solution exists for any A but the
nature of that solution depends on the order with which the
two limits are performed. Four cases are to be distinguished

(1) Individual limits
(a) T → 0, � �= 0

Zero-temperature limit at finite pairing.
(b) � → 0, T �= 0

Zero-pairing limit at finite temperature.
(2) Combined limits

(a) T → 0 & � → 0
Zero-temperature limit followed by the zero-
pairing limit.

(b) � → 0 & T → 0
Zero-pairing limit followed by the zero-
temperature limit.

such that case 2.a (2.b) is nothing but case 1.a (1.b) on top
of which the zero-pairing (zero-temperature) limit is further
performed. The necessity to distinguish cases 2.a and 2.b
relates to the fact that the two limits do not commute.

A. Implementation

Taking the zero-temperature and zero-pairing limits of the
FTHFB formalism corresponds to operating specific mathe-
matical limits under the condition that the constraint on the
average particle-number [Eq. (21)] is satisfied. Let us now
briefly specify these mathematical operations in the two cases
of interest before applying them, first separately, and then
sequentially.
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1. Zero-temperature limit

The zero-temperature limit is straightforwardly realized by
applying the operation T → 0 or β → ∞ in Eq. (7), under the
condition that the constraint on the average particle-number
[Eq. (21)] is satisfied. Employing the basis of Fock space built
from the Bogoliubov reference state, the procedure translates
into taking this mathematical limit in Eqs. (18)–(20b) while
satisfying Eq. (21).

2. Zero-pairing limit

The zero-pairing limit is materialized by scaling the Bo-
goliubov field � down to zero in the HFB Hamiltonian H
under the condition that Eq. (21) is satisfied, i.e.,

�i j → 0 ∀ (i, j) subject to AD = A. (34)

In practice, the limit is achieved by adding a constraining
term to the grand potential � such that the operator used for
the minimization becomes the Routhian [2]

�(δ)D = �D − 1
2 (1 − δ)(�C )D, (35)

where the Hermitian operator �C is defined through

�C ≡ 1

2

∑
i j

�i jc
†
i c†

j + 1

2

∑
i j

�∗
i jc jci. (36)

The thermal trace of �C is exactly twice the pairing energy of
Eq. (13b). The FTHFB density operator obtained through the
minimization of �(δ)D is formally the same as before except
that the HFB Hamiltonian in Eq. (10) must be replaced by

H(δ) =
(h − λ δ�

−δ�∗ −h∗ + λ

)
, (37)

in which the original pairing field is now multiplied with the
prefactor δ. While the unconstrained formalism is recovered
for δ = 1, the zero-pairing limit corresponds to taking δ → 0
in Eq. (37), i.e., to fully subtracting the pairing energy from
the grand potential such that the pairing field is zero in H(δ).

B. Naive filling

The zero-temperature and/or zero-pairing limits of the
FTHFB formalism rely on the naive filling of canonical shells7

characterizing the system of interest when reaching these
limits.

The naive filling corresponds to occupying canonical
single-particle states characterized by the A lowest energies
εk . Doing so, one partitions the A nucleons in such a way
that av nucleons sit in the so-called valence, i.e., last occu-
pied, shell characterized by energy εv and degeneracy dv (i.e.,
pv ≡ dv/2 pairs of conjugate states). The naive occupation of

7A nuclear “shell” presently stands for a collection of degenerate
single-particle levels, independently of the symmetry responsible for
their actual degree of degeneracy. While it naturally encompasses the
particular case of “spherical” shells, this definition is more general
and thus also valid whenever the degree of symmetry is lower.

each canonical state belonging to the valence shell

ov ≡ av

dv

, (38)

ranges between 0 and 1, i.e., 0 < ov � 1.
It is natural to distinguish three categories of canonical

single-particle states, i.e., states characterized by

(1) εh − λ < 0, casually denoted as “hole states,”
(2) εv − λ = 0, casually denoted as “valence states,”
(3) εp − λ > 0, casually denoted as “particle states,”

when reaching the limits, such that valence states can only
concern one shell.

Two different classes of nuclei emerge in this context, i.e.,
a nucleus is either of closed-shell character when ov = 1 or
of open-shell character whenever 0 < ov < 1. That a given
nucleus belongs to one category or the other can only be
inferred a posteriori and depends on the symmetries, and
thus on the degeneracies, characterizing the spectrum {εk} in
the limits. For example, a nucleus qualifying as a spherical
open-shell system whenever spherical symmetry is enforced
can turn into a deformed closed-shell system whenever SU(2)
symmetry is allowed to break.8 In the present context, the
notions of closed- and open-shell systems are not restricted
to a specific symmetry, e.g., a closed-shell nucleus can be of
spherical or deformed character.

IV. INDIVIDUAL LIMITS

Let us first consider the two limits separately.

A. T → 0, � �= 0

The first case of interest corresponds to taking the zero-
temperature limit whenever pairing, i.e., the pairing field in
the HFB Hamiltonian, is nonzero. The hypothesis that pairing
does not vanish implies that all quasiparticle energies are
strictly positive, Ek > 0 ∀ k. As a result, Eqs. (19) and (27)
stipulate that

lim
T→0,� �=0

AD=A

fk = 0 ∀ k, (39a)

lim
T→0,� �=0

AD=A

ξk = 0 ∀ k, (39b)

such that Eqs. (18), (28), and (29) deliver

lim
T→0,� �=0

AD=A

R = W
(0 0

0 1

)
W†, (40a)

lim
T→0,� �=0

AD=A

D = |
〉〈
|. (40b)

8In symmetry-fully-unrestricted calculations, a spherical even-
even open-shell system typically has energetic advantage to lift
the (2 j + 1)-fold degeneracy associated with spherical symmetry
such as to reach a deformed closed-shell configuration in the com-
bined zero-pairing and zero-temperature limits. Consequently, the
encounter of open-shell systems typically relates to specific symme-
try constraints built into the numerical implementation.
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The density operator describing the system reduces to the
projector associated with the even-number-parity HFB vac-
uum characterized by 〈
|A|
〉 = A, i.e., a pure state, such
that the FTHFB formalism trivially reduces to straight HFB
theory in which the generalized density matrix is idempotent.
Correspondingly, one has

lim
T→0,� �=0

AD=A

SD = 0. (41)

In this context, the one-body density matrices take the follow-
ing simple form in the canonical basis:

lim
T→0,� �=0

AD=A

ρkk′ = v2
k δkk′ , (42a)

lim
T→0,� �=0

AD=A

κkk′ = ukvkδk̄k′ . (42b)

Furthermore, the idempotency of the generalized density
matrix can be used to simplify the expression of the particle-
number variance such that Eqs. (13a)–(13c) become

lim
T→0,� �=0

AD=A

AD = trρ, (43a)

lim
T→0,� �=0

AD=A

ED = tr(tρ) + 1
2 tr(�ρ) − 1

2 tr(�κ∗), (43b)

lim
T→0,� �=0

AD=A

�AD = 2tr[ρ(1 − ρ)]. (43c)

B. � → 0, T �= 0

Let us now consider the zero-pairing limit at finite tem-
perature. Taking the limit δ → 0 in Eq. (37), the operator K
[Eq. (8)] becomes in the basis diagonalizing h and ρ

lim
�→0,T�=0

AD=A

K = −1

2

∑
k

(εk − λ) +
∑

k

(εk − λ)a†
kak, (44)

where the sums run over all eigenstates of h. This expression
can easily be related to Eq. (23) through the behavior of the
quasiparticle energies

lim
�→0,T�=0

AD=A

Ek = |εk − λ| ∀ k, (45)

such that

lim
�→0,T�=0

AD=A

fk = 1

1 + eβ|εk−λ| ∀ k. (46)

Given Eq. (44), and redefining the normalization factor as

Z2 ≡ Tr[e−β
∑

k (εk−λ)a†
k ak ], (47)

the FTHFB density operator becomes

lim
�→0,T �=0

AD=A

D = 1

Z2
e−β

∑
k (εk−λ)a†

k ak . (48)

Equations (47) and (48) define nothing but the density op-
erator at play in the finite-temperature Hartree-Fock (FTHF)
formalism [4] such that the FTHFB formalism strictly reduces

to it in the zero-pairing limit. Given the form of the density op-
erator, one-body density matrices are straightforwardly shown
to satisfy

lim
�→0,T �=0

AD=A

ρkk′ = 1

1 + eβ(εk−λ)
δkk′ ≡ f HF

k δkk′ , (49a)

lim
�→0,T�=0

AD=A

κkk′ = 0, (49b)

such that, as expected, the anomalous density matrix is iden-
tically zero whereas the normal density matrix is diagonal in
the HF single-particle basis.

It is interesting to look more carefully into how the FTHF
formalism is obtained from the FTHFB one in all cases. In
particular, noticing from Eq. (45) that quasiparticle energies
are not necessarily strictly positive in the zero-pairing limit,
the fact that a valence shell characterized by |εv − λ| = 0 may
emerge must be contemplated with care.

Ignoring this possibility at first, the textbook situation is en-
countered where nuclear shells define either hole (εh − λ < 0)
or particle (εp − λ > 0) states. In this case, the most conve-
nient basis of Fock space to expand the density operator is
given by the closed-shell reference Slater determinant

|
̄〉 ≡
A/2∏
h=1

a†
ha†

h̄
|0〉, (50)

which is an eigenstate of A with eigenvalue A, along with the
complete set of Slater determinants obtained via n-particle,
m-hole excitations on top of it∣∣
̄p1···pn

h1···hm

〉 ≡ a†
p1

· · · a†
pn

ahm · · · ah1 |
̄〉, (51)

where the maximum number of annihilation operators is A
whereas the number of creation operators is unrestricted.
Given Eqs. (47) and (48), Eq. (26) is presently replaced by

lim
�→0,T�=0

AD=A

D|
̄〉 = 1

Z2
e−β

∑
h (εh−λ)|
̄〉, (52a)

lim
�→0,T �=0

AD=A

Da†
kD−1 = ζka†

k, (52b)

lim
�→0,T�=0

AD=A

DakD−1 = ζ−1
k ak, (52c)

where the statistical weight of a particle creation is defined as

ζk ≡ e−β(εk−λ). (53)

Using the completeness relation of the above basis of Fock
space and utilizing Eq. (52) repeatedly, one obtains

lim
�→0,T �=0

AD=A

D = 1

Z2
e−β

∑
h (εh−λ)

(
|
̄〉〈
̄|

+
∑

h1

ζ−1
h1

∣∣
̄h1

〉〈

̄h1

∣∣
+

∑
p1

ζp1 |
̄p1〉〈
̄p1 |
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+
∑
h1 p1

ζ−1
h1

ζp1

∣∣
̄p1

h1

〉〈

̄

p1

h1

∣∣
+ 1

2!

∑
h1h2

ζ−1
h1

ζ−1
h2

∣∣
̄h1h2

〉〈

̄h1h2

∣∣
+ 1

2!

∑
p1 p2

ζp1ζp2 |
̄p1 p2〉〈
̄p1 p2 |

+ · · ·
)
, (54)

with

Z2 =
∏

k

(1 + ζk ). (55)

Let us now turn to the case where a valence shell charac-
terized by |εv − λ| = 0 emerges at T �= 0 in the zero-pairing
limit. This valence shell gathers pv = dv/2 pairs of con-
jugate states generically denoted as (v, v̄) and specified as
(v1, v1̄ ), . . . , (vpv

, vp̄v
). The mean occupation of each valence

state is fv = 1/2 [Eq. (49a)] whereas the statistical weight
associated with the creation of a valence particle is given by
ζv = 1 [Eq. (53)].

To expand the density operator on a basis of Fock space,
one first observes that the Bogoliubov reference state be-
comes, in the zero-pairing limit,

lim
�→0,T �=0

AD=A

|
〉 =
pv∏

k=1

(
uv + vva†

vk
a†

vk̄

)|
̃〉, (56)

where |
̃〉 denotes the closed-shell Slater determinant built by
occupying the A − av hole states

|
̃〉 ≡
(A−av )/2∏

h=1

a†
ha†

h̄
|0〉. (57)

In agreement with Eq. (22), a complete basis of Fock space
is obtained by creating arbitrary numbers of quasiparticles
associated with the set of operators

lim
�→0,T �=0

AD=A

α
†
h = −ah̄, (58a)

lim
�→0,T �=0

AD=A

α†
v = uva†

v − vvav̄, (58b)

lim
�→0,T �=0

AD=A

α†
p = a†

p, (58c)

where vv [uv = (1 − v2
v )1/2] is an arbitrary number between 0

and 1. It is in fact convenient, and more natural in the context
of FTHF, to choose the closed-shell Slater determinant |
̃〉
carrying A − av particles as a reference state and to generate
the basis of Fock space through n-particle, m-hole excitations
of it. This choice corresponds to setting uv = 1 and vv = 0 in
Eqs. (56)–(58). Doing so, the expansion of the density opera-
tor is fully consistent with Eqs. (54) and (55) if one considers

the dv valence states as particle states9 with statistical weight
ζv = 1.

Based on all the above, the observables of interest read, in
the zero-pairing limit,

lim
�→0,T�=0

AD=A

AD = trρ =
∑

k

f HF
k , (59a)

lim
�→0,T �=0

AD=A

ED = tr(tρ) + 1

2
tr(�ρ)

=
∑

k

tkk f HF
k + 1

2

∑
kk′

v̄kk′kk′ f HF
k f HF

k′ , (59b)

lim
�→0,T�=0

AD=A

�AD = tr[ρ(1 − ρ)]

=
∑

k

f HF
k

(
1 − f HF

k

)
, (59c)

where one observes that the pairing contribution to the en-
ergy has disappeared and that the formal expression of the
particle-number variance is half of the expression found in the
zero-temperature limit [Eq. (43c)]. The entropy is furthermore
given by

SD = −
∑

k

[
f HF
k ln f HF

k + (
1 − f HF

k

)
ln

(
1 − f HF

k

)]
. (60)

All the above demonstrates that the FTHFB formalism
strictly reduces in all systems, i.e., independently of A, to
FTHF in the zero-pairing limit.

V. COMBINED LIMITS

Now that the individual limits 1.a and 1.b have been
worked out, the goal is to combine them to study cases 2.a
and 2.b.

A. T → 0 & � → 0

Based on the result of Sec. IV A above, this case boils down
to taking the zero-pairing limit of the straight HFB formalism.
This situation was discussed at length in Ref. [2] and is only
briefly summarized below.

1. Closed-shell system

In a closed-shell system where canonical shells strictly
separate into A hole (εh − λ < 0) states and the remaining
particle (εp − λ > 0) states, Eq. (42) becomes

lim
T→0 & �→0

〈A〉=A

ρkk′ = lim
T→0 & �→0

〈A〉=A

v2
k δkk′

= �(λ − εk )δkk′ , (61a)

9One could have equally chosen the closed-shell Slater determinant
carrying A − av + dv particles as a reference state. This option would
correspond to choosing uv = 0 and vv = 1 in Eqs. (56)–(58). With
such a choice, the expansion of the density operator would still be
consistent with Eqs. (54) and (55) but at the price of considering the
dv valence states as hole states with statistical weight ζ−1

v = 1.
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lim
T→0 & �→0

〈A〉=A

κkk′ = lim
T→0 & �→0

〈A〉=A

ukvkδk̄k′

= 0, (61b)

where �(x) denotes the Heaviside function. As a result, hole
(particle) states are occupied with probability 1 (0).

Consequently, the HFB state converges trivially to the HF
closed-shell Slater determinant defined in Eq. (50):

lim
T→0 & �→0

〈A〉=A

|
〉 = |
̄〉 =
A/2∏
h=1

a†
ha†

h̄
|0〉, (62)

which is an eigenstate of A with zero particle-number variance

lim
T→0 & �→0

〈A〉=A

�AD = 0. (63)

The energy takes the standard mean-field form associated with
a Slater determinant

lim
T→0 & �→0

〈A〉=A

ED =
A∑

h=1

thh + 1

2

A∑
hh′=1

vhh′hh′ . (64)

In summary, no surprise occurs for closed-shell systems in the
T → 0 & � → 0 limits; i.e., their description is given by the
HF closed-shell Slater determinant.

2. Open-shell system

As discussed in Ref. [2], a nontrivial solution is obtained
for open-shell systems. While hole and particle states still
behave according to Eq. (61) such that A − av particles even-
tually occupy hole states, av particles need to be placed into
the dv (pv = dv/2 pairs of) degenerate valence states char-
acterized by equal occupations10 0 < ov < 1. Achieving this
requires that |εv − λ| and �v go to 0 in a strictly proportional
fashion, i.e.,

lim
T→0 & �→0

〈A〉=A

∣∣∣ �v

εv − λ

∣∣∣ = 2
√

ov (1 − ov )

|1 − 2ov| , (65)

as was numerically illustrated in Ref. [2]. In this context, the
one-body density matrices given in Eq. (61) within the particle
and hole subspaces are complemented within the valence shell

10As pointed out in Ref. [2], the half filled shell (ov = 1/2) must
be treated with extra care. Thus, we consider that ov �= 1/2 for
simplicity in the present section.

by

lim
T→0 & �→0

〈A〉=A

ρvkvk′ = ovδkk′ , (66a)

lim
T→0 & �→0

〈A〉=A

κvkvk′ =
√

ov (1 − ov )δk̄k′ , (66b)

whereas the reference HFB state becomes

lim
T→0 & �→0

〈A〉=A

|
〉 =
pv∏

k=1

(√
1 − ov + √

ova†
vk

a†
vk̄

)|
̃〉, (67)

where |
̃〉 was introduced in Eq. (57). Thus, the even-number-
parity HFB state carrying A particles on average becomes a
linear combination of 2pv Slater determinants among which( b

pv

)
of them carry B(b) = A − av + 2b particles, with the

integer b running from 0 to pv . The even number of particles
carried by the Slater determinants thus ranges from A − av to
A + (dv − av ).

While the entropy vanishes in the present case, the particle-
number variance does not. It evaluates to

lim
T→0 & �→0

〈A〉=A

�AD = 2av (1 − ov ) (68)

and constitutes a lower bound within the manifold of even-
number-parity HFB states carrying A particles on average [2].
Furthermore, the binding energy contains a nonzero pairing
contribution of the form

lim
T→0 & �→0

〈A〉=A

EB
D = ov (1 − ov )

pv∑
kl=1

vvkvk̄vl vl̄
. (69)

The above analysis demonstrates that HFB theory does not
reduce to the HF formalism for open-shell systems when the
pairing field is driven to zero in the HFB Hamiltonian matrix
[2].

B. � → 0 & T → 0

The main objective of the present work is to investigate
case 2.b, i.e., the case in which both limits are taken in the
opposite order. Based on the result of Sec. IV B above, this
case boils down to taking the zero-temperature limit of the
FTHF formalism. The main outcomes of the analysis given
below are that the resulting description of open-shell systems
is

(1) nontrivial, i.e., does not reduce to the straight HF for-
malism;

(2) different from case 2.a, i.e., the zero-pairing and zero-
temperature limits do not commute.

To make the situation transparent, closed-shell and open-
shell systems must again be distinguished.
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1. Closed-shell system

In a closed-shell system11 where nuclear shells strictly
separate into A hole (εh − λ < 0) states and the remain-
ing particle (εp − λ > 0) states, the statistical occupations
[Eq. (53)] become

lim
�→0 & T→0

AD=A

ζ−1
h = lim

�→0 & T→0
AD=A

ζp = 0. (70)

Consequently, the zero-temperature limit of the FTHF density
operator [Eqs. (54) and (55)] is nothing but a pure state

lim
�→0 & T→0

AD=A

D = |
̄〉〈
̄|, (71)

where |
̄〉 denotes the closed-shell HF Slater determinant car-
rying A nucleons [Eq. (50)]. Thus, the entropy becomes zero
and the normal one-body density matrix [Eq. (49a)] reduces
to

lim
�→0 & T→0

AD=A

ρkk′ = �(λ − εk )δkk′ , (72)

such that hole (particle) states are occupied with probability
1 (0). The particle-number variance is also zero whereas the
energy is given by Eq. (64).

In summary, no surprise occurs for closed-shell systems.
The description is given by the HF closed-shell Slater deter-
minant and is identical to the T → 0 & � → 0 case, i.e., the
description is independent of the order in which both limits
are performed.

2. Open-shell system

Let us now study the zero-temperature limit of the FTHF
formalism for an open-shell system. The occupation of hole
and particle states behaves as for closed-shell systems, i.e.

lim
�→0 & T→0

AD=A

ρkk′ = �(λ − εk )δkk′ , (73)

for k = h or p, such that A − av particles eventually occupy
hole states with probability 1. The valence shell needs to fit
the remaining av particles in its dv degenerate states, which
requires that

lim
�→0 & T→0

AD=A

ρvkv
′
k
= ovδkk′ , (74)

for (k, k′) ∈ [1, dv]2. Given Eq. (49a), satisfying Eq. (74) nec-
essarily implies that

lim
�→0 & T→0

AD=A

εv − λ

T
= ln

(1 − ov

ov

)
≡ γv. (75)

For ov �= 1/2, this means that εv − λ and T must go to zero in
a strictly proportional fashion. For ov = 1/2, εv − λ goes to
zero faster than T .

11We remind the reader that we do not restrict the notion of “closed-
shell” to the spherically symmetric case. The notion refers only to the
occupations of the nuclear levels in the combined zero-temperature
and zero-pairing limits, such that a system can be “deformed closed-
shell.”

In this situation, the zero-temperature limit of the FTHF
density operator defined through Eqs. (54) and (55) takes the
nontrivial form

lim
�→0 & T→0

AD=A

D = 1

Z3
e−γv

∑
k∈[1,dv ] a†

vk
avk , (76)

where

Z3 ≡ Tr
[
e−γv

∑
k∈[1,dv ] a†

vk
avk

]
. (77)

Contrarily to the closed-shell case, the FTHF density oper-
ator describing an open-shell system is not associated with
a pure state in the zero-temperature limit. Given the specific
form of the one-body density matrix [Eqs. (73) and (74)], the
observables of interest are easily computed from Eq. (59) in
the present limit. In particular, the particle-number variance is
nonzero and equal to

lim
�→0 & T→0

AD=A

�AD = lim
�→0 & T→0

AD=A

tr[ρ(1 − ρ)]

=
dv∑

k=1

ρvkvk (1 − ρvkvk )

= av (1 − ov ), (78)

whereas the entropy

lim
�→0 & T→0

AD=A

SD = −dν[oν ln oν + (1 − oν ) ln (1 − oν )] (79)

is also nonzero in spite of the zero-temperature limit. One
observes that the particle-number variance is half of the one
obtained when performing the limits in the alternative order
[Eq. (68)]. In the present case the residual particle-number
fluctuation has a thermal origin as reflected by the entropy. In
the T → 0 & � → 0 case, the number fluctuation is instead
generated by lingering pairing correlations as reflected by the
nonzero anomalous density matrix.

Let us further explore the structure of the density operator
by expanding it explicitly on the basis of Fock space built
out of the closed-shell Slater determinant |
̃〉 carrying A − av

[Eq. (57)]. Given Eqs. (70), (76), and (77), Eq. (52) provides
in the present case

lim
�→0 & T→0

AD=A

D|
̃〉 = 1

Z3
|
̃〉, (80a)

lim
�→0 & T→0

AD=A

Da†
pD−1 = 0, (80b)

lim
�→0 & T→0

AD=A

DahD−1 = 0, (80c)

lim
�→0 & T→0

AD=A

Da†
vk

D−1 = e−γv a†
vk

, (80d)

lim
�→0 & T→0

AD=A

Davk D−1 = e+γv avk . (80e)
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As a result, Eqs. (54) and (55) are transformed into

lim
�→0 & T→0

AD=A

D = 1

Z3

(
|
̃〉〈
̃| + sv

∑
k∈[1,dv ]

|
̃vk 〉〈
̃vk |

+ (sv )2

2!

∑
(k,k′ )∈[1,dv ]2

|
̃vkvk′ 〉〈
̃vkvk′ |

...

+ (sv )dv |
̃v1···vdv 〉〈
̃v1···vdv |
)

, (81)

with

Z3 = (1 + sv )dv , (82)

where the definition

sv ≡ e−γv = 1 − ov

ov

(83)

has been introduced. Equation (81) involves the ( b
dv

) Slater

determinants built from |
̃〉 by creating b (b = 0, 1, . . . , dv)
particles in the valence shell

|
̃vk ···vk′ 〉 ≡ a†
vk

· · · a†
vk′ |
̃〉, (84)

with (k, . . . , k′) ∈ [1, dv]b. The FTHF density operator is thus
a statistical mixture of

∑dv

b=0( b
dv

) = 2dv Slater determinants
whose even or odd number of particles vary from A − av to
A + (dv − av ).

Illustratively, the average particle number and the particle-
number variance (already computed in Eq. (78) through traces
in the one-body Hilbert space) can be recovered through traces
in Fock space on the basis of Eqs. (81) and (82), i.e.,12

lim
�→0 & T→0

AD=A

AD = lim
�→0 & T→0

AD=A

Tr[DA]

= 1

(1 + sv )dv

dv∑
b=0

(
b

dv

)
sb
v (A − av + b)

= A, (85a)

lim
�→0 & T→0

AD=A

�AD = lim
�→0 & T→0

AD=A

Tr[DA2] − Tr[DA]2

= 1

(1 + sv )dv

dv∑
b=0

(
b

dv

)
sb
v (A − av + b)2

−A2

= av (1 − ov ), (85b)

where the latter result indeed agrees with Eq. (78).

12Identities (A1) and (A2) provided in the Appendix are employed
to derive Eq. (85a) while the additional identity (A3) is necessary
to derive Eq. (85b). Similar analytical results can be derived for
higher moments of A by considering higher derivatives of Newton’s
binomial formula.

C. Discussion

Let us further comment on a few key points.

(i) In Ref. [2], HFB theory was shown not to reduce in
all cases to HF theory when the pairing field is driven
to zero. Similarly, the above analysis demonstrates
that FTHF theory does not reduce to the straight HF
formalism in all cases when the temperature is driven
to zero.

(ii) Starting from FTHFB theory, the description of open-
shell systems in the combined zero-temperature and
zero-pairing limits is shown to depend on the order
with which both limits are taken, i.e., the description
is either given by a pure state made out of a linear
combination of a finite number of Slater determinants
with even particle numbers or by a statistical mixture
of a finite number of Slater determinants with both
even and odd particle numbers.

(iii) This difference in the obtained many-body de-
scription leads to unexpected expectation values of
operators. Above, the particle-number variance was
shown to be nonzero and to differ by a factor of two
in both cases. Such a feature is not limited to the
particle-number variance but extends to any operator
involving a product of more than one creation or an-
nihilation operator.

(iv) It has been standard to perform HF calculations of
open-shell nuclei within the so-called equal filling
approximation (EFA), equally distributing the valence
nucleons among the levels in a valence shell to guar-
antee spherical symmetry. For a long time though, this
procedure was typically applied without any formal
justification. In Ref. [8], a first justification of the EFA
procedure was delivered on the basis of a specifically
tuned ensemble-HFB theory. In Ref. [2], a second
justification was provided in terms of a pure state
obtained via the zero-pairing-limit of straight HFB
theory (i.e., the T → 0 & � → 0 limit of the present
work). Eventually, a third justification of the EFA is
presently given in terms of the statistical mixture ob-
tained through the � → 0 & T → 0 limit of FTHFB
theory.13

VI. APPLICATIONS

In this section, results obtained from constrained FTHFB
calculations are presented to illustrate the findings of the pre-
vious sections.

13The ensemble HFB theory designed in Ref. [8] is more general
as it justifies the EFA in the presence of pairing correlations. It
is particularly suited to include the blocking effect associated with
the unpaired odd particle when dealing with odd systems. In the
zero-pairing limit, the statistical mixture does coincide with the one
obtained presently.
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A. Numerical setup

Following Ref. [2], the three semimagic oxygen isotopes
18,22,26O are employed as test cases of FTHFB calculations in
which time-reversal and rotational invariances are imposed.
While 18O (od5/2 = 1/3) and 26O (od3/2 = 1/2) are represen-
tative of spherical (neutron) open-shell nuclei, 22O (od5/2 =
1) is the token closed-shell system. We further consider
19O (od5/2 = 1/2) as an example of an odd nucleus, albeit
calculated without breaking time-reversal symmetry. Finite-
temperature HFB calculations are performed within the sd
valence space on the basis of the standard USD interaction
[9,10]. Oxygen isotopes are described as having an inert core
of 16O, implying that the protons play no role and that 18O,
19O, 22O, and 26O possess 2, 3, 6, and 10 active valence
neutrons, respectively. The working equations are solved on
the basis of the HF-SHELL code [6]. In the present context,
virtually all sd-shell nuclei exhibit a deformed mean-field
minimum and several of them are triaxial [11]. While HF-
SHELL is sufficiently general to study triaxial nuclear shapes,
the calculations here have been restricted to spherical con-
figurations except if specified otherwise.14 This is in practice
achieved by initializing the iterative process with a perfectly
spherical state.

B. Characterization of the combined limits

For the T → 0 & � → 0 limit to be analytically meaning-
ful in open-shell systems, canonical matrix elements of the
pairing field were predicted to be driven to zero in a specific
manner [Eq. (65)] when the constraining parameter δ goes
itself to zero. This key feature was confirmed numerically in
Ref. [2] and is thus not repeated here.

For the � → 0 & T → 0 limit to be analytically mean-
ingful in open-shell systems, the FTHF quasiparticle energy
|εv − λ| associated with the valence shell has been predicted
to be driven to zero in a specific way [Eq. (75)] when the
temperature goes itself to zero. The top panels of Fig. 1
display |εv − λ| versus the inverse temperature β for 18O and
26O. In agreement with Eq. (75), |εv − λ| goes to zero strictly
proportionally to (faster than) T in 18O (26O) whose valence
shell occupation ov is different from (equal to) 1/2. Going
one step further, the product β|εv − λ|, which is analytically
predicted to converge to a characteristic value in the zero-
temperature limit according to Eq. (75), is displayed in the
bottom panels of Fig. 1. The predicted limit is accurately
obtained numerically for both systems.

14All spherical solutions obtained here, with the exception of
the spherical closed-shell 22O, are saddle points with respect to
quadrupole deformation. If deformed solutions were to be au-
thorized, 18O, 19O, and 26O would actually qualify as deformed
closed-shell systems in the zero-pairing and/or zero-temperature
limits. The calculations are thus restricted to spherical symmetry to
illustrate the behavior of the formalism in these limits whenever the
system is (constrained to be) of open-shell character.

FIG. 1. Results of FTHFB calculations for 18O (left column) and
26O (right column) in the zero-pairing limit as a function of the
inverse temperature. Top row shows |εv − λ|, bottom row shows
β|εv − λ|. Faint gray lines indicate the values predicted analytically
[Eq. (75)] in the zero-temperature limit.

C. Particle-number variance

With the aim to further characterize the FTHFB density
operator in the combined zero-temperature and zero-pairing
limits, the neutron-number variance is displayed in the right
(left) column of Fig. 2 for 18,22,26O as a function of the

FIG. 2. Finite-temperature HFB neutron-number variance in 18O
(top row), 22O (middle row), and 26O (bottom row). Left column
shows the results as a function the effective pairing strength δ at
zero temperature. Right column shows the results as a function the
inverse temperature β at zero effective pairing strength. Faint gray
lines indicate the limiting values as predicted by Eq. (85b) (left) and
Eq. (68) (right).
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FIG. 3. Same as Fig. 2 for 19O calculated as a false vacuum
[12]. The black full line follows the spherical configuration (ov =
1/2, av = 3). Around β ∼ 3 MeV (left) or δ ∼ 0.4 (right), the spheri-
cal solution becomes a saddle point. The neutron-number variance of
the oblate solution (ov = 1/2, av = 1) is indicated by the red dashed
line. Faint gray lines indicate the limiting values of the neutron-
number variances predicted analytically in each case.

effective pairing strength δ (inverse temperature β) at T = 0
(δ = 0).

One first observes that the results displayed in the right
column of Fig. 2 are consistent with those reported in Ref. [2].
In particular, the limit values obtained for δ → 0 agree in all
cases with the prediction of Eq. (68).15 As for the left column,
one also observes that the dispersion monotonically decreases
with decreasing temperature and reaches in all three nuclei the
value predicted through Eq. (85b).

For closed-shell 22O, the neutron-number variance goes
to zero in both cases such that the same value is obtained
independently of the order with which the two limits are per-
formed. While it does reach zero smoothly in the left column
as the temperature decreases, the neutron-number variance
suddenly drops to zero for a nonzero value of the effective
pairing strength δ in the right column, which reflects the well-
known pairing collapse occurring in straight HFB theory.

In open-shell nuclei 18O and 26O, the neutron-number vari-
ance goes to nonzero values in both columns. Furthermore,
the limit values are consistent with the theoretical predic-
tions [Eqs. (68) and (85b)]. In particular, one observes that
the zero-pairing and zero-temperature limits do not commute
such that16

lim
T→0 & �→0

AD=A

�AD = 2 lim
�→0 & T→0

AD=A

�AD, (86)

15The fact that the neutron-number variances obtained at large
values of δ are significantly lower than those obtained in Ref. [2]
is simply due to the smaller single-particle model space employed
here.

16As a consequence of the finite dimension of the model space, the
maximum particle-number variance achievable at high temperature
is also half of the maximum value achievable at large δ.

in these two nuclei. Clearly, the neutron-number variance
obtained in the combined limits acts in all cases as a (possi-
bly nonzero) lower bound within the manifold of appropriate
FTHFB density operators.

Figure 3 displays the neutron-number variance for yet an-
other case of interest, i.e., the odd isotope 19O calculated as
a fully paired vacuum [12]. This hypothesis consists of treat-
ing the odd system while imposing (at least) one symmetry,
i.e., time-reversal invariance.17 Furthermore, the calculation
is performed twice to illustrate the effect of relaxing one
(but not all) of the symmetry restrictions, i.e., a first time
constraining the solution to spherical symmetry and a second
time authorizing it to break rotational invariance. Because the
average particle number is constrained to an odd value and the
one-body density matrices manifest time-reversal symmetry,
the system is constrained to manifest an open-shell character
in the joint limits. Even when the (2 j + 1)-fold degeneracy
of single-particle shells associated with spherical symmetry is
lifted through deformation, the remaining twofold Kramer’s
degeneracy imposes that the naive occupation of the valence
shell is necessarily ov = 1/2.

The solution of 19O constrained to spherical symmetry is
characterized by ov = 1/2 and av = 3. The neutron-number
variance thus reaches, in agreement with Eqs. (68) and (85b),
3 and 3/2 depending on the order of the limits. When authoriz-
ing the system to deform, the system has energetic advantage
to do so such that the naive filling of the (twofold degenerate)
valence shell is characterized by ov = 1/2 and av = 1. As
a result, the particle number variance of the oblate solution
converges, in agreement with Eqs. (68) and (85b), to either 1
or 1/2. The solutions obtained in the � → 0 & T → 0 limits
correspond to the spherical or deformed HF-EFA approxi-
mation. Contrarily, and as already pointed out in Ref. [2],
the solutions obtained in the T → 0 & � → 0 limits do not
correspond to the EFA but still constitute solutions found for
an open-shell configuration in the zero-pairing limit of straight
HFB.

D. Spectroscopic quantities

The FTHFB density operator reached in the combined
zero-pairing and zero-temperature limits is further scrutinized
in Fig. 4 where the three lowest quasineutron energies Ek

[Eq. (14)] are displayed in 18,22,26O as a function the effective
pairing strength δ (inverse temperature β) at T = 0 (δ = 0).

One observes that quasineutron energies, while behaving
differently in the left and right columns as a function of the
inverse temperature and effective pairing strength, respec-
tively, reach the same values independently of the order with
which the limits are performed. While this result is trivial in
closed-shell nuclei for which the two limits commute, it is not
in open-shell nuclei. In fact, the density operators obtained in

17In symmetry-unrestricted calculations, the description of odd
systems requires time-reversal symmetry to be broken. As a result,
canonical nuclear shells do not display any degeneracy such that the
odd nucleus eventually converges to a closed-shell configuration in
the joint zero-pairing and zero-temperature limits.
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FIG. 4. Same as Fig. 2 for the three lowest quasineutron energies.
The (online) colors stipulate the first (black full line), second (blue
dashed line), and third (orange dash-dotted line) lowest quasineutron
energies. The discontinuity appearing in the right column for 22O
signals the pairing collapse.

the two orderings display identical normal one-body density
matrices and only differ through the anomalous density matrix

(within the valence shell) entering the Bogoliubov field. Since
the pairing field is anyway driven to zero through the zero-
pairing limit, the HFB matrix is identical in both cases, and
so are its eigenvalues, i.e., independently of the order with
which the limits are taken, one has that Ek → |εk − λ|. We
emphasize that, while the HFB matrix is identical in both
cases, the many-body description constructed with the help
of its eigenvectors is not.

Eventually, while the lowest quasineutron energy remains
nonzero in 22O, it goes to zero in open-shell nuclei as testi-
mony of the fact that |εv − λ| → 0 in the combined limits. The
consequences of this degeneracy of open-shell ground states
with respect to elementary excitations in beyond mean-field
methods such as Bogoliubov many-body perturbation theory
[13–16] was illustrated in Ref. [2].

E. Grand potential

Figure 5 illustrates the competition between the pairing
energy and the entropy in the constrained grand potential
�(δ)D [Eq. (35)] for 18,22,26O. At a given value of the inverse
temperature β, pairing correlations persist when δ is not too
small. Pairing correlations keep the entropy low for moderate
values of δ and even vanishingly small if the temperature
is sufficiently low. However, as the zero-pairing limit is ap-
proached, the pairing energy carries less and less weight in
the Routhian and the entropy plays a comparatively more
important role. At high temperatures, this exchange of pairing
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FIG. 5. Finite-temperature HFB entropy (top row), pairing energy (middle row), and Routhian �(δ)D (bottom) as a function of the effective
pairing strength δ for different values of the inverse temperature in 18O (left column), 22O (center column), and 26O (right column). The
Routhian is normalized to the straight HFB result at δ = 0 for each isotope. The black lines (β = ∞) denote the straigh HFB result calculations.
Gray lines in the top row indicate the limiting values of the entropy in the combined � → 0 & T → 0 limits [Eq. (79)]. The dashed lines in the
bottom row indicate the value of the Routhian for the FTHF calculation at corresponding temperature.
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energy for entropy is rather smooth, but for lower tempera-
tures the process becomes more and more abrupt, i.e., pairing
correlations need to almost collapse completely before the
entropy term can dominate the grand potential. One observes
that the limit value reached by the entropy at δ = 0 equates the
predicted value [Eq. (79)] as T → 0. While this limit value is
zero in 22O, it is not in open-shell systems due to the nonzero
contribution of the valence shell.

Contrarily, when setting T = 0 before taking the zero-
pairing limit, the entropy vanishes in all nuclei whereas the
pairing energy survives in open-shell systems as δ → 0 due
to the residual anomalous density matrix within the valence
shell. Once again, one observes the qualitatively different de-
scription when the order with which both limits are performed
is inverted.

VII. CONCLUSIONS

The combined zero-pairing and zero-temperature limits
of the finite-temperature Hartree-Fock-Bogoliubov formalism
have been worked out analytically and realized numerically.
The study is realized while imposing at least one, i.e., time-
reversal, symmetry in order to be in the position to reach the
nontrivial solutions of present interest.18 The present work
extends the analysis of Ref. [2] where the zero-pairing limit
of straight HFB theory was scrutinized.

The textbook expectation is recovered for all closed-shell
nuclei whether deformed or spherical: the FTHFB density
operator reduces to a density operator corresponding to pure
HF Slater determinant. For open-shell systems, however, a
nontrivial description is obtained. Furthermore, this nontrivial
description is shown to depend on the order with which both
limits are taken, i.e., the zero-pairing and zero-temperature
limits do not commute in open-shell systems. When the
zero-temperature limit is performed first, the FTHFB density
operator is demoted to a projector onto a pure state, which is a

18In a fully symmetry-fully-unrestricted calculation, all systems are
necessarily of either spherical or deformed closed-shell character.
For such configurations, the present analysis leads only to trivial, i.e.,
textbook, solutions in the joint zero-pairing and zero-temperature
limits.

linear combination of a finite number of Slater determinants
with different (even) numbers of particles. When the zero-
pairing limit is performed first, the FTHFB density operator
remains a statistical mixture of a finite number of Slater de-
terminants with both even and odd particle numbers. While
the entropy (pairing density) is zero in the first (second) case,
it does not vanish in the second (first) case in spite of being
in the zero-temperature (zero-pairing) limit. To exemplify the
consequences of the different descriptions obtained in the
joint limits on the expectation value of operators, the particle-
number variance was studied, i.e., it was shown to be different
from zero and to differ by a factor of two in both cases.

In summary, this analysis demonstrates that the behavior
of the well-documented FTHFB formalism must be treated
with care when taking its zero-temperature and zero-pairing
limits. In particular, this formalism, as opposed to the textbook
expectation, does not reduce to Hartree-Fock theory in all
cases when taking these joint limits.
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APPENDIX: USEFUL FORMULAS

Newton’s binomial formula along with its first and second
derivatives with respect to x provide three useful identities:

(x + y)n =
n∑

k=0

(
k

n

)
xkyn−k, (A1)

n(x + y)n−1 =
n∑

k=1

(
k

n

)
kxk−1yn−k, (A2)

n(n − 1)(x + y)n−2 =
n∑

k=2

(
k

n

)
k(k − 1)xk−2yn−k . (A3)
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