Structure of ¹⁵⁵Nd and ¹⁶³Gd from ²⁵²Cf spontaneous fission

J. M. Eldridge[®],^{*} E. H. Wang[®], C. J. Zachary[®], J. H. Hamilton, B. M. Musangu[®], and A. V. Ramayya Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235, USA

> G. M. Ter-Akopian[®] and Yu. Ts. Oganessian Joint Institute for Nuclear Research, RU-141980 Dubna, Russian Federation

Y. X. Luo I and J. O. Rasmussen Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

S. J. Zhu

Department of Physics, Tsinghua University, Beijing 100084, China

(Received 29 April 2020; revised 1 July 2020; accepted 10 September 2020; published 26 October 2020)

Background: A puzzle has arisen recently caused by the apparent shift in maximum deformation from the expected ⁶⁶Dy isotopic chain to the ₆₀Nd isotopic chain in the 82 < N < 126 and 50 < Z < 82 midshell region. **Purpose:** This work provides data for two specific nuclei with odd neutron numbers, ¹⁵⁵Nd and ¹⁶³Gd, useful for constraining parameters in models that seek to answer the six proton shift in maximum deformation.

Method: Data from the spontaneous fission of ²⁵²Cf were taken by the Gammasphere detector array at Lawrence Berkeley National Laboratory to observe the excited states of ¹⁵⁵Nd and ¹⁶³Gd.

Results: The structure of ¹⁶³Gd has been expanded with the addition of two new levels and three new γ rays, which are found to be consistent with previously published calculations and the structure of ¹⁶⁵Dy. In ¹⁵⁵Nd, nine new levels and 12 new γ rays are observed. The spins and parities of the previously known levels in ¹⁵⁵Nd have been reassigned from a $\nu 3/2^{-}$ [521] ground state configuration to a $\nu 5/2^{+}$ [642] isomeric configuration by comparison of these newly observed levels with levels in ¹⁵³Nd and ¹⁵⁵Sm.

Conclusion: Further experimentation is required to determine the energy of the newly reassigned $v5/2^+$ [642] level in ¹⁵⁵Nd with respect to the suspected $v3/2^-$ [521] ground state. Additionally, more experiments should be conducted to further determine the structure of neutron rich nuclei, rarely produced in the spontaneous fission of ²⁵²Cf, such as ¹⁶³Gd.

DOI: 10.1103/PhysRevC.102.044323

I. INTRODUCTION

Between the spherical magic numbers of 82 and 126 for neutrons and 50 and 82 for protons, it was expected that ${}^{170}_{66}\text{Dy}_{104}$ would have the greatest deformation from spherical, as it lies at the exact center of this midshell region. Based on currently known first 2⁺ excited state energies of even-even nuclei, it does appear that N = 104 correlates with maximum deformation in Dy-Hf. However, as shown in Fig. 1, Z = 66does not correlate with the greatest deformation, as expected, but rather Z = 60, the Nd chain.

This puzzle has been discussed for many years in the literature [1–10], but as of yet no complete solution has been proposed to explain this six proton shift in maximum deformation. Some have proposed partial deformed shell closure at N = 98 to explain the local maximum visible in Fig. 1 at N = 98 for the ₆₀Dy, ₆₀Gd, and ₆₀Sm chains [2–6]. Thus more data are needed for nuclei in this doubly midshell region.

This work seeks to provide data for several nuclei with at least one odd nucleon in this region. Specifically ¹⁵⁵Nd, ¹⁶³Gd,

and the Eu isotopic chain have been examined by observation of the spontaneous fission (SF) of 252 Cf.

Previous work by Hwang *et al.* [11] established a $\nu 3/2^{-}[521]$ band up to 1831.6 keV for ¹⁵⁵Nd. This work adds 12 new γ -ray transitions and nine new levels to the structure of ¹⁵⁵Nd, and reassigns the configuration of the levels observed by Hwang *et al.* [11] to $\nu 5/2^{+}[642]$.

Until recently, very little was known about the structure of ¹⁶³Gd. Sato *et al.* [12] published five γ rays, but cited no level scheme. An 137.8 keV isomer was subsequently observed by Hayashi *et al.* [13] with $t_{1/2} = 23.5(10)$ s. Most recently, Zachary *et al.* [14] built a complex level scheme for ¹⁶³Gd from the β decay of ¹⁶³Eu. This work confirms six of the levels and seven of the γ rays placed into the level scheme of ¹⁶³Gd by Zachary *et al.* [14]. Beyond these, two new levels and three new γ rays have been added to the $\nu 7/2^+$ [633] ground state band of ¹⁶³Gd.

II. EXPERIMENT AND METHODS

The experimental data examined in this work were collected by use of the Gammasphere detector array, which was

^{*}jonathan.m.eldridge@gmail.com

FIG. 1. Lowest first 2^+ energies in the 82 < N < 126 and 50 < Z < 82 midshell region. The data show in this figure are compiled from Refs. [6,15–35].

located at Lawrence Berkley National Laboratory at the time of the experiment. A $62 \,\mu$ Ci source of 252 Cf was placed between iron foils inside Gammasphere yielding 5.7×10^{11} γ - γ - γ and higher coincidence events, including 1.9×10^{11} γ - γ - γ - γ events. Because the iron foils were thick enough to stop the fission fragments, no Doppler corrections were needed on the measurements. At the time of the experiment, 101 of Gammasphere's hyperpure germanium γ -ray detectors were working and were arranged spherically about the source. More details on this experimental setup can be found in Luo *et al.* [36].

III. RESULTS AND DISCUSSION

A. ¹⁵⁵Nd

By use of $\gamma - \gamma - \gamma - \gamma$ coincidences, the level scheme of ¹⁵⁵Nd has been extended up to ≈ 3.5 MeV with 12 new γ rays and nine new levels. The newly developed level scheme of ¹⁵⁵Nd is shown in Fig. 2 and more details about the transitions and levels can be found in Table I.

Figure 3 shows a double gate on the first two yrast transitions of ⁹⁴Sr, the three neutron fission partner of ¹⁵⁵Nd. In that figure one can see transitions from ^{152–156}Nd, including every transition from ¹⁵⁵Nd observed in this work. The primary difficulty in examining gates for ¹⁵⁵Nd, as shown in Fig. 3, is the similarity of energies across Nd isotopes. Fortunately, for identifying new transitions in ¹⁵⁵Nd, as typical for neighboring isotopes, this similarity diverges with increasing energy.

In Fig. 4 two triple gates are shown, demonstrating both the left and right half of the band shown in Fig. 2 for ¹⁵⁵Nd. The top of Fig. 4 shows a triple gate on three transitions in the left half of the band shown in Fig. 2. One can clearly see all the

FIG. 2. The level scheme of ¹⁵⁵Nd as found in this work. All level and γ energies are in keV. Red transitions and levels are newly observed in this work. Table I has the precise energies for these levels and γ rays.

transitions in that half of the band (except those gated upon) including the two newly identified transitions. The \approx 352 keV transition from ⁹⁵Sr is seen in this gate because it is the two neutron fission partner of ¹⁵⁵Nd.

The triple gate shown in Fig. 4(b) demonstrates the transitions in the right half of the band shown in Fig. 2. This gate consists of the ground state transition from 94 Sr (836.7 keV) and two from within the structure of 155 Nd (314.8 and 109.4 keV). In this gate, one can clearly see the transitions from the levels in the right half of the band shown in Fig. 2 up to and including the tentative 522.7 keV transition.

Unmarked peaks in Fig. 4 come from nuclei other than ¹⁵⁵Nd or an isotope of Sr. These background/contaminant peaks disappear in other gates which are not shown in Fig. 4 (such as Fig. 3), and thus can be clearly ruled out as not belonging to ¹⁵⁵Nd. All of the transitions identified in Fig. 2 and Table I are visible in more gates than those shown in Figs. 3 and 4. The net result of the preponderance of gates are shown in Fig. 2 and Table I, amounting to 12 new γ rays from nine new levels, as well as the new spin assignment of $\nu 5/2^+$ [642] for the lowest energy state observed, as described above.

FIG. 3. A double gate on 836.7–1308.7 keV, the first two yrast transitions from 94 Sr, the three neutron fission partner of 155 Nd. Transitions from 155 Nd are labeled with their rounded energy. For peaks from other sources the source is given as the label. Labels ending in a question mark indicate that the transition is previously unidentified. Transitions with contributions from multiple sources are combined with plus (+) signs.

FIG. 4. Two triple gates showing transitions in the structure of 155 Nd. Transitions from 155 Nd are labeled with their rounded energy. For peaks from other sources the source is given as the label. (a) A triple gate on the 273.1–341.3–407.5 keV within the structure of 155 Nd. (b) A triple gate on 836.7 keV from 94 Sr and 109.4–314.8 keV from 155 Nd.

TABLE I. Levels and γ -ray transitions observed in this work for ¹⁵⁵Nd. The intensities shown have not been corrected for internal conversion. Transitions and levels marked with an asterisk (*) are newly observed in this work. Square brackets indicate that a transition or level is tentative.

E_{γ} (keV)	I_{γ}	$E_i - X$ (keV)	J_i^π	$E_f - X$ (keV)	J_f^π
59.6(5)	<316	59.6(5)	$(7/2^+)$	0	$(5/2^+)$
75.8(5)	<260	135.4(8)	$(9/2^+)$	59.6(5)	$(7/2^+)$
94.6(5)	100(8)	230.3(9)	$(11/2^+)$	135.4(8)	$(9/2^+)$
109.4(5)	<99	339.7(7)	$(13/2^+)$	230.3(9)	$(11/2^+)$
132.5(5)*	86(12)	472.2(7)*	$(15/2^+)$	339.7(7)	$(13/2^+)$
[135.5(7)]	<13	135.4(8)	$(9/2^+)$	0	$(5/2^+)$
141.2(6)*	112(19)	613.1(6)	$(17/2^+)$	472.2(7)*	$(15/2^+)$
[170.0(8)]	55(9)	230.3(9)	$(11/2^+)$	59.6(5)	$(7/2^+)$
173.4(6)*	65(10)	786.8(6)*	$(19/2^+)$	613.1(6)	$(17/2^+)$
204.2(5)	58(9)	339.7(7)	$(13/2^+)$	135.4(8)	$(9/2^+)$
241.9(5)*	76(12)	472.2(7)*	$(15/2^+)$	230.3(9)	$(11/2^+)$
273.1(5)	69(18)	613.1(6)	$(17/2^+)$	339.7(7)	$(13/2^+)$
314.8(5)*	70(10)	786.8(6)*	$(19/2^+)$	472.2(7)*	$(15/2^+)$
341.3(5)	123(17)	954.4(8)	$(21/2^+)$	613.1(6)	$(17/2^+)$
386.6(5)*	47(7)	1173.4(8)*	$(23/2^+)$	786.8(6)*	$(19/2^+)$
407.5(6)	83(12)	1361.9(10)	$(25/2^+)$	954.4(8)	$(21/2^+)$
455.4(5)*	49(9)	1628.8(9)*	$(27/2^+)$	1173.4(8)*	$(23/2^+)$
469.7(5)	43(15)	1831.6(11)	$(29/2^+)$	1361.9(10)	$(25/2^+)$
[522.7(5)]*	27(6)	[2151.5(11)]*	$(31/2^+)$	1628.8(9)*	$(27/2^+)$
529.6(6)*	29(4)	2361.2(13)*	$(33/2^+)$	1831.6(11)	$(29/2^+)$
583.3(7)*	17(4)	2944.5(15)*	$(37/2^+)$	2361.2(13)*	$(33/2^+)$
[635.6(5)]*	10(3)	[3580.1(15)]*	$(41/2^+)$	2944.5(15)*	(37/2+)

While the tentative 170 keV transition is visible in both gates shown in Fig. 4, other gates not shown in Figs. 3 and 4 do not see the 170 keV transition when it should be visible based on the coincidence relationships. Furthermore, in gates that do see the 170 keV transition, its intensity and energy are inconsistent, leading to its tentative assignment and large energy uncertainty in Table I. The intensity discrepancy is clearly seen in Fig. 4 where Fig. 4 a shows the intensity of the 170 keV transition as about half of the intensity of the 95 keV transition, while this ratio is reversed in Fig. 4(b).

Now, Hwang *et al.* [11] used the same experimental data as described in this work. All discrepancies between Table I in this work and the work of Hwang *et al.* [11] are a combined result of two factors. First, at the time of the analysis presented in Hwang *et al.* [11], the data had not yet been compiled into a $\gamma - \gamma - \gamma - \gamma$ coincidence matrix. Thus, Hwang *et al.* only had access to the $\gamma - \gamma - \gamma$ coincidence matrix. The energies and intensities presented in Table I are combined from information derived from both $\gamma - \gamma - \gamma$ and $\gamma - \gamma - \gamma - \gamma$ coincidence spectra. Furthermore, the calibration of the data has been recalculated since the publication of Hwang *et al.* [11]. The combined results of these two changes should be less than the error bars on the γ -ray energies.

Based on systematics with ¹⁵³Nd [11,37], and ¹⁵⁵Sm [37,38] (see also Refs. [39–41]), we believe that the band described in [11] for ¹⁵⁵Nd is actually a $\nu 5/2^+$ [642] band instead of a $\nu 3/2^-$ [521] band. As shown in Fig. 5, the spacings of the only observed band in ¹⁵⁵Nd more closely

FIG. 5. Systematics of bands across ^{153,155}Nd, and ¹⁵⁵Sm. Data for ¹⁵³Nd are from [11] and ¹⁵⁵Sm come from [37,38]. Part (a) shows the $\nu 3/2^{-}$ [521] and $\nu 5/2^{+}$ [642] bands for each isotope, with the lowest energy level in ¹⁵⁵Nd set to zero to ensure that its levels fit in the plot better. Part (b) contains a plot of the spacing between any two levels whose spins differ by 1. The dashed lines indicate the $\nu 3/2^{-}$ [521] bands while the solid lines indicate the $\nu 5/2^{+}$ [642] bands. The line for the $\nu 3/2^{-}$ [521] band of ¹⁵⁵Nd is what the spins would be if the only observed band were that configuration, rather than the $\nu 5/2^{+}$ [642] configuration assumed by this work.

matches the spacings of the levels of the $v5/2^+$ [642] bands in ¹⁵³Nd and ¹⁵⁵Sm. Figure 5(a) shows both the $v5/2^+$ [642] and $v3/2^-$ [521] bands for each of these three isotopes (except ¹⁵⁵Nd, which has only one band). Figure 5(b) shows the spacing between levels as a function of spin, where one can clearly see that an assignment of $\nu 5/2^+$ [642] for the observed levels in ¹⁵⁵Nd matches the spacing of the $\nu 5/2^+$ [642] bands of the other isotopes, especially ¹⁵³Nd, better than the spacing of the $\nu 3/2^-$ [521] bands. Of particular note is the signature splitting. If an assignment of $\nu 3/2^-$ [521] were given to the band observed in ¹⁵⁵Nd, then its signature splitting of levels would be opposite of the signature splitting in the spacing of the other bands observed of either configuration for ¹⁵³Nd or ¹⁵⁵Sm as clearly seen in Fig. 5(b). Because of these observations we propose a new assignment of a $\nu 5/2^+$ [642] configuration—in place of the previous $\nu 3/2^-$ [521]—for the observed band in ¹⁵⁵Nd.

This reassignment of the spins and parities of the levels in ¹⁵⁵Nd comes with a few significant consequences. As Hwang et al. [11] states, the expected ground state of ¹⁵⁵Nd is a $v3/2^{-}[521]$, especially since this is true of ¹⁵³Nd and ¹⁵⁵Sm. Thus, based on the present work, the band-head of the band observed in this work and in Hwang et al. [11] is likely not the expected $v3/2^{-}[521]$ ground state of ¹⁵⁵Nd, but rather a $v5/2^{+}[642]$ excited state. Since no alternative ground states are observed for ¹⁵⁵Nd, either (1) the $\nu 5/2^+$ [642] band head is an isomer, (2) the transition from the $v5/2^+$ [642] band head to ground is less than 33 keV (the minimum detectable energy in our data), (3) the assignment of Hwang et al. [11] is correct and the assignment of this work is incorrect, or (4) the energies of the $v5/2^+$ [642] and $v3/2^-$ [521] bands are swapped for ¹⁵⁵Nd compared to its neighbors. Option (3) would be in direct contradiction with the observations of Fig. 5. While option (4) is not, strictly speaking, impossible concerning the observations in Fig. 5, it is unlikely, since ¹⁵³Nd and ¹⁵⁵Sm both have a $v3/2^{-}[521]$ ground state and a $v5/2^{+}[642]$ excited state. Furthermore, option (1) would be consistent with the observed 2.8(5) and 1.06(5) μ s half-lives of the ν 5/2⁺[642] states in ¹⁵⁵Sm and ¹⁵³Nd [37,41], respectively. Thus, based on the systematics shown in Fig. 5, this work favors a combination of options (1) and (2) to explain why the $\nu 3/2^{-}[521]$ state is not observed in this work.

The question is remains as to why the $\nu 3/2^{-}[521]$ band for ¹⁵⁵Nd is not observed by means other than decay from the $\nu 5/2^{+}[642]$ level. In both ¹⁵⁵Sm and ¹⁵³Nd, no linking transitions are observed between the $\nu 3/2^{-}[521]$ and $\nu 5/2^{+}[642]$ bands except for decay from the $\nu 5/2^{+}[642]$ isomers. Thus no linking transitions are expected in ¹⁵⁵Nd, and therefore can not be used to search for levels belonging to the $\nu 3/2^{-}[521]$ configuration in ¹⁵⁵Nd. Furthermore, as seen in Fig. 3, the energies of transitions in isotopes of ¹⁵⁵Nd are extremely similar. Thus, since no coincident relationships are observed (or expected except for isomeric decay) between the $\nu 5/2^{+}[642]$ and $\nu 3/2^{-}[521]$ bands, some prior knowledge at least one or two levels or transitions in the $\nu 3/2^{-}[521]$ would be required to uncover the energies of the transitions within the $\nu 3/2^{-}[521]$ that is likely available in our data.

By plotting the yields of Nd for each isotope of Sr as shown in Musangu *et al.* [42] (who worked from the level scheme provided by Hwang *et al.* [11]), one finds that ¹⁵⁵Nd has a slightly lower yield than the curve, in most cases, as shown in Fig. 6. However, this discrepancy is small. Thus, the yield curves of Nd-Sr reported in Musangu *et al.* [42], are inconclusive for determining whether or not the low-

FIG. 6. Plots of the ²⁵²Cf SF yields of Sr isotopes as function of Nd mass number (*A*) from Musangu *et al.* [42].

est level reported in Fig. 2 is the ground state of 155 Nd or not.

B. ¹⁶³Gd

By examining γ rays produced by the products of the SF of 252 Cf, this present work attempts to build on the level scheme for 163 Gd observed by Zachary *et al.* [14], as well as confirm the levels they observed. This analysis has resulted in three new transitions depopulating two new levels and the confirmation of seven transitions and seven excited states observed

TABLE II. A list of levels and γ rays observed for ¹⁶³Gd in the SF of ²⁵²Cf. Transitions and levels marked with an asterisk (*) are newly observed in this work and square braces indicate that a transition or level is tentative.

$\overline{E_{\gamma}}$ (keV)	I_{γ}	E_i (keV)	J^{π}_i	E_f (keV)	J_f^π
[48.9(11)] ^a	<70 ^b	186.7(10) ^a	$3/2^{-}$	[137.8(5)] ^{c,d}	$1/2^{-}$
[71.8(5)] ^c	≪354 ^b	209.6(7) ^c	$5/2^{-}$	[137.8(5)] ^{c,d}	$1/2^{-}$
84.8(5)	94(9)	84.8(5)	$9/2^+$	0	$7/2^{+}$
103.8(5)	100(5)	188.6(7)	$11/2^{+}$	84.8(5)	$9/2^{+}$
115.1(5)	75(8)	324.7(9)	$7/2^{-}$	209.6(7) ^c	$5/2^{-}$
122.8(5)*	51(6)	311.4(9)*	$(13/2^+)$	188.6(7)	$11/2^{+}$
138.0(5)	67(7)	324.7(9)	$7/2^{-}$	186.7(10) ^a	$3/2^{-}$
142.6(5)*	<50	454.2(7)*	$(15/2^+)$	311.4(9)*	$(13/2^+)$
265.8(5)*	<18	454.2(7)*	$(15/2^+)$	188.6(7)	$11/2^{+}$
[453.8(6)]	<48	[453.8(6)]	$(5/2^{-})$	0	$7/2^{+}$

^aNot directly measured; calculated from level differences. ^bIntensity upper limit obtained by ignoring contributions from known strong contaminants.

^cNot directly measured; adopted from Zachary *et al.* [14]. ^dKnown isomer with lifetime, 23.5(10) s [13].

FIG. 7. The level scheme of ¹⁶³Gd as observed in this work. The width of the arrows indicates intensity (white is theoretical internal conversion). In red are the new transitions and levels newly observed in this work. The half-life of the \approx 138 keV isomer is taken from [13]. The precise level and γ -ray energies are shown in Table II.

by Zachary *et al.* [14]. All of these transitions and levels are tabulated in Table II, while the level scheme of ¹⁶³Gd is shown in Fig. 7.

The only gate that clearly showed transitions from ¹⁶³Gd is a double gate on 704.1/863.6 keV from ⁸⁶Se, the three neutron fission partner of ¹⁶³Gd. Furthermore, all the intensities shown in Table II were measured using this double gate. This gate is shown in Fig. 8. In general, the statistics for triple gates were too low for any conclusions, though results in those gates were not contradictory with the structure shown.

Two major sources of contamination are seen in Fig. 8. First, two \approx 704 keV transitions are known in the yrast band of ¹¹⁰Ru at 705.3 keV (8⁺ \rightarrow 6⁺) and 703.9 keV (14⁺ \rightarrow 12⁺). When these transitions are combined with the two (albeit weak) \approx 864 keV (861.5 and 863 keV) transitions in ¹³⁹Xe, the three neutron fission partner of ¹¹⁰Ru, they produce two contaminant peaks in the spectrum shown in Fig. 8. Additionally, in the yrast band of ¹¹⁴Pd one finds the 16⁺ $\stackrel{863.5}{\rightarrow}$ 14⁺ $\stackrel{703.9}{\rightarrow}$ 12⁺ cascade. Thus the $2^+ \xrightarrow{322.8} 0^+$ transition from ¹¹⁴Pd can be seen in Fig. 8, as well as two other peaks generated by isotopes of Te, the fission partner of Pd.

The yrast band displayed in Fig. 7 agrees well with the theoretical calculations presented in Zachary *et al.* [14]. Furthermore, as also discussed in Zachary *et al.*, the new levels found for ¹⁶³Gd continue to closely match the structure of ¹⁶⁵Dy (see Refs. [43–45]), which is believed to have the same ground state configuration as ¹⁶³Gd ($\nu 7/2^+$ [633]), since both nuclides have 99 neutrons. Thus, though the coincident evidence for the ¹⁶³Gd level scheme from the SF of ²⁵²Cf is low, we have strong confidence in the structure presented in Fig. 7 and Table II for ¹⁶³Gd.

C. Isotopes of 63Eu

Only four isotopes of Eu produced by the SF of 252 Cf have any levels or γ rays known in the literature. Burke *et al.* [46],

FIG. 8. A double gate on 704.1–863.6 keV, the first two yrast transitions in 86 Se, in which all the transitions observed in this work for 163 Gd, its three neutron fission partner, are visible. Transitions from 163 Gd are labeled with their rounded energy. For peaks from other sources the source is given as the label. Transitions with contributions from multiple sources are combined with plus (+) signs.

using the ^{158,160}Gd(t, α) ^{157,159}Eu reactions, with polarized tritons, uncovered many levels in ^{157,159}Eu. Later, Willmes *et al.* [47] and Greenwood *et al.* [44] studied the β decay of ¹⁵⁹Sm and ¹⁵⁷Sm, respectively, observing γ rays and more precise values of some of the levels observed by Burke *et al.* [46] for ^{157,159}Eu. The isotope, ¹⁵⁶Eu has been studied by the ¹⁵⁴Eu(t, p) ¹⁵⁶Eu [48] and ¹⁵⁵Eu(n, γ) ¹⁵⁶Eu [49] reactions. Finally, ¹⁶⁴Eu has only four tentative γ rays known [6], but no excited states.

Unfortunately, due to a combination of a lack of statistics in our ²⁵²Cf SF data, and a lack of previously known γ rays in the isotopes of Eu and its fission partners, no level schemes could be established in this work for isotopes of Eu. These issues are greatly compounded by the propensity of low energy γ rays known (and unknown) from many nuclei present in our data. For ¹⁵⁵Nd and ¹⁶³Gd, gates on fission partner energies were used to isolate transitions in those nuclei since their fission partners, being near the spherical magic number 50 for protons, have strong γ rays commonly well in excess of 500 keV. However, no excited states or transitions are known for isotopes of Br more neutron rich than ⁸⁸Br, making setting gates on their energies impossible for isolating transitions in isotopes of Eu. We are relatively confident, however, that, if more data were available in the literature concerning γ rays and excited states for neutron-rich isotopes of Br, that new γ rays and excited states would be observable for ^{156,157,159}Eu in our ²⁵²Cf SF data. Furthermore, it is likely that, were another experiment to uncover a few excited states in isotopes of Eu which currently have no known excited states, and were some data known concerning their Br fission partners, that more levels and γ rays could be observed in our data.

IV. CONCLUSION

The level schemes of ¹⁵⁵Nd and ¹⁶³Gd have been studied following the SF of ²⁵²Cf. The structure of ¹⁶³Gd has been expanded with two new levels and three new γ rays in the ground state band. The newly observed levels in ¹⁶³Gd are consistent with the theoretical calculations discussed in Zachary *et al.* [14] and the level scheme of ¹⁶⁵Dy [43–45].

For ¹⁵⁵Nd, nine new levels and 12 new γ rays have been observed. This has enabled a deeper comparison between level spacing between ¹⁵⁵Nd and its neighbors, ¹⁵³Nd and ¹⁵⁵Sm, resulting a reassignment the spins and parities of observed levels in ¹⁵⁵Nd. It is now believed that the lowest observed level in the structure of ¹⁵⁵Nd is actually a ν 5/2⁺[642] (probably excited) state, rather than the previously assigned ν 3/2⁻[521] configuration. An experiment more capable of examining isomers, or seeing transitions below \approx 40 keV, would be required to determine whether the ν 5/2⁺[642] level observed in this work is an excited state, or the order ν 3/2⁻[521] and ν 5/2⁺[642] configurations is reversed for ¹⁵⁵Nd, compared to its neighbors.

ACKNOWLEDGMENTS

The work at Vanderbilt University is supported by The United States Department of Energy under Grant No. DE-FG05-88ER40407. The work at Lawrence Berkeley National Laboratory is supported by the United States Department of Energy under Grants No. DE-AC07-761DO1570 and No. DE-AC03-76SF00098. The work at JINR was supported by the Russian Foundation for Basic Research Grant No. 08-02-00089 and by the INTAS Grant No. 03-51-4496. The work at Tsinghua University was supported by the National Natural Science Foundation of China under Grant No. 11175095. A special thanks also to the faculty and staff of Lawrence Berkley National Laboratory who facilitated the collection of the data discussed here.

- R. F. Casten, P. von Brentano, and A. M. I. Haque, Phys. Rev. C 31, 1991 (1985).
- [2] L. Satpathy and S. Patra, Nucl. Phys. A 722, C24 (2003).
- [3] E. F. Jones, J. H. Hamilton, P. M. Gore, A. V. Ramayya, J. K. Hwang, A. P. deLima, S. J. Zhu, Y. X. Luo, C. J. Beyer, J. Kormicki, X. Q. Zhang, W. C. Ma, I. Y. Lee, J. O. Rasmussen, S. C. Wu, T. N. Ginter, P. Fallon, M. Stoyer, J. D. Cole, A. V. Daniel, G. M. Ter-Akopian, R. Donangelo, S. J. Asztalos, T. Cornelius, P. Fleischer, M. Bender, T. Bürvenich, S. Schramm, J. A. Maruhn, and P.-G. Reinhard, J. Phys. G: Nucl. Part. Phys. 30, L43 (2004).
- [4] E. F. Jones, J. H. Hamilton, P. M. Gore, A. V. Ramayya, J. K. Hwang, and A. P. deLima, Eur. Phys. J. A 25, 467 (2005).
- [5] S. K. Ghorui, B. B. Sahu, C. R. Praharaj, and S. K. Patra, Phys. Rev. C 85, 064327 (2012).
- [6] Z. Patel, P. M. Walker, Z. Podolyák, P. H. Regan, T. A. Berry, P.-A. Söderström, H. Watanabe, E. Ideguchi, G. S. Simpson, S. Nishimura, Q. Wu, F. R. Xu, F. Browne, P. Doornenbal, G. Lorusso, S. Rice, L. Sinclair, T. Sumikama, J. Wu, Z. Y. Xu,

N. Aoi, H. Baba, F. L. Bello Garrote, G. Benzoni, R. Daido, Z. Dombrádi, Y. Fang, N. Fukuda, G. Gey, S. Go, A. Gottardo, N. Inabe, T. Isobe, D. Kameda, K. Kobayashi, M. Kobayashi, T. Komatsubara, I. Kojouharov, T. Kubo, N. Kurz, I. Kuti, Z. Li, M. Matsushita, S. Michimasa, C.-B. Moon, H. Nishibata, I. Nishizuka, A. Odahara, E. Şahin, H. Sakurai, H. Schaffner, H. Suzuki, H. Takeda, M. Tanaka, J. Taprogge, Z. Vajta, A. Yagi, and R. Yokoyama, Phys. Rev. C **96**, 034305 (2017).

[7] Z. Patel, P.-A. Söderström, Z. Podolyák, P. H. Regan, P. M. Walker, H. Watanabe, E. Ideguchi, G. S. Simpson, H. L. Liu, S. Nishimura, Q. Wu, F. R. Xu, F. Browne, P. Doornenbal, G. Lorusso, S. Rice, L. Sinclair, T. Sumikama, J. Wu, Z. Y. Xu, N. Aoi, H. Baba, F. L. Bello Garrote, G. Benzoni, R. Daido, Y. Fang, N. Fukuda, G. Gey, S. Go, A. Gottardo, N. Inabe, T. Isobe, D. Kameda, K. Kobayashi, M. Kobayashi, T. Komatsubara, I. Kojouharov, T. Kubo, N. Kurz, I. Kuti, Z. Li, M. Matsushita, S. Michimasa, C.-B. Moon, H. Nishibata, I. Nishizuka, A. Odahara, E. Şahin, H. Sakurai, H. Schaffner, H. Suzuki, H. Takeda, M. Tanaka, J. Taprogge, Z. Vajta, A. Yagi, and R. Yokoyama, Phys. Rev. Lett. **113**, 262502 (2014).

- [8] P.-A. Söderström, P. Walker, J. Wu, H. Liu, P. Regan, H. Watanabe, P. Doornenbal, Z. Korkulu, P. Lee, J. Liu, G. Lorusso, S. Nishimura, V. Phong, T. Sumikama, F. Xu, A. Yagi, G. Zhang, D. Ahn, T. Alharbi, H. Baba, F. Browne, A. Bruce, R. Carroll, K. Chae, Z. Dombradi, A. Estrade, N. Fukuda, C. Griffin, E. Ideguchi, N. Inabe, T. Isobe, H. Kanaoka, S. Kanaya, I. Kojouharov, F. Kondev, T. Kubo, S. Kubono, N. Kurz, I. Kuti, S. Lalkovski, G. Lane, E. Lee, C. Lee, G. Lotay, C.-B. Moon, I. Nishizuka, C. Niţă, A. Odahara, Z. Patel, Z. Podolyák, O. Roberts, H. Sakurai, H. Schaffner, C. Shand, H. Suzuki, H. Takeda, S. Terashima, Z. Vajta, J. Valiente-Dòbon, and Z. Xu, Phys. Lett. B **762**, 404 (2016).
- [9] R. K. Pandit, R. Devi, S. K. Khosa, G. H. Bhat, and J. A. Sheikh, Eur. Phys. J. A 53, 201 (2017).
- [10] R. Yokoyama, S. Go, D. Kameda, T. Kubo, N. Inabe, N. Fukuda, H. Takeda, H. Suzuki, K. Yoshida, K. Kusaka, K. Tanaka, Y. Yanagisawa, M. Ohtake, H. Sato, Y. Shimizu, H. Baba, M. Kurokawa, D. Nishimura, T. Ohnishi, N. Iwasa, A. Chiba, T. Yamada, E. Ideguchi, T. Fujii, H. Nishibata, K. Ieki, D. Murai, S. Momota, Y. Sato, J. W. Hwang, S. Kim, O. B. Tarasov, D. J. Morrissey, B. M. Sherrill, G. Simpson, and C. R. Praharaj, Phys. Rev. C **95**, 034313 (2017).
- [11] J. K. Hwang, A. V. Ramayya, J. H. Hamilton, K. Li, C. Goodin, Y. X. Luo, J. O. Rasmussen, and S. J. Zhu, Phys. Rev. C 78, 014309 (2008).
- [12] T. K. Sato, A. Osa, K. Tsukada, M. Asai, S. Ichikawa, H. Hayashi, Y. Kojima, and M. Shibata, Decay studies of new neutron-rich isotopes ^{163,164,165}Eu, JAEA-Tokai TANDEM Annual Report 2005, Report No. JAEA-REVIEW–2006-029 (Japan Atomic Energy Agency, Tokai, Ibaraki, Japan, 2006).
- [13] H. Hayashi, M. Shibata, M. Asai, A. Osa, T. Sato, M. Koizumi, A. Kimura, and M. Oshima, Nucl. Instrum. Methods Phys. Res. A 747, 41 (2014).
- [14] C. J. Zachary, N. T. Brewer, J. C. Batchelder, E. Wang, J. H. Hamilton, J. M. Eldridge, B. M. Musangu, A. V. Ramayya, C. J. Gross, K. P. Rykaczewski, R. Grzywacz, A. C. Dai, F. R. Xu, Y. X. Liu, Y. Sun, M. Madurga, D. Miller, D. W. Stracener, C. Jost, E. F. Zganjar, J. A. Winger, M. Karny, S. V. Paulauskas, S. H. Liu, M. Wolińska Cichocka, S. W. Padgett, A. J. Mendez, K. Miernik, A. Fijałkowska, and S. V. Ilyushkin, Phys. Rev. C 101, 054312 (2020).
- [15] N. Nica, Nucl. Data Sheets 117, 1 (2014).
- [16] S. K. Basu and A. A. Sonzogni, Nucl. Data Sheets 114, 435 (2013).
- [17] M. Martin, Nucl. Data Sheets 114, 1497 (2013).
- [18] C. Reich, Nucl. Data Sheets **110**, 2257 (2009).
- [19] C. Reich, Nucl. Data Sheets **113**, 2537 (2012).
- [20] N. Nica, Nucl. Data Sheets 141, 1 (2017).
- [21] C. W. Reich, Nucl. Data Sheets 105, 557 (2005).
- [22] C. Reich, Nucl. Data Sheets 108, 1807 (2007).
- [23] B. Singh and J. Chen, Nucl. Data Sheets 147, 1 (2018).
- [24] C. M. Baglin, Nucl. Data Sheets 109, 1103 (2008).
- [25] C. M. Baglin, Nucl. Data Sheets **111**, 1807 (2010).
- [26] C. Baglin, E. McCutchan, S. Basunia, and E. Browne, Nucl. Data Sheets 153, 1 (2018).
- [27] B. Singh, Nucl. Data Sheets 75, 199 (1995).
- [28] E. Browne, Nucl. Data Sheets 62, 1 (1991).
- [29] M. Basunia, Nucl. Data Sheets 107, 791 (2006).
- [30] E. Achterberg, O. Capurro, and G. Marti, Nucl. Data Sheets 110, 1473 (2009).

- [31] E. McCutchan, Nucl. Data Sheets 126, 151 (2015).
- [32] B. Singh, Nucl. Data Sheets 130, 21 (2015).
- [33] C. M. Baglin, Nucl. Data Sheets 111, 275 (2010).
- [34] H. Watanabe, G. Zhang, K. Yoshida, P. Walker, J. Liu, J. Wu, P. Regan, P.-A. Söderström, H. Kanaoka, Z. Korkulu, P. Lee, S. Nishimura, A. Yagi, D. Ahn, T. Alharbi, H. Baba, F. Browne, A. Bruce, R. Carroll, K. Chae, Z. Dombradi, P. Doornenbal, A. Estrade, N. Fukuda, C. Griffin, E. Ideguchi, N. Inabe, T. Isobe, S. Kanaya, I. Kojouharov, F. Kondev, T. Kubo, S. Kubono, N. Kurz, I. Kuti, S. Lalkovski, G. Lane, C. Lee, E. Lee, G. Lorusso, G. Lotay, C.-B. Moon, I. Nishizuka, C. Nita, A. Odahara, Z. Patel, V. Phong, Z. Podolyák, O. Roberts, H. Sakurai, H. Schaffner, C. Shand, Y. Shimizu, T. Sumikama, H. Suzuki, H. Takeda, S. Terashima, Z. Vajta, J. Valiente-Dóbon, and Z. Xu, Phys. Lett. B **760**, 641 (2016).
- [35] G. D. Dracoulis, G. J. Lane, F. G. Kondev, H. Watanabe, D. Seweryniak, S. Zhu, M. P. Carpenter, C. J. Chiara, R. V. F. Janssens, T. Lauritsen, C. J. Lister, E. A. McCutchan, and I. Stefanescu, Phys. Rev. C 79, 061303(R) (2009).
- [36] Y. X. Luo, J. O. Rasmussen, A. V. Ramayya, J. H. Hamilton, X. Q. Zhang, J. K. Hwang, C. J. Beyer, J. Kormicki, G. M. Ter-Akopian, Y. T. Oganessian, A. V. Daniel, K. E. Gregorich, T. N. Ginter, P. Zielinski, C. M. Folden, I. Y. Lee, P. Fallon, A. Macchiavelli, R. Donangelo, M. A. Stoyer, S. Asztalos, and S. C. Wu, Phys. Rev. C 64, 054306 (2001).
- [37] G. S. Simpson, W. Urban, J. A. Pinston, J. C. Angelique, I. Deloncle, H. R. Faust, J. Genevey, U. Köster, T. Materna, R. Orlandi, A. Scherillo, A. G. Smith, J. F. Smith, T. Rząca-Urban, I. Ahmad, and J. P. Greene, Phys. Rev. C 81, 024313 (2010).
- [38] N. Nica, Nucl. Data Sheets 160, 1 (2019).
- [39] J. K. Hwang, A. V. Ramayya, J. H. Hamilton, S. H. Liu, N. T. Brewer, Y. X. Luo, J. O. Rasmussen, S. J. Zhu, and R. Donangelo, Phys. Rev. C 82, 034308 (2010).
- [40] W. Urban, J. A. Pinston, G. S. Simpson, A. G. Smith, J. F. Smith, T. Rząca-Urban, and I. Ahmad, Phys. Rev. C 80, 037301 (2009).
- [41] S. Yamada, A. Taniguchi, Y. Toh, and K. Okano, J. Phys. Soc. Jpn. 65, 3390 (1996).
- [42] B. M. Musangu, A. H. Thibeault, T. H. Richards, E. H. Wang, J. H. Hamilton, C. J. Zachary, J. M. Eldridge, A. V. Ramayya, Y. X. Luo, J. O. Rasmussen, G. M. Ter-Akopian, Y. T. Oganessian, and S. J. Zhu, Phys. Rev. C 101, 034610 (2020).
- [43] R. K. Sheline, W. N. Shelton, H. T. Motz, and R. E. Carter, Phys. Rev. 136, B351 (1964).
- [44] R. C. Greenwood, R. J. Gehrke, J. D. Baker, D. H. Meikrantz, and C. W. Reich, Phys. Rev. C 27, 1266 (1983).
- [45] E. Kaerts, P. van Assche, S. Kerr, F. Hoyler, H. Börner, R. Casten, and D. Warner, Nucl. Phys. A 514, 173 (1990).
- [46] D. G. Burke, G. Løvhøiden, E. R. Flynn, and J. W. Sunier, Nucl. Phys. A **318**, 77 (1979).
- [47] H. Willmes, R. A. Anderl, J. D. Cole, R. C. Greenwood, and C. W. Reich, Phys. Rev. C 36, 1540 (1987).
- [48] R. G. Lanier, R. K. Sheline, G. L. Struble, L. G. Mann, and J. A. Cizewski, Nucl. Phys. A 413, 236 (1984).
- [49] M. K. Balodis, N. D. Kramer, P. T. Prokofjev, A. V. Afanasjev, T. V. Guseva, J. J. Tambergs, K. Schreckenbach, W. F. Davidson, D. D. Warner, J. A. Pinston, P. H. M. V. Assche, and A. M. J. Spits, Nucl. Phys. A **523**, 261 (1991).